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Simulation and modeling of
the elliptic streamline flow

By G. A. BlaisdelP AND K. Shariff _

Direct numerical simulations are performed for the elliptic streamline flow, which

is a homogeneous turbulent flow that combines the effects of solid body rotation

and strain. Simulations are run over a range of parameters in order to determine

the effect of changing rotation and strain separately. For early times the nonlinear

cascade is suppressed, but then is re-established at later times. The growth rate of

turbulent kinetic energy agrees at early times with the trends from linear theory, but

at later times the flow seems to approach an asymptotic state that is independent

of the ratio of mean flow rotation rate to strain rate. A comparison with standard

Reynolds stress turbulence models is made. It is found that for strong rotation rates,

the models predict decay of the turbulence, while the simulations show exponential

growth. Close examination of the simulation results shows that they are affected by

excessively low Reynolds numbers. Suggestions for reducing low Reynolds number

effects in future simulations is given.

1. Introduction

1.1 Motivation

The elliptic streamline flow is an important flow for many reasons. This flow
contains the effects of both rotation and strain and is therefore similar to the mean

flow in a vortex strained in the plane perpendicular to its axis. Such flows provide

insight into fundamental vortical interactions within turbulence, and the instability

caused by the strain has been proposed as a universal mechanism for energy transfer

from large scales to small scales (Pierrehumbert 1986).

A strained vortex also occurs in airplane wakes, in which each wingtip vortex

induces a strain field on the other. The strain field can affect the stability of

these vortices and thereby their turbulent structure downstream. The ability to

understand and predict the turbulent structure of the vortices is important to the

wake hazard problem, which is of major concern for the safety of commercial aircraft.

Another example of a flow with the combined effects of rotation and strain is

the outer core of the earth's interior. The electrically conducting fluid in the outer

portion of the earth's core rotates with the earth but is also strained by tidal forces.

A large scale secondary flow results, which has been proposed as the cause of the
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magnetic field (Malkus & Berry 1988). Additional examples are flow in fluid-filled

satellites and in rectangular cavities.

The elliptic streamline flow is also a good test case for turbulence models for

rotating flows. It has an added complication beyond that of pure rotation, but it is

still a basic flow. The additional strain rate is present in most practical engineering

flows and, therefore, is a necessary effect for turbulence models to capture. As shown

in Section 3, standard Reynolds stress models predict decay of the turbulent kinetic

energy for cases with strong rotation, whereas the DNS shows exponential growth.

Therefore, the elliptic streamline flow presents a challenging case for turbulence
modelers.

1.2 Background

The elliptic streamline flow has been studied using Rapid Distortion Theory

(RDT) by Cambon et al. (1985) and Cambon et al. (1994). Different approaches

were used by Pierrehumbert (1986), Bayly (1986), and Waleffe (1990), who per-

formed inviscid stability analyses. For circular streamlines (pure rotation) there are

no unstable modes, while for elliptic streamlines a band of unstable modes exists in

which the growth rate depends on the polar angle of the wavenumber vector. The

band of unstable angles increases in width for increasing ellipticity of the stream-

lines. Also, the growth rate of the unstable modes is independent of the magnitude

of the wavenumber vector. Therefore, arbitrarily small three-dimensional fluctua-

tions can be created by an instability of a basic two-dimensional flow. Pierrehumbert

suggested that this might be a mechanism for the cascade process in turbulent flows.

The effects of viscosity were studied by Landman & Saffman (1987) and are in-

eluded in the RDT analyses of Cambon et al. The growth rate of the instabilities is

modified by viscosity so that the growth rate is no longer independent of the mag-

nitude of the wavenumber vector. Landman & Saffman found a high wavenumber

cut-off of the instability. However, there is no low wavenumber cut-off, and arbi-

trarily large scales are unstable. This fact causes the turbulent eddies to eventually
outgrow the computational domain in the DNS discussed below.

An interesting experiment corresponding to elliptic streamline flow was done by
Malkus (1989). A tank with moving flexible walls was used to create a flow with el-

liptic streamlines. He observed a collapse phenomenon in which the two-dimensional

flow suddenly breaks down into three-dimensional small scale motions. Waleffe

(1990) studied the stability of the enclosed elliptic flow and suggested the collapse
phenomenon is due to nonlinear interactions in which the mean flow is altered.

It is not clear at this point how this confined flow is related to the homogeneous
turbulent flow studied here.

Lundgren & Mansour (1996) investigated the stability of a vortex in a rectangu-

lar domain. This flow is very similar to the elliptic streamline flow and displays a

similar instability. However, their flow has a mean velocity which decays in time,

and their flow is inhomogeneous. These two factors introduce additional compli-
cating effects and make gathering turbulence statistics difficult because of the low

statistical sample that is available. The elliptic streamline flow and its instability is

also related to the instability of a strained, finite-sized vortex with uniform vorticity
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studied by Widnall et al. (1974) and others.

An experiment which was designed to correspond to the homogeneous elliptic

streamline flow was performed by Benoit (1992). He investigated grid generated

turbulence created by a rotating grid and then passed through a specially designed

diffuser with elliptic cross-sections. Benoit also analyzed the flow using linear rapid

distortion theory. In order to compare with his results, simulations at Reynolds

numbers higher than those in the current study are needed. This point is discussed

futher below.
There has been a considerable amount of work done on the stability of the elliptic

streamline flow. However, the only numerical simulations that have been done are

the preliminary simulations of Blaisdell & Shariff (1994). The current simulations
are a continuation of that work. With the use of direct numerical simulation, the

nonlinear development of the flow and the fully turbulent state can be examined.

1.3 Objectives

The objectives of this work are to investigate the elliptic streamline flow for

the fully turbulent case and to provide statistics for comparison with turbulence
models. One of the issues to be investigated is whether the linear instability modes

grow to dominate the flow even in the presence of large initial disturbances. The

effect of the governing parameters on the development of the flow is also to be

studied. For the elliptic streamline flow the governing parameters are: (1) the ratio

of the rotation rate to the strain rate, which gives the aspect ratio of the elliptic

streamlines, (2) the ratio of a mean flow time scale, such as the rotation rate, to
the turbulence time scale, and (3) the turbulent Reynolds number. Simulations are

chosen to vary these parameters in a systematic way. However, it is found that the

Reynolds numbers of these simulations is low enough that the development of the

flow is significantly affected. Suggestions for overcoming this limitation in future

simulations are discussed in Section 4.

Turbulence statistics, including full Reynolds stress budgets, have been calculated

for each of the simulations. One objective was to do a detailed comparison with

turbulence models. However, because of the low Reynolds numbers of the current

simulations, a meaningful quantitative comparison cannot be done. Nonetheless a

brief comparison of the turbulent kinetic energy growth is presented in Section 3.

2. Governing equations &: numerical method

Consider homogeneous turbulence with the mean flow

Ui = Ui,jxj, Ui,j - 0 0 0 ,

7-e 0 0

(1)

which describes a one-parameter family of streamline patterns in the x-z plane (the

other parameter sets the strength of the flow). The case 3' = 0 corresponds to pure

strain with two principal directions at -t-45 ° relative to the x-axis while 0 < 13'1< lel
gives vortical strain dominated flows with hyperbolic streamlines, their asymptotes
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being shallower or steeper than the pure strain case according as (e -7)/(e + 7) < 1

or > 1. The limit [e I = is pure shear. The case e = 0 corresponds to pure rotation

while 0 < le[ < 171gives vortical rotation dominated flows with geometrically similar

elliptic streamlines with aspect ratio E = V/iT + e)/(7 - e). This case is depicted
in Fig. 1.

The code shear_i, developed by Dr. R. S. Rogallo (of Los Altos Hills, Calif.) to

run on the Intel parallel computers at NASA Ames for the case of pure shear and

employing a subset of tile techniques described in Rogallo (1981), was modified to

treat the above cases and to run on the IBM SP2 using MPI for message passing.

The xz plane was chosen as the plane of deformation to minimize disruption to the

code. The program uses the second-order Runge-Kutta scheme to time-advance the

Fourier transformed Navier-Stokes equation (notation will be explained momentar-
ily):

(2) ^ . (i).
d---t(F'ai) = F {IXij Uj,mUm -,Hii kmujUm} (2)

Due to the use of coordinates that deform with the mean flow, the ki in Eq. (2)
represent time-dependent physical wavenumbers:

I

k,= kjBji(t), /)i/ = -Bi_Uk,j, (3)

while hats denote the three-dimensional Fourier transform with respect to com-

putational wavenumbers k_. Space discretization is implied by the restriction of

k_ to integers -_ll/2 < k_ < M/2; homogeneity is realized when there is a suffi-

ciently large range of small wavenumbers with energy tending to zero. The symbol

HI; ) --- b,j - nkikj/k 2 with n = 1 is the projector applied to the Navier-Stokes

equation to eliminate pressure; a slightly different projector, 1-I12), appears in the
linear term due to an additional contribution from the time derivative term in

deforming coordinates. The aliasing error concomitant with the pseudo-spectral

evaluation of u_m is controlled (but not exactly eliminated) by a combination

of phase shifting and spherical truncation in which modes with k '2 > 2(M/3) 2

are discarded upon return to wavenumber space. The viscous integrating factor
F, satisfying (1/F)dF/dt = +uk2(t), is obtained analytically. Since in the lin-

earized limit exact time integration of (2) is not possible (or at least not trivial,

Waleffe 1990), the present version of the program does not treat the rapid dis-
tortion limit exactly. Rather, the time step is chosen to be the more restrictive

one obtained from the mean flow and the non-linear term. For pure shear the

flow-field can be re-meshed to prevent extreme distortion of the computational do-

main. In the elliptic flow, however, a fluid element undergoes time-periodic shearing

and straining, and rather than tackle the corresponding re-meshing problem, small

enough ellipticities are considered so that the minimum interior angle of the ele-

ment, 0mi n --_ tan -I [2E/(E 2 - 1)], does not become too small (for the largest case

of E = 3 considered, Omin = 37°).

In Blaisdell & Shariff (1994) the code was tested for: (i) The linear inviscid and

viscous behavior of a single Fourier mode compared with the results of Landman &:
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/

FIGURE 1. (a) Schematic view of combination of rotation and strain. (b) Elliptic

streamline. (The direction of the arrows corresponds to 7 > 0 and e > 0.)

Saffman (1987) (ii) Pure rotation (Mansour et al. 1991, Ro = 0.247, their Fig. 2(a))

(iii) Pure shear (Rogers et al. 1986, Case C128U).

3. Simulations and results

3.1 Initial conditions

The initial conditions for the simulations were obtained in the same way as those

of Mansour et al. (1991). An initial energy spectrum was specified of the form

E(K:) _--- /_4 exp(_2(tc/t;p)2) , (4)

where _v is the location of the peak in the spectrum. For the runs described here

_p was chosen to be either 24 or 48 depending on whether the number of grid points

was nominally 1283 or 2563 respectively. The larger number of grid points and the

larger _p means that those simulations have a larger computational domain size

relative to the integral scales of the turbulence. The flow field was then evolved as

decaying isotropic turbulence until it became fully developed as measured by the

velocity derivative skewness obtaining a steady value near -0.5 and the turbulent

kinetic energy displaying algebraic decay with a nearly constant decay rate. In

practice it was found that by starting the simulations with a turbulent Reynolds

number (see definition below) ReT = 823 and allowing them to decay to ROT = 51,

the above conditions were met. This developed flow field was then used as initial

conditions for the elliptic flow runs.

The simulations of Blaisdell &: Shariff (1994) and those presented here do not

match the Reynolds number of Mansour et al. We attempted to do so, but were

confronted with the difficulty that, with the elliptic streamline flow, the large scales

gain energy and quickly outgrow the computational domain. This problem does not

occur for the pure rotation case where the turbulence simply decays. As a result,

we found it necessary to change our initial conditions to make the computational

domain larger relative to the initial integral scales of the turbulence. Because of

the corresponding loss of resolution in the small scales, we reduced the Reynolds

number.
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The turbulent Reynolds number grows exponentially in the elliptic streamline flow

and reaches values well over 1,000 in the current DNS. However, because this is not

an equilibrium flow, the turbulent Reynolds number is not a good indicator of the

ratio of length scales in the problem or the degree of nonlinearity. As is shown below,

it is found that the current DNS are affected by the low Reynolds numbers of the

simulations. This means that the DNS data cannot be used in a quantitative way to

test high Reynolds number turbulence models. However, a qualitative comparison

is made below with two standard Reynolds stress models, which shows the models

fail to predict the correct behavior, especially at larger rotation rates. In Section 4,

suggestions are made for changing the method of generating the initial conditions

so that the initial turbulent Reynolds number will not be so low. Higher Reynolds

number simulations will allow quantitative comparison with Reynolds stress models

and will provide more useful information.

3.2 Parameter space _J linear theory

The governing nondimensional parameters for the elliptic streamline flow are (1)

the aspect ratio of the elliptic streamlines, E, which is related to the ratio of the

mean strain rate to the mean rotation rate, (2) the ratio of the turbulent time scale

to a mean flow time scale, which can be measured either in terms of the mean flow

strain as S e = ek/c or in terms of the mean flow rotation as S. r = 7k/e, where k

is the turbulent kinetic energy and ¢ is its dissipation rate, and (3) the turbulent

Reynolds number, ReT = q4/(¢v) = 4k2/(c_,). The parameters used in the current

sinmlations are shown in Table 1. Simulations el-e5 are elliptic streamline flows

with aspect ratios varying from 1.1 to 3.0. Simulations sl and sla are shear flow

simulations and, therefore, have a value E = c_. Most of the simulations are done

with the same initial nondimensional strain rate. This was done in order to examine

the effect of varying the mean flow rotation rate. This can be seen in Fig. 2 which

shows the parameter space in terms of S* and S_. The radial lines indicate a given

aspect ratio, going from the 45 ° line for shear flow (E = _) to elliptic flows with

E = 3.0, 2.0, 1.5, 1.25, and 1.1. Simulation el with E = 1.1 is off the scale of the

plot. The circles give the initial values for each simulation and a given simulation

is constrained to lie along one of the radial lines with a fixed aspect ratio, E. The

values of S_ and S._ will change as the turbulence develops, and it is believed that

asymptotic values of these quantities should be approached. Simulation e2a has

the same aspect ratio as e2, but the value of nondimensional strain rate is changed

so that the nondimensional rotation rate is the same as that of the corresponding

shear flow simulation, sl. The two shear flow simulations, sl and sla, differ in the

initial Reynolds number.

It is helpful in interpreting the results of the current simulations to examine the

predictions of linear stability theory within the parameter space shown in Fig. 2.

A linear stability code employing the method of Landman &: Saffman (1987) was

used to compute the maximum inviscid growth rate as a function of strain rate, e,

and rotation rate, 7. Fig. 3(a) shows a contour plot of the inviscid growth rate,

a. The nondimensional growth rate, a/7 can be collapsed onto a single curve as

shown by Landman & Saffman and given in Fig. 3(b). This curve corresponds to



Elliptic streamline flow

Table 1. Initial condition and run parameters for the simulations.

439

Case E

el 1.1

e2 1.25

e2a 1.25

e3 1.5

e4 2.0

e5 3.0

sl oc

sla ec

0 Se 0

17.7527 1.68691

7.68481 1.68691

1.68691 0.370297

4.38597 1.68691

2.81152 1.68691

2.10864 1.68691

1.68691 1.68691

1.68691 1.68691

Re_ GRID

51 128 x 220 x 128

51 256 x 440 x 256

51 128 x 220 x 128

51 256 x 440 x 256

51 256 x 440 x 256

51 256 x 512 x 256

51 128 x 220 x 128

102 192 x 330 x 192

h'p

24

48

24

48

48

48

24

24

a cross-section through the contour plot of Fig. 3(a) for a fixed rotation rate, _,, as

indicated by the horizontal dotted line in Fig. 3(a). If the growth rate is nondimen-

sionalized by the strain rate, one obtains the plot of a/c shown in Fig. 3(c). This

curve correspond to a cross-section through the contour plot of Fig. 3(a) for fixed

strain rate, e, as indicated by the vertical dotted line. Bayly plotted the nondimen-

sional growth rate as a/f_, where f_ = X/@2 -e 2 is the angular rotation rate for
a fluid element as it traverses an elliptic streamline. This curve corresponds to a

cross-section through the contour plot at a fixed f_ or through the nondimensional

parameter space of Fig. 2 at a fixed Rossby number, Ro = k/(_f_). Landman &

Saffman point out that the plot of Bayly does not give a good indication of the be-

havior of the growth rate as one approaches pure shear, _ = 1. The most complete

picture, however, comes from the contour plot in Fig. 3(a) together with the cross-

sections in Figs. 3(b) and (c). For cases with a fixed initial rotation rate, there

is an aspect ratio for which the growth rate is a maximum (near E = 3.0). For

cases with a fixed initial strain rate, the growth rate increases as the rotation rate

increases. For cases with a fixed initial Rossby number, the growth rate decreases

as the rotation rate increases. Therefore, the effect of rotation cannot be put into

the simple statement that strong rotation suppresses the growth of turbulence, as is
often assumed. In the sections that follow, the growth rate of the turbulence within

the DNS will be examined and the trends will be compared to those seen from the

linear theory.

3.3 Turbulence evolution

The elliptic streamline flow is linearly unstable for any non-zero strain rate, c.

From the linear theory the turbulent kinetic energy grows exponentially. Larger

length scales are not affected by viscosity and have a larger growth rate. Therefore,

eventually the flow becomes dominated by larger and larger length scales. When

this happens the energy containing eddies outgrow the computational domain. They
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FIGURE 2. Parameter space based on the initial nondimensional strain rate and

rotation rate. The 45 ° line corresponds to shear flow (E = e¢). The other radial

lines are for E = 3.0, 2.0, 1.5, 1.25 and 1.1. The circles indicate the initial conditions

for the current simulations.

become affected by the periodic boundary conditions and the statistics are no longer
reliable.

Since the dominant effect of rotation on the turbulence is to suppress the nonlinear

cascade, it is useful to have a measure of the nonlinear transfer of energy from large

scales to small scales. Mansour et al. (1991) used a generalized skewness defined by

s = - 6Ji-g f (5/
7 (f_2E(tc)d_)a/2 '

where t_ is the magnitude of the wavenumber vector, E(_) is the three-dimensional

energy spectrum, T(_) is the transfer spectrum, and the numerical prefactor is such

that for isotropic turbulence S is approximately -0.5.

The evolution of the skewness S is shown in Fig. 4(a) for simulations which span

the range of aspect ratios E = 1.25, 1.5, 2.0, and 3.0. As soon as the mean flow

is turned on, the skewness begins to drop in magnitude, indicating that the non-

linear cascade is inhibited. The cases with lower aspect ratios (more dominated

by rotation) have a skewness that comes closer to zero. So, as one would expect,

stronger rotation leads to stronger suppression of the nonlinear processes. Interest-

ingly enough the simulations show that the skewness recovers at later times as the

turbulence grows. Also, it seems that the skewness approaches an asymptotic value

that is the same for all aspect ratios, although the case with E = 1.25 could not be

carried far enough in time to see if the skewness recovers fully.

The linear stability analysis of the elliptic streamline flow indicates that the tur-

bulent kinetic energy grows exponentially. A nondimensional growth rate can be

defined by
1 dk

ck dt (6)
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FIGU RE 3. (a) Contours of inviscid growth rate a. (b) Nondimensional growth rate

for constant _. (c) Nondimensional growth rate for constant e. (d) Nondimensional

growth rate for constant D.

This nondimensional growth rate is shown in Fig. 4(b) for the same series of sim-

ulations as above. After the flow develops for a while a roughly constant positive

level is reached, which indicates that k is growing exponentially. The growth rate

nondimensionalized by the strain rate, e, is highest for the case with the lowest

aspect ratio (strongest rotation), which is in agreement with the trend of the lin-

ear stability analysis shown in Fig. 3(c). However, at later times the simulations

seem to change to a lower growth rate as nonlinear effects become more important.

Without carrying the simulations further in time it is difficult to determine whether

they approach a universal growth rate that is independent of aspect ratio.

One concern about the current simulations is that the initial Reynolds number

is very low. In order to use the DNS results for comparisons with high Reynolds

number formulations of turbulence models, the nondimensional turbulent statistics

should be independent of Reynolds number. For the current simulations that is not

the case. Figs. 5(a) and (b) show the skewness and the growth rate for the two shear
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FIGURE 4. (a) Generalized skewness and (b) nondimensional growth rate of the

turbulent kinetic energy for cases e2 ( ........ ), e3 ( .... ), e4 ( _ ), and
e5 ( --- ).
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FIGURE 5. (a) Generalized skewness and (b) nondimensional growth rate of the

turbulent kinetic energy for cases sl ( -- ), sla ( .... ).

flow simulations sl and sla. Simulation sl is similar to the elliptic streamline flow

simulations that are described above. Simulation sla has a higher initial turbulent
Reynolds number, as shown in Table 1. The larger grid for case sla is in order

to ensure adequate resolution of the small scales. As shown in Fig. 5 there is a
significant difference in the skewness and the growth rate for the two runs, which

can be attributed to the differences in Reynolds number. The sudden jumps are

an artifact of the periodic remeshing process used in the shear flow simulations
(see Rogallo 1981). The low Reynolds numbers of the current simulations is caused

by having a long period of isotropic decay before the elliptic flow runs are begun.

Alternate methods that would allow the initial Reynolds number to be much higher
are discussed in section 4.

Most of the simulations in this study have the same initial strain rate. This was

done in order to focus on the effect of mean flow rotation. In order to make the

study more complete, simulations were also done with a fixed initial mean rotation
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FIGURE 6.
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Development of the three-dimensional energy spectrum, E(k), for case

rate, such as cases e2a and sl. However, cases with low aspect ratios and low mean

rotation rates are difficult to do. The problem can be seen in Fig. 6, which shows

the evolution of the three-dimensional energy spectrum for elliptic flow e2a. The

energy in the small scales continually decays while energy in the large scales grows

from the instability. The large scales quickly outgrow the computational box as

indicated by the spectrum at low wavenumbers. It seems that it would be desirable

to simply reduce the resolution of the small scales and increase the computational

domain size. However, this cannot be done without compromising the resolution

of the isotropic initial conditions. A simple analysis can be done to explain the

behavior seen in Fig. 6. From the viscous analysis of Landman & Saffman, there

is a high wavenumber cut-off beyond which the flow is stable. This wavenumber is

given by a critical Ekman number, E-t(fl) = 27rvt¢2o/7, where to0 is the magnitude

of the critical wavenumber. Using ReT = q4/(ev) and S_ = 7k/¢, the definition of

the critical Ekman number can be rearranged to give

t_p

where _p is the peak in the instantaneous energy spectrum. Taking a value of

c/(_pq 3) = 0.28, _3 = 0.22, and E-t(/_ ) = 0.6 gives, n0/_p = 1.1. Therefore, for
simulation e2a the viscous cut-off wavenumber is at about the peak in the energy

spectrum from the decayed isotropic initial conditions, which seems to correspond

roughly to what is observed in Fig. 6.

It is desirable to have a greater fraction of the wavenumbers used in the simulation

in the unstable range. In order to perform good quality simulations one needs _0/_:p

to be large (preferably at least 2). Equation (7) shows that this is more difficult for

simulations with lower nondimensional rotation rates, S._, and that to achieve this,

simulations with higher Reynolds numbers are needed.
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FIGURE 7. Nondimensional turbulent kinetic energy, k, from the DNS ( --

using the LLR model ( ----- ), and using the SSG model ( ....

with E = 3.0 and (b) case e2 with E --- 1.25.
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,

) for (a) case e5

3.4 Comparison with turbulence models

A brief comparison is made between the DNS data for the elliptic streamline

flow and two standard Reynolds stress models -- the Launder, Reece and Rodi

(1975) model (LRH) and the Speziale, Sarkar and Gatski (1991) model (SSG).

It must, however, be borne in mind that the comparison being made is between

low Reynolds number DNS data and high Reynolds number formulations of the

turbulence models. Figs. 7(a) and (b) show the comparison for the nondimensional

turbulent kinetic energy for cases e5 and e2 with E = 3.0 and 1.25 respectively. For

the case with E = 3.0, which is not so dominated by strong rotation, the models

predict exponential growth. However, the growth rate is substantially lower than

that seen in the DNS. The LLR model gives a higher growth rate than the SSG

model because the SSG model is sensitized to rotation and reduces the growth rate

for strong rotation. Based on the growth rates seen at later times in Fig. 4(b), DNS

at higher Reynolds numl)ers may give lower growth rates, which would be closer to
those of the models.

In Fig. 7(b) the comparison is made for the case with E = 1.25, which is more

rotation dominated. For this case both models predict decay while the DNS shows

exponential growth. Here the models are seen to give the wrong qualitative be-

havior. Speziale et al. (1996) have pointed out the need for turbulence models to

predict growth for flows that are linearly unstable. Clearly standard Reynolds stress

models fail for strongly rotating flows, and there is a need for model improvement.

4. Conclusions and suggestions for future work

The study of the elliptic streamline flow begun by Blaisdell &: Shariff (1994) has

been continued by performing simulations over a range of parameters. The elliptic

streamline flow is a homogeneous turbulent flow that combines solid body rotation

and strain. It is an important flow for understanding the effects of rotation on

engineering turbulent flows.
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For short times the imposition of the mean flow suppresses the nonlinear cascade,

but at later times nonlinearity is reestablished. As evidenced by the skewness, the

growth rate of the turbulent kinetic energy, and other statistics, the turbulence

seems to develop toward an asymptotic state that is independent of the ratio of

mean rotation to mean strain.

A comparison with standard Reynolds stress models shows that the models fail

to give the correct qualitative behavior for large rotation rates. However, the cur-
rent simulations have a very low initial turbulent Reynolds number and, therefore,

meaningSul quantitative comparisons with the models cannot be made.

Future simulations should be done at higher Reynolds numbers. One reason for

the low Reynolds numbers of the current simulations is the method of generating

initial conditions. The initial conditions for the elliptic flow simulations are taken

from fully developed decaying isotropic turbulence. During the isotropic decay the

Reynolds number falls to very low values. One approach to overcome this is to

not have any isotropic decay period, similar to the shear flow simulations of Rogers

et al. (1986). The mean flow would be turned on with randomly generated initial

conditions. A disadvantage of this method is that turbulence models cannot be

expected to follow the unphysical development at early time; however, comparisons
can be made with turbulence models by starting the initial conditions for the model

calculations using the DNS data at some time after the flow has developed. A

second method to produce higher Reynolds number isotropic initial conditions is to

artificially keep the turbulent Reynolds number fixed at a high value by changing

the viscosity before allowing the turbulence to decay. This was done by Blaisdell et

al. (1991) and produces developed isotropic turbulence at a relatively high Reynolds

number. Both approaches are being pursued.
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