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Dynamic Smagorinsky model on anisotropic grids

By A. Scotti 1, C. Meneveau 1 AND M. Fatica:

Large Eddy Simulation (LES) of complex-geometry flows often involves highly

anisotropic meshes. To examine the performance of the dynamic Smagorinsky

model in a controlled fashion on such grids, simulations of forced isotropic turbu-

lence are performed using highly anisotropic discretizations. The resulting model

coefficients are compared with a theoretical prediction (Scotti et al., 1993). Two

extreme cases are considered: pancake-like grids, for which two directions are poorly

resolved compared to the third, and pencil-like grids, where one direction is poorly

resolved when compared to the other two. For pancake-like grids the dynamic model

yields the results expected from the theory (increasing coefficient with increasing as-

pect ratio), whereas for pencil-like grids the dynamic model does not agree with the

theoretical prediction (with detrimental effects only on smallest resolved scales). A

possible explanation of the departure is attempted, and it is shown that the problem

may be circumvented by using an isotropic test-filter at larger scales.

Overall, all models considered give good large-scale results, confirming the gen-

eral robustness of the dynamic and eddy-viscosity models. But in all cases, the

predictions were poor for scales smaller than that of the worst resolved direction.

1. Introduction

Since its introduction in the 1960's, a goal of LES has been to simulate complex

turbulent flows. A complex flow is, by definition, characterized by regions were the

physics of turbulence change, e.g., from homogeneous turbulence far from bound-

aries to near wall turbulence, etc. To capture the full ganmt with a simple subgrid

model without having to adjust constants in an ad hoc manner every time was a

serious problem until recently. The introduction of the dynamic model (Germano et

al., 1991) to dynamically calculate the parameter(s) of the modeled sub-grid stress

was a significant step towards making LES of complex flows possible without ad hoc

adjustments. This model is able to self-adjust to the large scale flow in the correct

fashion, for instance, shutting itself down near walls or in regions where the flow

relaminarizes.

As a result, it has become possible to apply LES to study flows of increasing

complexity (e.g. Akselvoll and Moin 1996 or see in this same volume Chan and

Mittal, and Haworth and Jansen), which in turn requires the use of complex grids,

either structured or unstructured. Complicated grid geometries in conjunction with
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the dynamic model raise several questions. Consider, as an example, the flow past

a 3-D bluff body: near the object, one needs to refine the grid in the spanwise direc-

tions. For a structured mesh, far downstream, tile grid may be greatly expanded in

the streamwise direction. Therefore, the grid can be strongly anisotropic, with the

elements of the grid looking like sheets or pencils, depending on the kind of refine-

ment imposed upstream. Hence, in the far-wake region one may have a situation

where the turbulence is nearly isotropic, whereas the computational grid is highly

anisotropic.

In LES, the grid filter is dictated by the computational mesh used to solve the

equations (although, for methods other than spectral, it is difficult to give a precise

definition of the filtering operator associated with a given discretization). Since

classical eddy-viscosity models need as input a length-scale which is usually associ-

ated with the scale at which the filter operates, the t)roblem arises in defining this

length when, as a result of the anisotropy of the grid, the filter is defined by more

than one length scale. For the Smagorinsky model, this problem was considered

first by Deardoff (1970) and later by Schumann (1975), Lilly (1988) and Scotti et

al. (1993), although the last two papers were only theoretical treatments.

On the other hand, other models such as the dynamic model do not in principle

require a length scale to be specified. The question then arises whether the dynamic

model is able to correctly simulate isotropic turbulence on anisotropic grids. The

main goal of this work is to examine this question.

This issue is also of theoretical interest since, from the point of view of interaction

among modes, local triadic interactions at small scales are fully available only to a

limited amount of modes. Thus the small scales are exposed to a dynamic which

is not the one typical of 3-D turbulence. It is natural then to expect that the SGS

stress tensor should incorporate a correction originating only from the anisotropy

of the grid.

The paper is organized as follows: in section 2 we briefly summarize the main

result of Scotti e* al. (1993) and set the notation that will be used throughout

the paper; in Section 3 we discuss the simulations and how the results of different

models will be compared. In showing the results, we have considered two categories

of grids: pancake-like, when one direction is much better resolved than the other

two, and pencil-like, when two directions are nmch better resolved than the third.

Section 4 presents the results. Finally, in Section 5 a summary and discussion of

the results is given.

2. Smagorinsky model on anisotropie grids

In this section, tile results of Scotti et al. (1993) are briefly recalled. They are

based on the assumption that the turbulence is isotropic and homogeneous, and

that the largest and smallest scales at which the filter operates still lie within tile

inertial range. One begins by writing the Smagorinsky model as

= cX , S,j. (1)

Here A1, A2 and A3 are the dimensions of the computational cell. For notational

convenience and without lack of generality, let us assume A 1 _< Ae _< A a. The
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equivalent filter, via a collocation rule, is assumed to be a sharp cut-off filter in

Fourier space, which corresponds to setting to zero all the modes outside the region

B = {Ikll < 7r//kl, Ik21 < r/A2, Ik31 < _'//ka} , leaving the others unmodified.

By invoking an argument used first by Lilly (1967) an expression for L(A1, A2, A3)

was derived by requiring that

¢ : -- < TijSij >,

replacing 7-0 with the model and computing moments of the strain-rate tensor,

assuming that the velocity field is characterized by a Kolmogorov isotropic spectrum
on all resolved modes.

Introducing/k,q = (/_lA2A3)l/3, L(A1,/_.2, A'3) can then be written as

L(A1, A2,/X3) = Cs/keqf(al, a2), (2)

where al =/kl/A3 and a2 = A2//k3 are the two aspect ratios of the grid, and f > 1

is a function equal to one if both ratios are equal to unity. Cs is the traditional

Smagorinsky coefficient, which depends on the value of the Kolmogorov constant.

After evaluating the function f, a compact approximation for the result was given

by Scotti et al. (1993)

f(a,, a2 ) _- cosh X,/4/27((log a, )2 _ log al log a2 + (log a2)2). (3)

Incidentally, we remark that the fact that f _ 1 for aspect ratios close to unity

justifies the practice introduced by Deardoff (1970) of using /k,q as length scale,

at least for aspect ratios close to unity. In the dynamic version of this model,

with grid filtering denoted by tilde and test filtering by an overbar, the length-scale

L(_I,/_2,/_3) is computed according to

2[L(_1,/_2, h3)] 2 - < L_jMij >
< M iM i >'

(4)

where

and

Lij = ujfii -- fiifij, (4a)

Mij = (4b)

where we have made use of Eq. (2). If both test and grid filter have the same aspect

ratios then Eq. (4) is closed; otherwise we can use Eq. (3) to compute f and check

a po_teriori its consistency.
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3. Approach and validation

We run LES of isotropic turbulence in a box of side 2_r with periodic boundary

conditions. Turbulence is maintained by a forcing f that forces the largest modes

(k < 2) with an intensity such that the energy injection rate f. u is fixed at a
constant value e = 1.0. The numerical scheme is the same as in Vincent and

Meneguzzi (1991) and Briscolini and Santangelo (1994). It uses Adam-Bashforth

2 for time advancing, with At : 0.001. The nonlinear terms, written in rotational

form, are evaluated pseudospectrally. Appendix A examines dealiasing for the AB2

scheme. The grids have mesh sides (A1,A2,Aa), with A3 > max{Al,A2}, and

aspect ratios al = A1/A3, a2 = A2/A3 ranging from 1 to 1/16. Grid filtering

was performed with a sharp spectral cut-off setting to zero the modes outside the

ellipsoid B = {k E R a I (klA,) 2 + (k2A2) 2 + (kaA3) _ <_ 8/97r2}, which has the

advantage of partially removing aliasing errors (see appendix A). Test filtering was

done at a scale twice as large in all directions.

For comparison, computations were performed using the classical non-dynamic

Smagorinsky model with the Deardoff length scale and C_ = 0.026, as well as with

the Smagorinsky model corrected after Scotti at al. (1993) including f(al,a2) as

evaluated from Eq. (3). In all cases the initial condition is assumed to be a random

Gaussian field with k -5/a spectrum, random phase, and total kinetic energy equal

to unity.

We wish to compare both large scale properties, such as total kinetic energy,
derivative skewness in the worst resolved direction, and small scale properties, such

as energy spectra near cut-off scale and the skewness in the best resolved direction

(which is sensitive to the details of the small scales).

For isotropic turbulence we know that the spectral tensor in the inertial range is

given by

Q,j(k) =< ui(k)uj(-k) >= (47r)-'CKe2/3k-ll/3P,_(k), (5)

where c is the average dissipation, CK is the Kolmogorov constant, and Pij(k) is

the projector on the space orthogonal to k. Also, we know that the skewness of the

derivative is 0(-.5), although for LES the value attained is typically smaller due

to the incomplete resolution of the small scales. We will compute the skewness in

the a-direction, defined as So =< (Ofi_/Ox_) 3 > / < (Ofio/Oxa) _ >3/2.

Due to the anisotropy of the grid, it is better to study 1-D premultiplied spectra,

defined as

C(kl) = fB 2rre-2/3kll/3Qii(k)dk2dk3
fB dk2dk3

For ideal Kolmogorov turbulence, where the spectral tensor is given by Eq. (5),

C(kl) is a constant equal to the Kolmogorov constant CK "" 1.6.

4. Results

To obtain a self-consistent estimate for the Smagorinsky constant C_, we first run

LES with the dynamic model with isotropic spherical test and grid filter on a 323

grid. After an initial transient the value stabilizes at C 2 = 0.023 4- 5%. Next, we
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FIGURE 1. (a) Time traces of fdyn(alla2) as generated by the dynamic model

during LES of forced turbulence on anisotropic grids. : aspect ratios al =

a2 = 1/8; _ : al = a2 = 1; ........ : al = 1/16, a2 = 1. (b) values of time

averages of fdyn(al,a2) computed between 400 < t < 800, for pancake-like grids,

a2 = 1, (V]) and pencil-like grids a2 = al, ((>). The solid line represents the

theoretically determined values, according to Eq. (3). Error bars are +a, where a

is the standard deviation about the time average.
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FIGURE 2. Eddy-viscosity models on pancake-like grids (256 x 16 x 16). (a) kinetic

energy as a function of time for dynamic model (--), modified Smagorinsky
(........ ) and Smagorinsky-Deardoff ( .... ). (b) skewness in the worst resolved

direction, same symbols as in (a).

perform LES on anisotropic grids characterized by aspect ratios al and a2. The

results are cast in terms of f(al, a2), by writing

_< LijMij > 0.023 -1/2fdyn(al, a2 ) = 2 < MijMij > Aeq

Figure la shows the time evolution of fdyn(al, a:_) for three cases: an isotropic grid
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on 323 modes, a pancake-like grid using a 256 x 16 x 16 grid, and a pencil-like grid

using 128 x 128 x 16 modes.

In the same way we have computed the time averages of fdyn for aspect ratios

varying from 1/2 to 1/16. They are plotted in Figure lb together with the value

obtained from Eq. (3). We see that the dynamic model reproduces the correct trend

for pancake-like grids, but fails with pencil-like grids. To examine the simulations

more closely, we now focus on two extreme cases: a 256 x 16 x 16 grid (pancake)

and a 128 x 128 x 16 grid (pencil). For each case, we compare the dynamic model

with predictions of the non-dynamic Smagorinsky model and with the non-dynamic

model but including the correction of Eq. (3).

4.1 Pancake-like

Figure 2 shows the total kinetic energy versus time for the three models consid-

ered. We see that the three models agree quite well. Also, the skewness in the least

resolved direction does not show marked differences. We conclude that at the large-

scale level, there is no impact on the model variations even at this high level of grid

anisotropy. Next, we consider the behavior near the grid scale. The premultiplied

1-D spectrum is shown in Fig. 3. The traditional Smagorinsky-Deardoff case shows

a strong peak at wavenumber kl ,,o 10. The modified Smagorinsky case remains

constant at small wavenumbers and dies out at high wavenumbers without showing

any pile-up. The dynamic model falls somewhere in between, but the value is higher

than the expected value of CK. All models show a rapid decay at wavenumbers
above 10.

The fact that all three models decay for kl > 10 means that those modes that

cannot have access to all the local triadic interactions experience a high drain of en-

ergy so that they do not display a Kolmogorov scaling. It appears unlikely that any

modification of a scalar eddy-viscosity model could compensate for this behavior.

The analysis of the derivative skewness in the well-resolved direction shows no
real difference.

4.2 Pencil-llke

As already mentioned, the dynamic model gives a value for fdyn which is smaller

than one, in contrast with the theoretical expression, which implies that f must be

bigger than one. If we look at the large-scale parameters of the flow, energy and

skewness in the least resolved direction (Fig. 4) we see that the three models again

give similar answers; note the small value of the skewness in the worst resolved

direction. But if we consider parameters that are more sensitive to the small scale

behavior, we notice marked differences. For the dynamic model the Kolmogorov

constant is too large, about twice as much as expected (Fig. 5). Therefore, the

"underestimation" of f brings consequences that cannot be ignored at the scales

near the least resolved direction. Again, scales between the least and best resolved

directions are much less energetic than the Kolmogorov spectrum, as is clear from

the rapid drop of the premultiplied spectrum above kl = 16. On the other hand, the

modified Smagorinsky model gives too small a value, probably due to overdamped
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FIGURE 3. Eddy-viscosity models on a pancake-like grid. (a) premultiplied 1-D

spectrum: dynamic model (--), modified Smagorinsky (........ ) and Smagorinsky-

Deardoff ( ..... ). (b) derivative skewness in the best resolved direction, same

symbols as in (a).

modes near k ,,- __3" Finally, the skewness in the best resolved direction is consistent
with these differences: the smaller the skewness is in magnitude, the more the energy

piles up.

4.3 Discussion

The strongest discrepancy between the theoretically and dynamically determined
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FIGURE 4. Eddy-viscosity models on pencil-like grid (128 x 128 x 16). (a) energy

as a function of time for dynamic model (--), modified Smagorinsky (........ )

and Smagorinsky-Deardoff ( .... ). (b) derivative skewness in the worst resolved

direction, same symbols as above.

f(a],a2) was observed for the case of highly pencil-like grids. For this case, the

premultiplied spectrum of the dynamic model case showed considerable pile-up, as

evidenced by much higher values of C(kl). In order to understand the causes of this

behavior, we recall that the dynamic model computes L by sampling the turbulence

between grid and test filter. It could be argued that for pencil-like grids these modes

behave essentially as 2D turbulence, with the vorticity aligned in the :r3 direction

and a concomitant change in the dynamics. To focus on the relevant scales, we
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(--), modified Smagorinsky (........ ) and Smagorinsky-Deardoff ( ....
derivative skewness in the best resolved direction, same symbols as above.
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(a) compensated 1-D spectrum: dynamic model

). (b)

have analyzed the vorticity band-pass filtered between test and grid filter (i.e. the

statistics of J = & - _). We find that the variances arc not isotropic, and that

wt21 .,2 .t2/ ,t2 ,,, 0.75, i.e. the flow is not quite 3-D but not 2-D either. More
1 /°a3 "_ v'_2 lV'_3

directly related to the small value of L or fdy. obtained from the dynamic model, in

Fig. 6 we show the PDF of LijMij (solid line)• The curve is ahnost symmetrically

distributed around the origin, and the average value, while positive, is very small

(< Lij.l_ij 3 >= 4.80). Li,i!_/lij can be regarded as a measure of energy transfer from
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large to small scales, with negative values meaning energy backscatter. If we now

compute the same PDF but using an isotropic test filter at a scale 2A3 in all three

directions, we see that the shape of the PDF changes, being now skewed to the

right (symbols in Fig. 6). The mean value is now < LijMij >: 31.66. Therefore,

by sampling larger scales that are more isotropic, the dynamics of the energy transfer

changes noticeably.

This observation suggests that in order to improve the performance of the dy-

namic model in such extreme cases of grid anisotropy, it may be advisable to use a

test filter which is isotropic, with a length scale twice as large as the worst resolved

scale. In this case, the grid and test anisotropies differ, and this must t)e taken

into account explicitly in the dynamic model formulation. We now implement the

dynamic model with Eq. (4b) for M,j, using the expression given in Eq. (3) for

f(_l, _2) and f(51,52 ). Using this formulation on a 128 × 128 × 16 simulation yields

the result shown in Fig. 6. The time trace of f (Fig. 6) shows that it oscillates

around an average value of 1.44 -t- .067, much closer to the expected value of 1.34

than the value of 0.8 obtained with pencil-like test filtering. At large scales the

difference between this run and the previous one is small. On the other end, at

small scales the situation changes as now the premultiplied spectrum (Fig. 7) lies

flat at 1.4 for kl < 10, very close to the expected value for CK. Tile skewness in

the best resolved direction agrees well with the one calculated from the modified

Smagorinsky model.

5. Conclusions

We have run several LES of forced isotropic turbulence on anisotropic grids, us-

ing three different Smagorinsky models. All three models are able to satisfactorily

reproduce the very large scales of the flow. This result confirms the general ro-

bustness of the dynamic model even for the extreme cases considered in this work

(see Jim4nez (1995) for further observations on the dynamic model's robustness).

However, none of the models considered is able to give a correct representation

of the scales smaller than the worst resolved direction, where spectra are strongly

damped below Kolmogorov values. This is probably due to the fact that the trans-

fer of energy at very small scales is affected by the lack of similar modes in one

or more directions. For a related study on the effect of grid anisotropy on velocity

components and stress anisotropy, see Kaltenbach (1996).

For the model performance at scales near the cut-off in the worst resolved direc-

tion, we need to distinguish between pancake grids and pencil grids. For pancake-

like grids, the non-dynamical Smagorinsky model modified after Scotti et al. (1993)

and the dynamic model give reasonably good results, while the conventional Smagorin-

sky model using the Deardoff prescription for A_q shows excessive pile up of energy

at scales close to the largest mesh size. The anisotropy factor computed from the

dynamic model shows an increasing trend with anisotropy in accord with the theo-

retical prediction, although the numerical value is somewhat smaller. For pencil-like

grids, the Smagorinsky-Deardoff model as well as the modified version give good

results, with the modified version yielding slightly better results. On the other
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FIGURE 6. (a) PDF of L,iMij computed with same grid but different test filters.

Both statistics were performed on the same fields simulated on a 12S x 128 x 16

grid and with test filter cutting off at _'i = 1/2_:i. The solid line refers to LisMis

computed as in the simulation, while the symbols refer to Lij]_<Iij computed with a

test filter cutting off at ki = 1/2ka. (b) anisotropy factor fdy, computed with an

anisotropic test filter (--) and with an isotropic (larger scale) test filter (........ ).
The predicted value is 1.34.

hand, tile dynanfic model exhibits insufficient dissipation of energy as shown by

the fact that the anisotropy factor fdy, becomes smaller than one, and reflected in

that small scales have excessive energy as compared to the Kolmogorov value.
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FIGURE 7. (a) compensated 1-D spectrum of dynamic model on pencil-like grid

with isotropic test filter• (b) derivative skewness in the best resoh,ed direction for

dynamic model with isotropic test filter (_) and modified Smagorinsky-model

(........ ).

It would appear that in this particular case the strength of the dynamic model

becomes its weak point. The dynamic model computes the unknown factor from
information derived from the smallest resolved scales. But in the case of highly

anisotropic grids, these scales experience a dynamic which is different from the

usual one due to the missing modes at large wavenumbers. This in turn affects the

resolved non-linear interactions embodied in the term LoMi j, which is what the

dynamic model samples. Specifically, the number of events during which energy
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is transferred forward is decreased, which could actually be explained by a partial
2-dimensionMization of the flow at these scales.

A proposed improvement is to move the test filter towards larger scales, where

the combination of more energetic modes and more realistic triadic coupling allows

a more faithful representation of how energy is exchanged. Indeed, simulations done

with an isotropic test filter at twice the worst resolved scale show improved results.

Perhaps not surprisingly, this conclusion is similar to one reached by others in the

context of dynamic LES using non-spectral numerical methods, such as low-order

finite differences. There, it has been found advisable to "prefilter" the results and

shift tile test filter to larger scales (Ferziger 1996, Lund 1996) so that the dynamic

model is not strongly affected by numerical errors occurring near the grid scale.
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Appendix A

We assume that the computational domain is covered by N1 x N2 x N3 points and

i,j and l are unit vectors in the x, y, and z directions. It is well known (see Canuto

et al. (1987)) that the pseudospectral treatment of a 3-D convolution product

Y_m+n=k a(m)b(n) introduces an error. If we denote with wk the true convolution
product and with Wk the calculated one, the following relation holds:

7

wk =wk + Zwj
j=l

where the seven extra terms have the form

)4;j = E a(m)b(n)
m+n=k+ej

and

el = +Nli, e2 = +N2j, e3 = +N31,

e4 = +Nli + N2j, e5 = +Nli 4- Nal, e¢ = +N31 4- N2j,

eT = 4-Nli 4- N2j 4- N31.

The last four terms, (double and triple aliased) can be set to zero if we adopt an

elliptical truncation, i.e. , if we set to zero all the modes such that

>-i.

The proof is by inspection.

To remove the single aliased terms we can resort to phase shift. If we premultiply

all the modes by a factor eik'°, /9 E [0, 27r] × [0, 27r] × [0, 2rr], compute the convolution

sum and multiply the result by e -ik'e, the aliased terms now are e +i% Nj _/,j, j =

1,2,3, i.e. we have shifted their phase by an amount 4-/gin j. If we do the same

thing one more time, but this time/9 _/9+(Tr/N1, rr/N2,7r/N3) and take the average

of the results, the aliased terms, being out of phase, will cancel exactly. However,

this requires doubling the number of FFT's required for each term to be dealiased.
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Rogallo (1977) showed that for a multistep scheme such as even-order Runge-Kutta,

it is possible to control the growth of aliasing essentially at no extra cost. Indeed,

let us consider the typical step of a 2nd order Runge-Kutta:

At

u = u" + y(F1 + F2)

with Fi's being the non-linear terms evaluated recursively. It is important to notice

that to 0th order in At they are identical. Therefore, if F1 is evaluated with a shift/9

and F2 with shift 0+(Tr/N_, zr/N2, 7r/Na), their sum to 0th order is dealiased, leaving

possibly a contribution to first order. Therefore, the global effect of aliasing is

pushed to second order. Choosing/9 randomly at each time step further ensures that

the error does not accumulate over time. Nevertheless the RK-2 method requires

doubling the FFT's for each time step.

In our computation we have used an AB2 scheme, which schematically can be
written as

un+l
= u" + -_(3F n - F '*-I )

with obvious meaning of the symbols. Although to 0th order the alias terms are

identical in F n and F "-l, it is clear that there is no way in which a combination

of phase shifts can cancel them exactly, since the equation

3e iaN -- e iflN : 0

does not have solutions for a,/3 E [0, 2rr].

However, by successive phase-shifts it is still possible to ensure that the error

does not accumulate. If n is even, the shift is chosen randomly; if n is odd, the shift

is chosen to be the shift of the previous time step plus (Tr/Nl, 7r/N2, zr/N3). After
m time steps, the solution can be written as

At [3(F" + F _'+1 F "+_u "+_ =u"+_ + +...+F "+m)

- (F "-a + F" + F TM +-.. + F"+m-l)].

In the two bracketed sums, to the lowest order, all but a few aliased terms (typically

the first and/or the last) cancel out. This proves that the error does not accumulate,

and that after m steps the aliasing is still O(At), no matter how big m is. Again,

the randomness prevents accumulation at higher orders. We have compared results

obtained with this dealiasing technique with results obtained by zero padding (2-rule

in the worst resolved direction) without finding any noticeable difference.


