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A priori testing of subgrid-scale
models for the velocity-pressure

and vorticity-velocity formulations

By G. S. Winckelmans 1, T. S. Lund _, D. Carati 3 AND A. A. Wray 4

Subgrid-scale models for large eddy simulation (LES) in both the velocity-pressure

and the vorticity-velocity formulations were evaluated and compared in a priori

tests using spectral Direct Numerical Simulation (DNS) databases of isotropic tur-

bulence: 128 a DNS of forced turbulence (Re:_ = 95.8) filtered, using the sharp cutoff

filter, to both 323 and 16 a synthetic LES fields; 512 a DNS of decaying turbulence

(Re_ = 63.5) filtered to both 643 and 32 a LES fields. Gaussian and top-hat fil-
ters were also used with the 128 a database. Different LES models were evaluated

for each formulation: eddy-viscosity models, hyper eddy-viscosity models, mixed

models, and scale-similarity models. Correlations between exact versus modeled

subgrid-scale quantities were measured at three levels: tensor (traceless), vector

(solenoidal 'force'), and scalar (dissipation) levels, and for both cases of uniform

and variable coefficient(s). Different choices for the 1/T scaling appearing in the

eddy-viscosity were also evaluated. It was found that the models for the vorticity-

velocity formulation produce higher correlations with the filtered DNS data than

their counterpart in the velocity-pressure formulation. It was also found that the

hyper eddy-viscosity model performs better than the eddy viscosity model, in both
formulations.

1. Velocity-pressure formulation and models investigated

Consider the Navier-Stokes equations for incompressible fluid in the velocity-

pressure formulation:

Oui 0 OP 00ui

+ _ (u,u_) + _ : _a-:_juxOxj '0--)-

Filtering, using a low-pass filter G of characteristic length A,

_(x)= ¢(_)G A3, ¢'(x) = ¢(x) - _,(x),
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with _ the filtered value and _,l the remainder, leads to the following evolution
equation for the filtered velocity field:

0_, 0 OP 00-ffi

0-7+ + = Oxiaxj

which is rewritten either as

m

OP Orij 00gi

(_,%) + _ + O:ri Oxi Oxi

or as

O-ffi 0 OP 0_ii_ 00gi
+ o%-7 "OxiOx/

where the 'subgrid-scale stress' (sgs) tensor is defined as

def -- -- t
= uiui - uiui = Cii + Rij + Liiri i

def

_ii = uiui - uiui = Cii + Rij ,

with the usual definitions for the cross term, the Reynolds term, and the Leonard's
term:

Cii = _i_ + _'_i,

Rij = t IUitl j ,

L'ii = uiu i - uiuj = - (uiui) .

Here, Cii and /_ii are purposely written with the 'overline' as they are the filtered

value of some quantity. L'ij is purposely written with the 'prime' as it is the remain-
der, after filtering, of some quantity and thus contains high spatial frequencies.

The notation gii is somewhat misleading (but will nevertheless be retained).

Indeed, although it is the filtered value of some quantity, it is not necessarily the

result of filtering 7"ij. In the case of sharp cutoff filter in wave space, _ = ¢ and

_,' = 0 so that gii is indeed the result of filtering rij. In the case of smooth filters

such as the_ Gaussian,_ the filtering of vii produces Cii + Rii + -LTii, which is not
equal to Cii + Rij.

When doing LES with a computational grid which is of the same size as the

assumed filter size A, one cannot accurately evaluate quadratic terms such as (giiT i )
using the coarse grid only, as such quantities have a high frequency content. One

can only hope to resolve, on the coarse grid, quantities such as (_) (and even that

requires using an appropriate reconstruction scheme, e.g., the need for dealiasing
in spectral codes). The second form of the filtered equation is thus the one to

consider in LES computations. It is assumed throughout this paper unless otherwise

specified. (Notice that, if one were to use a computational grid smaller than the

assumed filter size, then quantities such as uiuj could be partially resolved.)
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The trace of the subgrid-scale tensor does not influence the dynamics of the

filtered flow and is usually lumped into the pressure term:

I _. I
_,*_= _u - _ _k _U, = P + 5 _kk,

-E + _ (_) + _ + 0%-7= _ox-Zax,

Only the subgrid scale force, the divergence of the subgrid-scale tensor ]_ = _,

needs to be modeled: 3 degrees of freedom instead of 5, (or 6 if one were also

interested in modeling Ykk). The modified pressure is solution of

a a_* a a ay:
-ax, ax,-- ax, ax, (_) + ax--;

Finally, the solenoidal (i.e., divergence-free) part of the subgrid-scale force is the

only one that affects the flow dynamics. Defining y* as the solenoidal part of ]:, the

other part being the gradient of a potential ¢ which is lumped into a new 'pressure',
_* = P* + ¢, we write:

-E + _ (_) + _ +_;'= '_----'Oxj Ozj

o o_* o o
- (_)

Ox, Ox, Oxi Ozi

Correlations of different LES models with filtered DNS data in isotropic turbu-

lence were obtained and investigated. This was done at three levels: tensor level

(traceless sgs tensor), vector level (solenoidal force), and scalar level (dissipation),

for two different DNS data sets, using the sharp cutoff filter in wave space (with

spherical truncation):

a) 1283 DNS of forced isotropic turbulence (Re_ =- 95.8) that was filtered to both

323 and 163 synthetic LES fields, see Fig. 1.

b) 5123 DNS of decaying isotropic turbulence (Re_, = 63.5) that was filtered to both

643 and 323 synthetic LES fields, see Fig. 2.

In addition, correlations at the tensor level were also obtained when using smooth

filters (here applied in wave space) with G(x/A) = 1-Ii=l,3G(xi/A), G(kA) =

I-[i=1,3 G(ki A), such as the Gaussian (of same standard deviation as the top-hat),

and the top-hat,

(__.) _ 1G =1 if < _, 0 otherwise; G(kiA)- sin(_A)
(_)
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FIGURE 1. Spectrum of the 1283 DNS (Rex = 95.8). Also shown is the cut used

to produce the 323 synthetic LES field. _, E(k); .... , K -5/a.

to generate synthetic LES fields from the 1283 DNS data (i.e., DNS with km_x = 64).

The cutoff wavenumber was set to k,,_ = 16, hence A = rr/km_x = 7r/16. Notice

that, with smooth filters, the synthetic LES field still contains contributions from

all original modes.

Many different LES models were investigated:

Model 1 (eddy-viscosity type, tensor modeling):

_.,,, _ 1(0 ,
rij = -2Pt Sii with Si) = _ \Oxj + Oxi ) "

Different choices for the lIT scaling that appears in the eddy-viscosity were

investigated:

v, = Ca 2 (2;uKi) _/2 , (a)

Vt = C A2 (_i_i) 1/2 , (b)

v, = ca 2 (,/A2)'/3 , (_)

_,,= c zx2 (2_2,j_j) / (_,_,), (,t)

_,,= Ca, _ (2_.,_.,) '/3 , (_)

where e is tile rate of energy transfer within the inertial range (assumed constant)

and _ = _7 × _ is the large-scale vorticity. The first choice is the classical Smagorin-

sky's scaling based on local dissipation by the large scales (e.g., see reviews by
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FIGURE 2. Spectrum of the 512 a DNS (Rex = 63.5). Also shown are the cuts

used to produce the 64s and 32 s synthetic LES fields. • : Comte-Bellot and Corrsin

experimental data at Re), = 65.1. k normalized by Kolmogorov scale r/.

Rogallo & Moin 1984, Lesieur et al. 1995). Consider the eigenvalues A1, )_2 and A3
of the rate-of-strain tensor, with A1 + A2 + Aa = Skk = 0. The scaling then produces

an eddy-viscosity proportional to (2 ()_2 + ,_ + A32))'/2

The second choice is based on local enstrophy of the large scales (e.g., Mansour

et al. 1978). Recalling the identity

2 SijSij = wiwi + 2 ----
0 0

Oxi Oxj
(Uiltj) ,

together with the Poisson equation for pressure, it appears that, to first order, the

two scalings differ by the local pressure Laplacian (which can have either sign).

The third choice was proposed by Carati et al. (1995b) and is referred to as

the 'Kolmogorov' scaling. If, following Smagorinsky, local equilibrium between the

rate of energy transfer within the inertial range is identified with the subgrid-scale

dissipation e _ -T*j M Sij, one recovers the classical Smagorinsky's model for the
eddy-viscosity. The Kolmogorov scaling has the practical advantage over the other

models that fewer filtering operations are required when implementing the dynamic

procedure as in Germano et al. (1991), Ghosal et al. (1992), Moin & Jim4nez

(1993), Moin el al. (1994), Ghosal el al. (1995), Carati et al. (1995a). When
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developing the dynamic procedure in the present formulation, one obtains

-2 A `113

where _ is an additional 'test filter' of the LES field, at scale A, where C' stands

for the dimensional product C e 1/3, and where it has been assumed that both filters

lie in the inertial range so that e is indeed tile same at both filter sizes. Since

the dynamic procedure also assumes that the model coefficient C is invariant with

filtering scale in that range, it turns out that C' is also invariant with filtering scale

and is, in fact, what is determined by the dynamic procedure.

The fourth scaling was proposed by Winckelmans (1995) and is based on the

relative rate of change of the large scale enstrophy due to 3-D stretching,

WiU2i Dt (Ji_i) = 2 wiwi

This scaling selects the eigenvalues used to compute the eddy-viscosity according

to the relative orientation between J and the principal axes (eigenvectors) of the

rate-of-strain tensor. Indeed, writing the components of _ in the system of prin-

cipal axes as (_l,w2,w3), this scaling produces an eddy-viscosity proportional to

2 (A1J_ + A2_ + AaJ_) / (J_ + _22 + _). Hence a vorticity-weighted average of

the eigenvalues is used to produce the eddy-viscosity. This scaling produces a neg-

ative eddy viscosity scaling in regions where enstrophy is decreasing. To ensure

positivity, one can use either Idl or d+ = max(d, 0).

For completeness, a fifth scaling is considered, which is based on the rate of change

of enstrophy, hence an eddy viscosity proportional to (2 (AI_ + A2_ + AaJ_)) 1/3.

Models other than the classical LES model (Model 1) were also investigated:

Model 2 (eddy-viscosity type, solenoidal force modeling):

y,M = --V X (Pt_) •

Model 3 (hyper eddy-viscosity type, tensor modeling):

--* M A2ri3 = 2 -_t Vz-So .

Model 1+3 (mixed eddy-viscosity and hyper eddy viscosity type, tensor modeling):

Model 1+4 (mixed, simplest non eddy-viscosity type, tensor modeling):

_, m -2 A 2 .

We are unaware of any published results describing Model 3 or Model 1+3. How-

ever, Cerutti and Meneveau (1996, private communication) have also considered this
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model. Model 1+4 is one of the many models investigated by Lund and Novikov

(1992) where they considered all possible models with the sgs tensor flmction only
of the strain and rotation rate tensors.

Notice that one can even build lnodels that give a decent (i.e., as good as other

models) correlation at the tensor level but give zero solenoidal force, hence zero

effect on the dynamics of the filtered velocity feld, e.g.,

0 0
Yij M = CA 2 ---- (utut) .

Oxi Oxj

Such models should, of course, never be used. Nevertheless, they make the point

that correlation at the tensor level does not necessarily mean good dynamics. What

really matters is the solenoidal forcing.

Finally, scale similarity models of Bardina's type, Models B, were also investigated

(e.g., see Horiuti 1993, Zang et al. 1993, Liu et al. 1994, Salvetti & Banerjee 1995).

The combinations considered were:

c - , (ct

where the additional filtering of the LES field was done at twice the size of the

original filter, and with the same filter type. Model Ba is the filtering of i7ii7_ - 'uiuj

and is 'similar' to _ij, which is the original filtering of u,uj - uiuj. Model Bb is

similar to rij = u_tLj --aiU j. Model Be was also investigated, in a priori testing,

in Meneveau & Lund (1992). Model Bd is the remainder, after second filtering, of

u,uj, and is thus not expected to perform well.

2. Optimization of the coefficient(s) and correlations

We first consider optimization of the model's coefficient(s) when no spatial vari-

ation is allowed. This is a natural requirement as the models are being compared

with DNS data in isotropic turbulence. For each level, the value of C that pro-

vides the minimum error, in the least square sense, between 'exact' and 'modeled'

subgrid-scale quantities is evaluated. Defining

_j -- --,M --,.f M =C,.mi* j, gi =Cgm i ,

and (-) as integration over physical space, one then obtains:
At the traceless tensor leveh
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At the solenoidal force level:

c_ - <._, _>.

At the scalar level (= dissipation level):

3* _k_., 3,M --.M= = Tikg k = Cd _7" ,

For models with two coefficients, defining

gTjA{ = Crl m_j "_- Cr2-_i*j ,

the least-square optimization then leads to

(_* _*) "

and similarly for the coefficients at the force and dissipation levels.

The correlations between 'exact' and 'modeled' subgrid-scale quantities are de-

fined in the usual way,

7IT

qg
(YiY*_)_/2(YiMYI M)_/2 '

(3,3.M)
rid :

(-3"-d*)I/2(3*MTI*M)_/2 "

One interesting question is posed when using mixed models instead of the simplest

models (e.g., using Model 1+3 instead of Model 1 alone or Model 3 alone): by how

much can one expect to improve the correlation? Part of the answer lies in the

following identity:

- - qT TI_ q,,,(,17+") 2 = (,/,") _+ (,77)_ ._ ,,, ,,
i-1 .,21 - (,7,,,)

where q_ stands for the correlation between a and b. Upper and lower bounds are
obtained as:

max ((q:)2,(_') 2) _< (rl:'+'_)_ _< (_"')_ + (,l:):_ .

The above formulas also hold for correlations at the force or energy dissipation levels

by replacing r/_ by q_ or qe. The best situation occurs when the two terms used
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in the models (a) each correlate well with the exact subgrid-scale quantity, and (b)

are not highly correlated with each other. This is unfortunately not the case for all

models tested in this paper (see results), as well as in other papers (e.g., Lund &

Novikov 1992).

We then go on to consider local optimization of the model's coefficient(s) where

spatial variation is allowed. Although one usually uses dynamic LES models with

coefficient(s) that are averaged (and hence uniform) in the directions of flow ho-

mogeneity (here all three directions), the present study is justified by the hope

that some model, in some fornmlation, might exhibit a better behavior than the

others in terms of coefficient(s) uniformity. In the same spirit, it is believed that

dynamic models will then have to work less hard, e.g., require less averaging of the

coefficient(s) obtained dynamically.

The above least square optimization is then carried out locally, at the tensor level.

For models with one coefficient, the local optimization leads to

rn kt m kt

For models with two coefficients, the linear system is solved locally to determine

C_I and C_. The local optimization can be done only at the tensor level. Indeed,

the force, being the divergence of the sgs tensor, must remain written in conser-

vative form (so as to have zero global integral in the case of isotropic turbulence).

Since C_ now depends on space, it cannot be pulled out of a derivative such as

0 (C_.m--,*j)/Oxj. (If one were to relax the constraint that the force be conservative,
an optimization at the force level would, of course, be possible.)

Correlations are then computed in the same way as above, at all three levels. At

the tensor level, they are now artificially nmch higher than those obtained with uni-

form C. Since the Cs are optimized locally', their spatial variation is quite high, in-

eluding regions of negative values. Interesting quantities are evaluated and reported:

mean, rms ((C 2) - (C)2) 1/2, and normalized pdf, the better models exhibiting a

sharper (i.e. smaller rms) pdf which is also more skewed towards positive C.

3. Vortleity-veloeity formulation and models investigated

Consider LES in the vorticity-velocity formulation:

07 + Ox--7 - v
with the subgrid-scale antisymmetrie tensor defined as

where

def -- -- l
")o = (_J - _j_-G,) - (_j - _,jiT,) = C,¢ + R,j + L 0 ,

% a_=f (_j _ _) _ (_,_j _ _) = U# + _,j,

Ri) '/ ,r i_Ji t j -- _jll i

z/.j = (_,-a---Sj- _j.. - (_,-a; - _.j,_.) = (_da; - _,,..)' .
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Scaling Cr C 9 Cd Cd' Tit rig rid (Cr) rm___s rlr rig qdm ell, n

a 0.0086 0.016 0.013 0.0098 0.12 0.29 0.34 0.014 4.4 0.57 0.60 0.59

b 0.012 0.019 0.016 0.013 0.13 0.26 0.32 0.016 4.1 0.56 0.59 0.58

c 0,21" 0.35* 0.29* 0.21" 0.13 0.28 0.33 0.23* 4.0 0.57 0.59 0.59

d 0.013 0.037 0.036 0.041 0.07 0.20 0.27 0.012 15.0 0.57 0,60 0.59

Idl 0.019 0.043 0.036 0.031 O.lO 0.26 0.32 0.036 5.8 0.57 0.60 0.59

d+ 0.019 0.037 0.031 0.024 0.11 0.27 0.33 0.032 4.8 0.57 0.60 0.59

e 0.011 0.029 0.028 0.039 0.07 0.20 0.27 0.0082 16.0 0.57 0.59 0.58

le[ 0.017 0.032 0.027 0.028 0.11 0.26 0.31 0.028 5.1 0.56 0.59 0.58

e+ 0.017 0.028 0.022 0.022 0.13 0.27 0.33 0.023 4.2 0.56 0.59 0.58

Table 1. Investigation of the influence of scaling. Model 1, 1283 ---, 323 with sharp
cutoff. (,: value of Cel/3).

LES in the vorticity-velocity formulation is a natural choice which requires mod-

eling only three quantities. Defining _1 = _-23 = --_-32' _2 _" _'31 = --ffl...3..'

/33 = "r12 = -ff21, together with ffll = ff22 = ffz3 = 0, one obtains V -_ = V ×/3.

Hence, modeling is already at the 'vector' level, since modeling _ is really modeling
/3. Moreover, it is already in the form of a solenoidal 'forcing', V × _. For instance,

the equivalent of the classical Smagorinsky's model is simply:
Model 1 (eddy-viscosity type):

"ffij M ------2 ut rij with _i1 = _ Ox s Oxi ] '

which is identical to doing:

Another model investigated is:

Model 2 (hyper eddy-viscosity type):

4. Results and discussion

The velocity-pressure LES formulation is considered first, with the classical Model 1

but different scalings. The results are compiled in Table 1 for the case 1283 ---, 323

with sharp cutoff.

For models that can produce local negative scaling, s, it is always better to restrict

it to positive values by using Is I or s+ = max(s, 0): better correlations are obtained

in the case of uniform C, and sharper distribution of C in the case of variable C_

(smaller ratio 'rms/mean', e.g., 4-6 instead of 15-16). Of the two options, Isl is
always slightly better than s+.

For cases with uniform C (optimized at each level), the correlations are different

at each level, typically q_ ,_ 0.12, r/g ,,_ 0.27, and 71d _ 0.33. The choice for the 1/T
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scaling is found to be uninll)ortant as it does not affect the correlations significantly.

Since the model represents only a crude estimate of the sg4s stresses, the correlations

obtained at the tensor level are quite low. Things improve a bit when considering_;

correlation at the force level, and even more so at the dissil)ation level. This is

to bc expected as one has to work less hard in the modeling effort: 5 degrees of

freedom versus 3 versus 1. t/esults in Lund & Novikov (1992) and Clark et al.

(1979) for isotroI)ic turbulence report I/_ _ 0.2 (such correlations are also obtained

here, as presented at the end of this section), Piomelli ctal. (198S) for turbulent

channel flow, and McMillan & Ferziger (1979) fl)r honlogeneous shear flow reporting

r/_ _ 0.1. In the cas,, of uniform C, the correlations only measure th(' "alignment"
between the model and the exact quantiti_'s, not the magnitude. IIMeed, C' drops

out of the three equations defining the correlations. In particular, one could use a
--, M

value which is such that the global dissipation obtained with the model, <d ), be

equal to the exact global dissit)ation, (d*}: Cd' = (d*)/(m*}. These values are also

reported in the tables.
For cases with variable C'_ (optimized locally at the tensor level), the correlations

are pretty nmch the same at all levels. To attain correlations in the range 0.56-0.60,

the model has to 'work hard': highly varying C_ field as seen in the ratio rms/mean

4-5 and in the normalized pdf of Fig. 3.

An investigation is also carried out to evaluate the relative i)articit)ati(m of the

two terms C-J2 and R_j in in the correlations, see Table 2. As expected flom the

mathematical definitions of these terms, the model correlates better with C_j than

with R;. It also correlates better with C; + R; than with C7; alon,_.

no yes 0.060 0.102 0.17.t

yes no 0.108 0.278 0.317

yes yes 0.116 0.286 0.3219

Table 2. Contributiolls 7_* _jof _ ij and to the correlations: Model 1 with scaling (a);

128 a _ 323 with sharp cutoff.

Model 2 is considered next. This model is not obtained by taking the curl of

Model 1 (it would if ut were uniform). Nevertheless, since the choice of scaling was

found to be unimportant with Model 1, which means that very local wtriation of _'t

are unimportant, Model 2 is expected to perform as Model 1. This is indeed found

to be the case. For scaling (a): C 9 = 0.020, Ca = 0.016, _/y = 0.29, t/a = 0.34.

Model 3 is considered next. The results are reported in Table 3 and in Fig. 3.

This model performs significantly better than Model 1 at all three levels, and for

both cases of unifi_rm and variable coefficient. In particular, with variable C_, the

pdf is sharper (ratio rms/mean of 3.3 instead of 4.4) and more skewed to the right.

Model 1+3 with uniform coetficients does not perforln substantially better than

Model 3 alone (719 = 0.344 instead of 0.334). This is due to the fact that Sij
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FIGURE 3. Normalized pdf for Model 1 (.) and Model 3 (x) with scaling (a);
1283 -* 323 with sharp cutoff.

Model Cr Cg Cd rir rig rid (Or) rmaS rir r_g rid

1 0.0086 0.016 0.013 0.12 0.29 0.34 0.014 4.4 0.57 0.60 0.59

3 0.0030 00037 0.0034 0.16 0.33 0.39 O.O0,iO 3,3 0.59 0.62 (I.63

1+3 -0.0077 -0.014 -0.012 0.17 0.34 0.40 -0.0059 24 0,75 0.76 0.76

0.0046 0.0062 0.0060 0.0053 5.6

4 0.0089 -0.073 -0.076 0.031 -0.21 -0.29 0.[)19 12 0.57 0.54 0.53

1+4 0.014 0.015 0.012 0.16 0.29 0.3,1 0.019 ,1.6 0.75 0.74 0.73

0.039 -0.011 -0,012 0.0,t7 6.9

Table 3. Comparison of Model 3 and Model 1+3, Model 4 and Model 1+4, with

Model 1; scaling (a); 128 a -_ 323 with sharp cutoff.

and V2S,j are highly correlated to each other (relative correlations ri_ = 0.87,

ri9 = 0.94, rid = 0.95). It is found that this model corresponds to diffusion with

the hyperviscosity term (C2 > 0) corrected by some antidiffusion with the viscosity

term (Cl < 0). In the case with variable coefficients, it is found that C, 1 must vary

a lot in order to bring the correlations to 0.75 0.76: very high ratio of rms/mean

for C_1.

Finally, Model 1+4 is investigated. Model 4 alone performs very poorly: in the

case of uniform coefficient, the optimization leads to a ('()efficient of different sign

whether the correlation is formed at the tensor level, or at the force and dissipation

levels; in the case with variable coefficient, a ratio rms/mean of 12 is obtained.
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Model 1+4 with uniform coefficients does not perform better than Model 1 alone.

This is in accordance with results in Lund & Novikov (1992). This is due not only

to the high correlations between the two terms (relative correlations _?r = -0.55,

rig = -0.67, _d = --0.82), but also to the low correlations of Model 4 alone. In that

respect, Model 1+3 performs significantly better than Model 1+4. In the case with

variable coefficients, the correlations for Model 1+4 are in the 0.73-0.75 level, with

not much of an increase in the ratio rms/mean for Crl, and even a decrease in the

ratio for Cr2. This is in contrast with what was obtained with Model 1+3.

The case where smooth filters are applied to the DNS data is also investigated.

In that case, correlations are obtained at the tensor level only. The reason being

that the filtered data for the vii was computed on the original 1283 grid, but was

only sampled, for output, on a 323 subset of that grid. Since it still contains

very significant contributions from all original modes, this data cannot be properly

differentiated to obtain the forces. All possible contributions to the sgs tensor were

considered and were correlated with Model 1, see Table 4.

v;t n;t c. ,. (c.) L:: .,
no no yes 0.00062 0.083 0.0014 7.2 0.41

no yes no 0.0054 0.080 0.011 12 0.42

no yes yes 0.0060 0.084 0.012 11 0.42

yes no no 0.0047 0.067 -0.0027 47 0.41

yes no yes 0.0053 0.077 -0.0014 92 0.41

yes yes no 0.010 0.27 0.0083 2.8 0.34

yes yes yes 0.011 0.26 0.0097 2.6 0.33

Table 4. Gaussian filtering of the 1283 DNS; Model 1 with scaling (a).

We feel that the cutoff filter is the most appropriate for generating synthetic LES

fields from DNS data as it completely eliminates the 'small scale' information that

will never be present in a large eddy simulation. In that sense, a priori tests using

smooth filters such as the Gaussian are of a more academic interest. Indeed, an

LES simulation would not be able to capture with the 323 grid the 'small scale'

information which is still present after smooth filtering of the 1283 DNS data. With

the Gaussian, the filter value at the cutoff wavenumber (i.e., at the edge of the 323

grid) is 0.6633 = 0.291, which is still very significant. At twice that wavenumber, it

has dropped to 0.1933 = 0.0072. It thus can be argued that a 643 grid (or so) would

be needed to correctly capture the important part of the fine grain information left

after Gaussian filtering.

Proceeding nevertheless with this study, one finds that the case where Model 1

is correlated with V_t + R*j + Li*j' (= r/_) performs quite well: qr = 0.26 for the

case with uniform coefficient, rms/mean of only 2.6 to reach r/r = 0.33 for the

*! L*!case with variable coefficient. Similarly for the case C:j + Lit . The cases it

and -t_it + Li*j' perform very poorly: very low correlation in the case with uniform

coefficient, extremely high value of rms/mean in the case with variable coefficient.
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FIGURE 4. Normalized pdf for Model 1 with scaling (a); Gaussian (s) and top-hat

(.) filtering of the 1283 DNS.

. !

All other case are such that Lij is not included and perform very poorly, e.g., the

case V:j + R:j (= W;i), which has only r/r = 0.084. In conclusion, the correlation

with ri_ is significantly higher than what was obtained with sharp cutoff (Or = 0.26

instead of 0.12) but the correlation with Y[j is significantly lower (_?r = 0.084 instead

of 0.12). Finally, very similar results are obtained when using the top-hat filter

instead of the Gaussian, see e.g., Fig. 4 for very similar pdf's.

The scale similarity models, Models B, are considered next, first with sharp cutoff

filter, then with Gaussian filter.

Type Cr Cg Cd Cd t rlr I]9 rid

a 0.028 0.022 0.084 0.68 0.043 0.017 0.070

b 0.015 0.031 0.083 0.43 0.039 0.034 0.098

c -0.0054 -0.044 -0.053 1.20 -0.022 -0.12 -0.14

d 0.0076 0.039 0.090 1.2 0.015 0.031 0.075

Table 5. Scale similarity models, 1283 ---, 323 with sharp cutoff.

With sharp cutoff, Models B are only compared to _,j (since L*'ij cannot be

captured on the 323 grid), see Table 5. It is seen that very low levels of correlations

are obtained regardless of the Model's type. This is in accordance with results by

Meneveau & Lund (1992). Again, one must recall that, in the case of uniform C,
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the correlation is independent of C. Nevertheless, when C is optimized as usual, one

obtains a very large difference between Ca t and C_, C 9, Cd, which is also indicative

of very poor models. Thus, with sharp cutoff filter, Bardina's type models show

essentially no correlation with the relevant sgs quantities: trace-free tensor Y_j,

solenoidal force _. In fact, if anything, Models Ba and Bb only correlate a little

when the trace of Y,j is kept (q,- = 0.13 and 0.11 respectively).

i Type sgs Cr tlr (Cr) rms 7IT
me.In

a T/_ 0.14 0.29 0.21 1.8 0.61

T-*j 0.57 0.70 0.51 0.93 0.73

b 7"/_ 0.47 0.70 0.38 0.90 0.74

_._ 0.29 0.25 0.33 2.8 0.53

c T*j 0.014 0.062 0.0073 48 0.47

7*j 0.37 0.92 0.36 0.57 0.78

d 7"i*j 0.095 0.20 0.15 2.8 0.57

Ti. i -0.47 -0.55 -0.40 1.44 0.64

Table 6. Scale similarity models; Gaussian filtering applied to the 1283 DNS.

With Gaussian smoothing, things are completely different, see Table 6. Models B

are here compared to both ri_ and g_j. Ivlodel Ba is 'similar' to g*j and correlates
indeed very well with it: q_ = 0.70 for the case with uniform C, very low rms/mean

of 0.93 for the case with variable C. Model Bb is 'similar' to ri_ and correlates

indeed very well with it: 71_ = 0.70 for the case with uniform C, rms/mean of

0.90 for the case with variable C. Model Be correlates very poorly with ri_ , but

extremely well with g_j: r/_ = 0.92 for the case with uniform C, rms/mean of 0.57 for
the case with variable C. This is the highest correlation encountered in the course

of this study. It is consistent with the 0.8 correlation reported in Meneveau &Lund

(1992). Model Bd does not perform well, as expected, since it is the remainder of

some quantity after second filtering.

These impressive results are misleading. Indeed, Gaussian filtering of the DNS

data produces a synthetic LES field that still contains considerable contributions
from the small scales. As this small scale information will not be present in an real

LES, results obtained with the sharp cutoff filter are more representative of what

might be expected from using Bardina's models in LES.

The vorticity-velocity LES formulation is now considered. The correlation at the

antisymmetric tensor level, "�i j, is denoted as C_, at the 'forcing' level as C a, at the

'enstrophy dissipation' level as Ca. The results obtained with the eddy-viscosity

model, Model 1, and with the hyper eddy-viscosity model, Model 2, are presented

in Table 7.

The eddy-viscosity model in the vorticity-velocity formulation produces signifi-

cantly higher correlations than its counterpart in the velocity-pressure fornmlation:

in the case of uniform coefficient, r/-_ = 0.19 instead of r/_ = 0.12, 7/9 = 0.32 instead

of 0.29, 7ld = 0.46 instead of 0.34; in the case of variable coefficient, 71_ = 0.71
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Model C.. t Co Cd C td Q'_ _g r/d (C3") rmsmean /]3' _9 _d

1 0.019 0.026 0.019 0.021 0.19 0.32 0.46 0.023 4.6 0.71 0.74 0.80

2 0.0041 0.0046 0.036 0.039 0.23 0.35 0.48 0.0045 4.0 0.73 0.75 0.79

Table 7. Vorticity-velocity formulation; Model 1 and Model 2 with scaling (a);

1288 ---, 323 with sharp cutoff.

instead of T/T = 0.57, r/g = 0.74 instead of 0.60, rid = 0.80 instead of 0.59, with

essentially the same ratio rms/mean as before, and a pdf which is more skewed

towards positive C, see Fig. 5.

Again, the hyper eddy-viscosity version of the model performs even better than

the eddy-viscosity version, see Table 7 and pdf of Fig. 5.

¢D

b

o

0.20

0.15

0.10

0.05

0.00

-10

: i i

-8 -6 -4 -2 0 2 4 6 8 10

C/Cmean

FIGURE 5. Normalized pdf for Model 1 (..) and Model 2 (+) with scaling (a) in

the vorticity-velocity formulation; 128 a --* 32 a with sharp cutoff.

Moreover, one finds for both models that the coefficients optimized globally are

close to each other, and that they are also close to the average of the coefficient

optimized locally. This is also indicative of good candidate models for LES.

For completeness, the case of smooth filtering of the DNS data is also investigated,

see Table 8. The Gaussian and top-hat filter produce similar results. The eddy-

viscosity model in the vorticity-velocity fornmlation performs slightly better than

in the velocity-pressure formulation: in the case of uniform coefficient, r/3' = 0.28

instead of 0.26; in the case of variable coefficient, r/n = 0.55 instead of 0.33, with
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Type sgs C_ t 1/-,r (C._) rms t],rmean

Gaussian "/ij 0.014 0.28 0.014 2.1 0.5.5

top-hat _'i) 0.015 0.24 0.016 2,3 0.53

Gaussian _lij 0.042 0.051 0.0009 140 0.52

tophal _--_j 0,050 0.057 0,0029 ,t2 0,53

Table 8. Vorticity-velocity fi)rmulation; Gaussian and top-hat filtering of the 1283

DNS; Model 1 with scaling Ca).

a smaller ratio rms/mean (2.1 instead of 2.6). Again, when the L_iS term is not

included (i.e., when using _-_j instead of "tis), the model correlates very poorly.

So far, all correlations have been obtained using the same 1283 DNS database in

forced isotropic turbulence (Re), = 95.8). With sharp cutoff filter, the filtering was

always done from 1283 DNS to a 323 synthetic LES field. An investigation is now

done Ca) using the same database, but filtering to a 163 synthetic LES field, and (b)

filtering the 5123 DNS database in decaying isotropic turbulence (Re), = 63.5) to

both 643 and 323 synthetic LES fields. The regions of the spectra where the cut is

clone are marked in Figs. 1 and 2. Although there is no pure k -5/3 'inertial range' in

this 5123 computation at such Re)`, there is 'almost' an inertial range, the 643 cut

being to the far right of it, and the 323 cut being within it. With the 1283 database,

the 323 cut is also to the far right of the 'inertial range' (actually probably more

at the beginning of the 'dissipation range'), and the 16 a cut is within the inertial

range. Results of this investigation done in the velocity-pressure formulation are

reported in Table 9 and in Fig. 6. The results corresponding to the vorticity-velocity

formulation are presented in Table 10.

Data Or Cg Cd Od' qr 7/g 11d (CT) mr;naSn 7It rig rid

1283 _ 323 0.0086 0.016 0.013 0.0098 0.12 0.29 0.34 0.014 4.4 0.57 0.60 0.59

1283 ---+ 16 3 0.061 0.077 0.070 0.069 0.18 0.32 0.46 0.11 3.5 0.49 0.38 0.38

5123 --_ 643 0,016 0.019 0.018 I 0.018 0.18 0.30 0.42 0.022 3.1 0.59 0,60 0.64

5123 _ 3- 93 0.029 0,028 0.028 I 0.031 0,29 0.39 0.59 0.036 2.0 0.61 0.64 0.73

Table 9. Investigation of different databases and of different cut locations in each

database; velocity-i)ressure fornmlation; Model 1 with scaling Ca); sharp cutoff.

We concentrate on correlations obtained with uniform coefficients. When con-

sidering different cuts within the same database, one finds that the cut within the

inertial range produces higher correlations than the cut to the far right of that

range. We don't see any obvious reason at this time why this should be the case.

Nevertheless, this finding holds for both databases investigated and for both formu-
lations.

Notice that the superior performance of the vorticity-velocity formulati(m over

the velocity-pressure formulation is not as marked in the 5123 runs as it is in the
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Data C-_ Cg Cd Col' _1-_ rio rid (C.r) rms r/- T r/g r/d
m _'&II

1283 --, 323 0.019 0.026 0.019 0.021 0.19 0.32 0.46 0.023 4.6 0.71 0.7,t 0.80

5123 --, 643 0.022 0.025 0.023 0.024 0.21 0.29 0.50 0.025 4.3 0.71 0.73 0.81

5123 --, 323 0.032 0.033 0.033 0.035 0.28 0.35 0.62 0.037 3.0 0.73 0.74 0.8,t

Table 10. Investigation of different databases and of different cut locations in each

database: vorticity-velocity formulation; Model 1 with scaling (a); sharp cutoff.
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FIGURE 6. Normalized pdf for Model 1 with scaling (a) in the velocity-pressure

formulation; 1283 _ 323 (v), 1283 _ 163 (,), 5123 _ 643 (,,), 5123 _ 323 (*
with sharp cutoff.

1283 runs. In particular, the 5123 ---* 323 cases ar_-* very comparable when C is

uniform (still slightly better when C is allowed to vary).

5. Conclusions

A few conchlsions can t)e made from the investigations done using the sharp cutoff

filter to produce the synthetic LES fields from the DNS databases. The choice for

the lIT scaling in the eddy-viscosity is found to be unimportant as it does not

significantly affect the correlations between modeled and exact sgs quantities at an)"

of the three levels: trace-free tensor, solenoidal forcing, dissipation. It is found that

the hyper eddy-viscosity model yields higher correlations than the eddy-viscosity

model in both the w'locity-pressure and the vorticity-velocity fornmlations. It thus

appears as a good candidate for real LES and should be tested numerically. Scale

similarity models exhibit essentially no correlation with the exact sgs quantities
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when the sharp cutoff filter is used. The correlations obtained with simple LES

models in the vorticity-velocity formulation are higher than those obtained with

the counterpart models in the velocity-pressure formulation. This suggests that the

vorticity-velocity formulation might be a good candidate for real LES, with reduced

sgs modeling error. It certainly appears as a natural choice. It should also be tested

numerically in real LES.
Some conclusions are also reached from the investigations done using tile Gaus-

sian and top-hat filters in order to produce the synthetic LES fields. It is found

that the L'ij contribution is essential in order to produce significant correlations.
The correlations are then artificially higher than those obtained with sharp cutoff.

Indeed, the filtered field still contains significant small-scale information that would

not be available in a real LES. In particular, some scale similarity models exhit)it

remarkably high correlations when smooth filters are used.

Finally, it is found that the level of obtained correlation is quite sensitive to the

database investigated, and to the location of the spectral 'cut' used to produce the

synthetic LES field. If anything, our investigation shows that one must exercise cau-

tion when comparing correlations reported by different authors and when working

with different databases and with different models or formulations.
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