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Abstract

The project is based upon research of Tessler et al. (1994) on an improved variational

formulation for post-processing stress predictions in Finite Element Analysis. The

methodology, called Smoothing Element Analysis (SEA), employs a three-node

smoothing finite element. The present effort focused on verifying the basic constant strain

criterion for the three-node smoothing element subject to a set of internal penalty

constraints. The convergence characteristics of the element are assessed by first deriving

the constrained form of the assumed element stress and stress gradient fields, and then by

verifying the validity of the constant strain criterion once the element penalty constraints

are explicitly imposed. The analytical investigation is carried out with the use of the

symbolic manipulation code Mathematica.

Introduction

An improved variational formulation called Smoothing Element Analysis (SEA),

developed by Tessler et al., (1994), serves as a foundation for the enhancement of finite-

element obtained deformation and stress response. In the case of stress predictions, C "_ -

continuous stress field from a finite element solution is enforced into a C_-continuous

stress field with continuous stress gradients. These enhanced results are ideally suited for

error estimation since the stress gradients can be used to assess equilibrium satisfaction.

The approach is employed as a post-processing step in finite element analysis. The

variational statement combines the discrete-least squares, and penalty-constraint

functionals, thus enabling automated recovery of smooth stresses and stress gradients.

The practical issues whose adequate resolution is essential for a successful application

of the approach are:

(l) The SEA mesh and the number of the discrete stresses extracted from the Finite

Element Analysis (FEA) mesh should be properly interrelated in order to produce a

determined system of SEA equations. To fulfill this requirement, Tessler et al. (1994)

proposed specific guidelines. An automated generation of the SEA mesh may also be

necessary to make the post-processing transparent to the user.

(2) The FEA stresses need to be extracted at the discrete elemental locations that are

best suited for the recovery. Optimal (i.e., superconvergent) Barlow points and Gauss

integration points have been successfully used.

(3) The smoothing element should not exhibit locking -- a pathological stiffening

phenomenon commonly exhibited in penalty-constrained elements. In this connection, a

judicious choice of the element shape functions is key to avoiding locking.

The purpose of this effort is investigate the influence of penalty constraints on the

characteristics of the smoothing element used in Tessler et al. (1994). Particularly, the

convergence characteristics of Tessler's smoothing element are assessed by way of

deriving the constrained form of the assumed element stress and stress gradient fields, and

by verifying the validity of the constant strain criterion once the element penalty

constraints are explicitly imposed. This analytical investigation is facilitated by the use of

the symbolic manipulation code Mathematica.

668



Error Functional

In this section an error functional proposed by Tessler et al. (1994) for a two-

dimensional plane formulation is reviewed. It is assumed that within a two-dimensional

region fl = {xe _2}, where x={x,-}, i=1,2, represents a position vector in Cartesian

coordinates, a finite element-derived stress field orb(x) has been obtained by means of a

discretization of fi with characteristic element size h. The smoothed stress field, a'(x),

is to be constructed from orb(x) via a variational formulation. The variational statement

involves scalar quantities only, and so each component of trh(x) is smoothed

independently. Hence, in the following reference is made only to components O_and _.

The finite element stress field is sampled at Xq, q = 1, 2 .... , N, to obtain the set of

stresses {_}, i.e., O_q_ trh(xq). The sampled stresses are those extracted at the Gauss

integration points, Barlow points, or other element locations in the finite element

analysis. To minimize the error functional, we adopt the finite element methodology and

therefore discretize fl with net "recovery" or "smoothing" finite elements such that

f2 =, ,"_ fl" where fY is the domain of smoothing element e Within our recovery element_e=l

model, we use C°-continuous interpolation functions for the stress, _, and the

independent quantities 07, I=1, 2, whose mathematical interpretation will be readily

established. The error functional to be minimized can be written as

N i'le/

•: w,[o, + - o:;-+ - o,)Jan
e=l _,

(1)

where wq and p(x) are the appropriate weight functions; r is a normalization factor; ,;I. is

a dimensionless parameter; and a comma denotes partial differentiation. Because the

highest partial derivative in equation (1) is of order one, the field variables need only be

approximated with C°-continuous shape functions.

The first term in equation (1) represents a discrete least-squares functional in which

the squared 'error' between the smoothed stress field and the sample data is computed for

all sampled stresses. The term can be normalized in several different ways; presently, the

normalization factor equals the total number of the sampled stresses, i.e., y= N. The

discrete weights wq are introduced so that sample data known to be of higher accuracy

can be assigned more weight than less accurate data.

The second term in equation (1) represents a penalty functional which, for ,;t

sufficiently large, enforces the derivatives of the smoothed stress field 4, to approach the

corresponding _ variable pointwise, i.e.,

---) _ (i=x,y) in f2 e (2)
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Theoretically, the greater the value of 2, the closer the correlation between cry, and _,

where C I continuity of O"_is achieved as A. --->oo. In practice, $ needs to be sufficiently

large in order to enforce conditions (2), yet it should not be excessively large to cause ill-

conditioning of the smooth solution. Because _ are interpolated with continuous

functions, the smoothed stress field, for all practical purposes, is C ! continuous. The

weight function p(x) is introduced in the functional to allow the enforcement of C 1

continuity to be somewhat relaxed in certain regions of f_ and more strictly enforced in

others, if so desired. Also note that by specifying the weights Wq and p(x) to vanish in

regions outside a given domain of interest, a local orpatch analysis is admitted. Presently,

we only consider the special case where w = 1 and p(x) = 1, that is all stress data are

treated equally and the C t continuity is enforced throughout the f_ domain.

Assumed Element Fields

Although the functional (1) admits C°-continuous shape functions for the field

variables o", _, and _, the constraints (2) impose certain restrictions on the suitable

choice of shape functions. In a similar plate theory formulation, constraints of this type

are known to cause locking (i.e., severe stiffening) when conventional isoparametric

interpolations are used. (In the present context, locking would manifest itself in a

smoothed stress field, o", that grossly underestimates the 'true' stress distribution.)

When _ is interpolated with a polynomial one degree higher than those for the _ and

variables, using anisoparametric interpolations, the locMng effect is alleviated or

completely eliminated (Tessler, 1985).

Another important consideration is the nodal configuration that is best suited for the

smoothing element. It turns out that a three-node triangle is well-suited for this purpose

because (a) from a modeling standpoint, it represents the most versatile element topology,

and (b) it permits a one-to-one linear mapping between the global and element local (area-

parametric) coordinates, thus allowing a straightforward identification of the sampled
stress data within the smoothing element.

The anisoparametric interpolations for a three-node element involve quadratic

approximation of o" and linear approximations of Cx and _ which can be expressed in

matrix form as

• $(ys =zcr • +m0_ + 0._, 0 i = z0[ (i=1,2) (3)

where _, _ are 3xl vectors of nodal degrees-of-freedom (dof), z is selected as a row-

vector of a linear shape function, and m and 1 are selected as row-vectors of quadratic

shape functions. Their explicit forms given in terms of area-parametric coordinates are

where
z={zl,z__,z3}, m={m,,m2,m3}, !={lt,12,13} (3.1)
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z, = 2-_(c, +bix +a,.y), m, = ½(akz,z i -aiz,z k ), l, = __(bjzizk -bkzizj)

ai=xk-x _, bi=yj-y k, ci=xjy_-xky _ (i=1,2,3, j=2,3,1, k=3,1,2)

and A denotes the area of a triangular element.

Note that these interpolations are consistent with a three-node element which has only

three dof per node, even though O_ is quadratic and O/ are linear functions. Moreover,

equations (3) ensure that the gradient of the smoothed stress, o_.,, is the same degree

polynomial as that representing _, i.e., they are both linearly distributed across _e. This

naturally leads to a reasonable expectation that penalty constraints (2) can be adequately

fulfilled without over constraining (locla'ng) the element.

Edge Penalty Constraints

A straightforward manipulation of the two constraint equations in (2), in which

equations (3) are introduced, produces three edge-wise constraints per element. For the

element edge defined by nodes i and j, the edge constraint equation has a simple form in

terms of the nodal dof corresponding to the edge (Pomeranz, 1995; Tessler, 1985):

! • • I • •
(4)

where x, and Yk (k = i,j) are the nodal coordinates.

The three edge constraint equations ensure that there are only six independent dof per

element, thus properly describing the complete parabolic field of_. They also facilitate a

simple calculation of the total number of independent dof in the mesh. The key aspect of

these constraints is that they control the mechanisms of locMng. Their assessment in the

context of assembly of elements can provide proper insight into preferable discretization

patterns for such elements. For example, a fully non-locking behavior is achieved by

producing SEA meshes made of quadrilateral macro-elements that are formed with four

triangles in a cross-diagonal pattern.

Constant Strain Criterion

Let us consider an arbitrary triangular element as shown in the diagram below.

/_ x3,y3)

1 (xI,yl)__2 (x2,Y2)
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The satisfaction of the constant strain criterion in the finite element method ensures

convergence of the method as the mesh is refined. In this case, it is expected that each

individual finite element accommodates constant strains. Mathematically, the criterion is

verified by summing up on all shape functions for each field that is approximated, and the

resulting sum should add up to unity. This can be readily verified for the unconstrained

element fields in (3).

The constraint equations for the edges of this element can be written as follows.

Edge 1-2

Edge 2-3

Edge 3-1

0-1-or2 =_'((xt-x_)(O,, +O,,z)+(yt-y,,,XOy , +Oyz) )

a2-0-3 = ½((xz-x3)(Ox2 +Ox3)+(Y,.-Y3XOy2 +0,3))

0-3-a, = ½((x 3 -x, Xo_ 3 +ox,)+(y 3 -y,)(o,3 +o_,,))

(5)

Using Mathematica, the three constraint equations are solved for 1_1"1' 0"2, and 0x3.

When these solutions are substituted into the original definitions for o'*, 0_, and 0_, the

following expressions of the three element fields are derived

0-" = giG3 + g2(x)O,i + g3(x)O:_ + g4(x,y)Oyl + gs(x, y)Oy2 + g6(x,Y)Oy3

O_ = d I (x)O,_ + d 2 (x)Ox2 + d 3(x, y)Oy I + d, (x, y)Oy 2 + d 5(x, y)Ov3
$

Oy = e I (x, y)O: + e I (x, y)Oy z + e 3(x, y)Ov3

(6)

where g, d, and e are shape functions whose expressions are summarized in the Appendix.

To verify the constant strain criterion for the resulting element fields, the summation of

the g, d, and e shape functions is carried out with the use of Mathematica. The resulting
equations are as follows

6 5 3

g-Zgi=l+x-x3+Y-Y3, d=Zdi=l, e=-Zei=l (7)
i=1 i=1 i=1

t $Note that bo h 0_ and 0_ fulfill the constant strain criterion for a finite size element since d

=1 and e=l. On the other hand, g only approaches unity in the limit as the element size

diminishes to zero, i.e.,

x--') x3, Y"-) Y3 (8)
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giving rise to g--_ 1. Thus, the element convergence is ensured as the smoothing mesh is

refined.

Conclusions

The project has been a continuation of the research of Tessler et al. (1994) on an

improved variational formulation for post-processing stress predictions in Finite Element

Analysis. The effort focused on verifying the basic constant strain criterion for the three-

node smoothing element subject to a set of internal penalty constraints. The convergence

characteristics of the element were assessed by first deriving the constrained form of the

assumed element stress and stress gradient fields through a process of simplifications

using Mathematica. The element penalty constraints were explicitly imposed using the

formulas set out by Tessler et al. (1994). Then the validity of the constant strain criterion

for the element was verified. As the smoothing mesh is refined, the constant strain

criterion is satisfied.
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Appendix

The following are the shape functions in (6) as solved by Mathematica TM.

gl = 1

g2 = ((-x + x3)*(x - 2"x2 + x3))/(2*(-xl + x2))

g3= ((x - x3)*(-x + 2*xl - x3))/(2*(xl - x2))

g4= (xl*x2*y ^2 " x2^2*Y ^2 -xl*x3*y^2 + x2*x3*y^2-2*x*xl*y*y2 + 2*x*x2*y*y2 +

2*xl*x3*y*y2 - 2*x2*x3*y*y2 + xA2*yl*y2 - 2*x*x2*yl*y2 + 2*x2*x3*yl*y2

x3A2*yI*y2- x^2*Y 2^2 + 2*x*xI*y 2^2 -2*xl*x3*y2^2 + x3^2*y2a2 + 2*x*xl*y*y3 -

2*x*x2*y*y3 2*xl*x2*y*y3 + 2*x2^2*y*y3 - xA2*yl*y3 + 2*x*x2*yl*y3 -

2*x2*x3*yl*y3 + x3^2*yl*y3 + xa2*y2*y3 _ 2*x*xl*y2*y3 + 2*xl*x3*y2*y3 -

X3^2*y2*y3 + xl*x2*y 3^2 - X2^2*Y 3^2 - XI*x3*y3 ^2 + X2*x3*y3^2)/(2*(-xl +X2)*(-
(x2*yl) + x3*yl + xl*y2-x3*y2-xl*y3 + x2*y3))

gS=(-(xlA2*y ^2) + xl*x2*y ^2 + xl*x3*y^2 "X2*X3*y^2 + 2*x*xl*y*yl- 2*X*X2*y*yl

- 2*xl*x3*y*yl + 2*X2*X3*y*yl - xA2*ylA2 + 2*X*X2*yl^2 _ 2*X2*X3*yI^2 +

X3^2*yl^2 + X^2*yl*y2 - 2*x*xl*yl*y2 + 2*xl*x3*yl*y2 - X3^2*yl*y2 -

2*x*xl*y*y3 + 2*xl^2*y*y3 + 2*X*X2*y*y3 - 2*xl*x2*y*y3 + xA2*yl*y3 -

2*X*X2*yl*y3 + 2*X2*X3*yl*y3 - X3^2*yl*y3 " X^2*y2*y3 + 2*x*xl*y2*y3 -

2*xl*x3*y2*y3 + X3^2*y2*y3 - xlA2*y3^ 2 + XI*x2*y3^2 + xl,x3,y3^2 -

X2*x3*y3^2)_2*(-xl + X2)*(-(X2*yl)+ x3*yl + xl*y2-x3*y2-xl*y3 + x2*y3))

g6 = (-(xl*y) + x3*y + x*yl - x3*yl - x'y3 + xI*y3)/(2*(-xl + X2)) + (x2*y - x3*y -

x'y2 + x3*y2 + x'y3 - x2*y3)/(2*(-xl + X2)) + ((-X + X3)*(yl - y2)*(-(xl*y) + x2*y +

x*yl - x2*yl - x'y2 + XI*y2))/(2*(-xl + X2)*(x2*yl - x3*yl - xl*y2 + x3*y2 + xl *y3 -

x2*y3)) + ((xl *y - x2*y - x*yl + x2*yl + x'y2 - xl *y2)*(y - y3))/(2*(x2*yl - x3*yl -
xl*y2 + x3*y2 + xl *y3 - x2*y3))

dl= (X - X2)/(xl - X2)

d:= (X - xl)/(-xl + X2)

d3= ((-(X l'y) + x2*y + x*yl - x2*yl - x'y2 + x l*y2)*(y2 - y3))/((-xl + X2)*(-(X2*yl) +

X3*yl + xl*y2 - x3*y2 - xl *y3 + x2*y3))

d4= ((xl*y- x2*y- x*yl + x2*yl + x'y2 - xl*y2)*(-yl + y3))/((-xl + X2)*(x2*yl -
X3*yl - xl *y2 + x3*y2 + xl*y3 - x2*y3))
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d5= ((yl - y2)*(-(xl*y) + x2*y + x*yl - x2*yl - x'y2 + xl*y2))/((-xl + x2)*(-(x2*yl) +

x3*yl + xl*y2 - x3*y2 - xl*y3 + x2*y3))

el = (x2*y -x3*y -x'y2 + x3*y2 + x'y3 - x2*y3)/(x2*yl- x3*yl - xl*y2 + x3*y2 +

xl*y3-x2*y3)

e2 = (xl*y-x3*y-x*yl + x3*yl + x'y3 - xl*y3)/(-(x2*yl) + x3*yl + xl*y2 - x3*y2 -

xl*y3 + x2*y3)

e3= (-(xl*y)+ x2*y+ x*yl-x2*yl-x'y2 + xl*y2)ff-(x2*yl)+ x3*yl + xl*y2 -x3*y2

-xl*y3 + x2*y3)

Notation

In the above expressions, xl=xb yl=yl, xl^2=xl 2, and the asterisk (*) denotes

multiplication.
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