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ABSTRACT

The stability and pairwise aggregation rates of small spherical particles under the collective effects of

buoyancy-driven motion and electrophoretic migration are analyzed. The particles are assumed to be non-
Brownlan, with thin double-layers and different zeta potentials. The particle aggregation rates may be enhanced or

reduced, respectively, by parallel and antiparallel alignments of the buoyancy-driven and electrophoretic velocities.

For antiparallel alignments, with the buoyancy-driven relative velocity exceeding the electrophoretic relative

velocity between two widely-separated particles, there is a "collision-forbidden region" in parameter space due to

hydrodynamic interactions; thus, the suspension becomes stable against aggregation.

INTRODUCTION

Colloidal suspensions play important roles in many engineering fields, including materials processing,

environmental engineering, chemical engineering, and biotechnology. An important goal in many such processes

is to predict the conditions for which a suspension is stable against aggregation, or the particle aggregation rate for

an unstable suspension. In an unstirred suspension, buoyancy-driven relative particle motion may result in

aggregation of particles with different sizes or density. In addition, most colloidal particles are charged and so

migrate in an applied electric field. In a heterogeneous suspension, electrophoretic relative motion and

aggregation of particles with different electric charges or _-potentials may occur [1,2].

Gravity-induced particle aggregation has been studied by Melik and Fogler [3] and Davis [4], who employed

trajectory analyses to predict pairwise particle collision rates. Recently, Nichols, Loewenberg and Davis [5]

analyzed the stability criteria and pairwise aggregation rates for electrophoretic motion of colloidal spheres with

differing zeta potentials and thin, unpolarized electric double layers. Their results indicate that hydrodynamic

interactions generally have a weaker effect on the collision rate for electrophoretic motion than for gravity motion.
As a result, the collision efficiencies for electrophoresis generally exceed those for buoyancy-driven motion by an

order of magnitude. In these studies, the effects of gravity motion and electrophoretic migration were examined

independently. However, gravity and electrophoresis may act simultaneously in some applications. One example

is the separation of slowly sedimenting suspensions, for which an electric field may be employed to accelerate the

initial formation of aggregates; once the aggregates become large enough, gravity will play a more important role.

Stability criteria and aggregation rates of charged particles in a dilute colloidal suspension under the
collective action of gravity and an electric field are considered in this work. Of particular interest are the cases of

parallel and antiparallel alignment of the undisturbed gravity and electrophoretic velocities, as these may lead to

greatly increased or reduced aggregation rates, respectively.

THEORETICAL DEVELOPMENT

A dilute colloidal suspension containing spherical particles dispersed in an isothermal fluid of Newtonian

viscosity I,t and density p is considered. For dilute suspensions, the probability of a third particle influencing
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the relative motion of two particles is small, and so the analysis is restricted to binary interaction of two spherical

particles of radii a_ and a2, densities Pl and P2, and zeta potentials _t and _, respectively. The particles are

assumed to be small enough so that inertia may be neglected, but sufficiently large that Brownian motion is

negligible. These assumptions are valid for sedimenting particles of approximately 1 tim - 50 tim in radii [4]. For

electrophoretic motion, these assumptions are valid over a broader range of 0.1 tim - 1 cm in radius [2,5]. This
study is also restricted to particles with moderate surface potentials and thin electric double layers.

The velocity of each particle is linearly dependent on gravity, the electric field, and the interparticle forces.
Moreover, the relative velocity V_2 = U2 - U1 can be decomposed into motion along and normal to the line of
centers:

6_lxala 2 r 2
(1)

where r is the vector from the center of particle 1 to the center of particle 2, I is the unit second-order tensor, s =

2r/(al + a2) is the dimensionless separation between particle centers, and q)n(r) is interparticle force potential.

The relative velocity for two widely separated particles due to gravity is given by the Stokes formula:

V_fo . V_,O _ Vff ° = 2(p_ - p)aq2(1 - k_ ) g , (2)
9ti

where k = az/al is the particle size ratio, y = (P2 -P)/(P_ - p) is the buoyant density ratio, and g is the gravitational

acceleration vector. By contrast, the electrophoretic relative velocity of two widely separated particles is
independent of their sizes, shapes, and densities [5]:

v, ,o . vf, o_ v(.o . - 1) e , O)
ti

where 13= _z/_, is the ratio of zeta potentials, and E is the applied electric field.

The interparticle force acts only along the line of centers and is given by -Vq)t2 , with the total interparticle

potential assumed to be the sum of the individual attractive and repulsive contributions by DLVO theory. The
attractive van der Waals potential for spheres close together is [5]:

Aa' r1'32 /1q)A = 6(t_+_)h' L --"_'-L In _32hJJ ' (4)

where h is the separation between particles surfaces, _ is the London retardation wavelength, of approximately 0.1

tim, and A is the Hamaker constant, which is typically of order 10q_ - 10 -21J. The electrostatic repulsive potential
due to thin overlapping double layers and modest surface potentials is [5]:

eata2(g_ +g_)[ 2glg-----------_zIn({ + exp(--Kh, / + In(l- exp(-2Kh))](I),= 4(at +a2) Lg_ +g22 -exp(--Kh))
(5)

where g is the reciprocal double-layer thickness, which increases with the ionic strength of the surrounding fluid.

The above expression is valid for constant surface potentials Ka > 10, and _ < 60 mV.

The relative mobility functions for motion along the line of centers (L _, L r, and G) and motion normal to the

line of centers (MG and M r) describe the effects of hydrodynamic interactions between two spherical particles in

creeping flow. L _, Mr and G depend only on the size ratio, k, and the dimensionless distance between centers, s,
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and are unchanged when k is replaced by k'k L a and M _ also depend on the buoyant density ratio, y, and are

unchanged when k and y are replaced by k1 and ¥ -1, respectively.

For the electrophoretic relative mobilities, L e and M e, a far-field reflection solution [6], a boundary

collocation solution [7,8], and a near-field lubrication solution [2] are used in this study. The relative mobility G

and the buoyancy-driven relative mobilities, L c and M a, are taken from [9]. The relative mobilities approach unity

when the particles are far apart, indicating the absence of hydrodynamic interactions. As the two particles
approach each other, the mobilities decrease due to hydrodynamic interactions. For widely separated particles, the

relative mobility functions for particles in buoyancy-driven motion depart from unity as 1/r. In contrast,
electrophoretic motion of charged particles and their neutralizing double layers has a force-free nature , and the

mobility functions have a weaker departure, as i/ft. As the separation between two particles vanishes, the

mobilities along the line of centers approach zero, whereas the mobilities normal to the line of centers tend to finite

limits. For particles in close approach, the electrophoretic relative mobilities are much larger than the buoyancy-
driven mobilities due to electrically-driven convection in the electrical double-layer, which facilitates the removal

of fluid from the near-contact region that separates two approaching particles, a phenomenon called "electro-

osmotic fluid withdrawal" [2].

Decomposing the relative velocity into components along and normal to the line of centers yields:

v, +v_fot%)/_,o] cos0 - _ (rA(s)-N,y,(s))m

V0 =[MV(s)+ Vf'°Me(s)/_'°]sinO ,

(6)

(7)

where 0 is the angle from V_:G'° to r, and V, and V0 are the components of the relative velocity along and
VG, o / vG, o

perpendicular to the line of centers, respectively, made dimensionless by 1V_2'° = [V1_'1, and VI_'° = VI_'°. .12 - ,t2 •

The parameter N A = 6:tV162'°a2/A represents the ratio of gravitational and van der Waals forces, where a = (al +

a2)/2 is the average radius. The functionfA(s) is the dimensionless van der Waals force deduced from equation (4).

The parameter Nt¢ = eg_a/A describes the characteristic strength of electrostatic repulsion relative to van der

Waals attraction. The functionfR(s) is the dimensionless electrostatic repulsion from equation (5).

By restricting our attention to electric fields which are parallel or antiparallel to the gravity vector, the

pairwise aggregation rate per unit volume of the dispersion may be expressed as a collision cross-section times the

flux of particle pairs:

J12=_.2_(¢ +,'_)2v,vl_ , (8)

where nl and n2 are the number of particles of types 1 and 2, respectively, per unit volume, V_ -- _.o + V_.o is the

magnitude of the relative velocity of two isolated particles, and Et2 is the collision efficiency. The collision

efficiency is unity when the particles move in rectilinear motion without interactions; values differing form unity

account for hydrodynamic and interparticle interactions. The collision efficiency is related to the critical

parameter, E_, = o_/(a_ + a2) 2, where o_ is the critical impact parameter defined such that particle aggregation

occurs if the initial horizontal offset is o < o¢, as shown in Figure 1.

Following earlier work for collisions induced individually by gravity [3,4] and electrophoresis [5], the relative

trajectories of two particles are determined by integrating the relative trajectory equation, which results from

dividing (6) by (7):

cos0÷[o(f,-ds [L° + "_2-- = -s , (9)
v_o_,_ _, ]s,n0dx [M(s)+.,2... / o •
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where T -2V_°2t/(a_ + a2) is the dimensionless time. The critical impact parameter is determined by integrating

equation (9) backwards from a critical point where 0 = _ and V, = 0, as described previously for gravity [4] and
electrophoresis [5] acting independently.

RESULTS AND DISCUSSION

When a colloidal suspension is said to be stable, it usually means that electrostatic or other repulsive forces

prevent the particles from aggregating. When the electrophoretic and gravitational velocities of charged colloidal

particles are in opposite directions, however, there may be a purely hydrodynamic stability against aggregation.

Consider, for example, the dimensionless relative velocity along the line of centers for the case Vx2c'° / Vn_'° . -2.5, k

= 0.5, and y =1, illustrated in Figure 2. For this case, the relative motion due to gravity exceeds that due to

electrophoresis when the two spheres are well separated, and so the faster-moving sphere approaches the slower-
moving one. As the spheres become closer together, hydrodynamic interactions reduce the gravity-induced relative

motion more than the electrophoretic relative motion. At a separation distance of about 1.5 average radii, then, the

oppositely directed relative velocities balance, and the relative motion along the line of centers is arrested. Thus,

the different behavior of pairwise hydrodynamic interactions for gravitational and electrophoretic motion prevents
the two spheres from becoming sufficiently close to aggregate.

In the absence of interparticle attractive and repulsive forces, the stability condition of zero relative velocity
along the line of centers is, from equation (6),

vG, o vE, o/ •, LE(s)--/LG(s) .--'12 " '12

For widely separated spheres (s --* oo), L E _1 and L G _ 1, and so -V_ '° / V_ '° = 1 is the lower limit of the stable

region of parameter space. As the separation distance s decreases, L ° decreases faster than does L E, so that LE/L _

increases, and the upper limit of the stable region occurs for very small critical separations at which the relative

velocity is arrested. In this case, LE/Lc approaches a constant provided by lubrication theory [2]. The results are

shown in Figure 3 as a function of the size ratio, _, for buoyant density ratios ofy = 0 and y = 1. A rather large

range of relative magnitudes of gravitational and electrophoretic motion is encompassed by the stable or "collision-

forbidden" zone, indicating that undesirable aggregation during sedimentation to separate particles by size or

density may be eliminated by applying an electric field, if the particles also differ in surface charge or potential.
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Fig. 1 - Schematic of relative trajectories of two

spheres due to gravity and electrophoresis.
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A typical plot of the collision efficiency as a function of the relative velocity parameter Vt_'° /Vt[ '° is shown in

Figure 4 for y= 2, 13= 0.5, k6a = 0.044, Ka = 103, NA = 104, and NR = 102. The collision rate per unit volume in

the suspension is then given by equation (8). For _g_:'°/V_['°I >> 1 and IV_'°/V_'°[ << 1, the previous results for

gravitational aggregation and electrophoretic aggregation, respectively, acting alone are recovered [4,5]. In
general, the collision efficiencies for electrophoresis exceed those for sedimentation because of the weaker

hydrodynamic interactions for electrophoresis. Also, the collision efficiencies are reduced for small size ratios,
because the smaller particle then tends to follow the streamlines around the larger particle and not collide with it.

Varying the parameter Vt_'°/V_ '°, which is the ratio of the relative velocity due to gravity to that due to the

electric field for well-separated spheres, reveals some provocative phenomena. When this parameter is positive,

electrophoresis and gravity aid each other. In this case, the collision efficiency decreases as Vt°'° / Vt_'° increases,

due to the stronger hydrodynamic interactions (which inhibit approach and aggregation) for gravity. The

downturn for V_ '°/V_2r'° -- 0 is a consequence of the attractive van der Waals forces becoming negligible in this

limit with fixed NA. When V_ '° / Vt2E'° < 0, electrophoresis and sedimentation are in opposite directions. For

-1 < VG'° /VE'°u2 -"12 < 0, the collision'efficiency increases as Vt_'° /VII '° decreases, and may even exceed unity (implying

that hydrodynamic interactions increase the collision rate!). In this case, the net relative velocity is dominated by

electrophoresis but reduced by gravity; as one particle approaches the other, hydrodynamic interactions cause the

gravitational relative velocity to decrease more than electrophoretic relative velocity, so that the net relative

velocity increases, and the spheres are drawn together at an enhanced rate. In contrast, when V_ '°/Vn e'° < -1, the

net relative velocity is dominated by gravity and reduced by electrophoresis. Then as one particle approaches the

other, the gravitational velocity is reduced by hydrodynamic interactions to a greater extent, so that the relative

velocity decreases. This causes the collision efficiencies to be reduced, and the collision-forbidden zone described

earlier is apparent.
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Fig. 3 - Stability diagram showing the collision-forbidden

(stable) region of parameter space for antiparallel align-

ment of gravitational and electrophoretic motion of two

different particle species.
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Fig. 4 - Collision efficiency for combined

gravitational and electrophoretic motion.

CONCLUSIONS AND FUTURE WORK

A trajectory analysis employing hydrodynamic mobility functions has been employed to predict pairwise

aggregation rates of small spherical particles in a heterogeneous suspension subject to both gravitational and

electrophoretic particle motion. Depending on the relative orientation and magnitude of the gravity vector and the
electric field, aggregation may be enhanced or retarded. Due to the stronger hydrodynamic interactions for
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gravitational motion, a "collision-forbidden" region is predicted for antiparallel alignment of the gravitational and
electrophoretic velocities over a broad range of the relative magnitude of these velocities.

Experiments are planned to test the theoretical predictions. Bidisperse mixtures of small particles with

different surface charges will be allowed to sediment under normal gravity, with and without an electric field

applied. Both parallel and antiparallel orientations of the electric field and gravity will be employed, including

within the collision-forbidden region, to determine the conditions for which aggregation, and hence the

sedimentation rate, is enhanced or suppressed. A shallow density gradient will be employed to suppress free
convection in the suspending fluid.

Zone electrophoresis experiments, in which the motion and interaction of bands of particles are observed, will

also be performed. It is hoped that these will allow direct observation of aggregates, as illustrated in Figure 5 and

simulated in Figure 6, where a band of faster-moving particles pass through a band of slower-moving particles to
generate a band of aggregates with intermediate mobility.
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Fig. 5 - Schematic of aggregation during zone electro-

phoresis of a high-mobility band passing through a
low-mobility band.

Fig. 6 - Simulation of aggregation during zone

electrophoresis of a high-mobility band passing
through a low-mobility band.
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