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ABSTRACT

Microgravity conditions offer an environment in which convection in a nonisothermal gas could

be driven primarily by thermal stress. A direct examination of thermal stress flows would be

invaluable in assessing the accuracy of the Burnett terms in the fluid stress tensor. We present

a preliminary numerical investigation of the competing effects of thermal stress, thermal creep at

the side walls, and buoyancy on gas convection in nonuniformly heated containers under normal

and reduced gravity levels. Conditions in which thermal stress convection becomes dominant are
identified, and issues regarding the experimental measurement of the flows are discussed.

INTRODUCTION

Kinetic theory of gases predicts that temperature gradients can be constitutively related to

fluid stresses. These effects, referred to as thermal stress, are described by the Burnett contributions

to the fluid stress tensor, which in turn constitutes the second-order approximation in Knudsen

number Kn (= I/L, where I is the gas mean-free path and L is the characteristic system length) to
the Boltzmann equation - the Navier-Stokes equations representing the first-order approximation. 1

To date, the main application of the Burnett terms in fluid mechanics modeling has been to

extend the range of validity of continuum-based formulations to transitional Knudsen regimes

(0 < Kn < O(1)) and highly nonequilibrium conditions (i.e., large temperature gradients). For

example, inclusion of the Burnett terms have been shown to improve the accuracy of calculated

velocity and temperature fields for hypersonic flow as compared to conventional Navier-Stokes
formulations. 2 Even in such situations, however, the contributions of the Burnett terms to fluid

stress are relatively small compared to those arising from velocity gradients. Likewise, the effect of

thermal stress in non-isothermal, slow-moving gases under normal gravity conditions will typically

be negligible compared to buoyant forces.

One situation where thermal stress can become a primary convection mechanism in a

nonisothermal gas is the microgravity environment. Beginning with Rosner in 1989, several

investigations have been performed to determine the effects of thermal stress (and the often-more-

important mechanism of thermal creep at the container side walls) on vapor transport in #g crystal

growth processes. 3-s However, a direct observation of convection that results from thermal stress,
which would be possible in a buoyancy-free environment, would be of key interest in itself - in that

it would provide highly useful information towards assessing the validity of the Burnett terms.

The objective of our work is to assess the feasibility of such an approach. Specifically, we

intend to conduct detailed numerical investigations of gas convection in closed, nonuniformly heated

containers, with the goal of identifying optimum conditions for the generation and measurement of

thermal stress flows. This paper presents some preliminary results from our investigation.

MODEL AND FORMULATION

As a starting point, we consider the simple system in which a gas is contained within a

cylindrical enclosure with controlled temperature and/or heat flux conditions on all surfaces.

The system is taken to be axisymmetric (corresponding to axial-directed gravity and symmetric
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boundary conditions) and in steady state. The governing continuity, momentum, and energy

equations are
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in which u and v are the axial and radial components of velocity.

The effect of thermal stress will appear in the fluid stress, tensor T, which will be comprised

of the 'classical' Newton-Stokes relations and the higher-order Burnett terms. Since the flows

will be relatively slow-moving, the only significant Burnett terms will be those corresponding to

temperature gradients. With this approximation, the thermal stress contribution to the stress
tensor appears 5'6

rT-- p2T_p [w3(VVT-_l(v2T) I)+Ws_ ((VT)(VT)-3(VT.VT)I)] (5)

In the above, # is the dynamic viscosity, T_ is the specific gas constant, and ¢.03 and ws are Burnett

coefficients, which depend on the force interactions between the gas molecules. We assume here
the case of Maxwellian molecules, for which w3 = ":5 = 3 .2

The velocity boundary conditions on the side and end walls are

u(r=R,z)- Csv cOT) , v(r=R,z)=0T _zz r=R

u(r,z=O,L)=O, v(r,z=0, L)- C,v cOT)-
T Dr/z=O,L

(6)

(7)

in which Co is a dimensionless coefficient that has the value of 3/4 for Maxwellian molecules with

complete accommodation. The velocity slip conditions in the above are typically referred to as

'thermal creep'. In the results presented herein, we neglect the effects of temperature jump and

viscous slip at the wall - which will be appropriate for near-continuum (i.e., Kn << 1) conditions.

The gas is taken to be monatomic (with Pr = 2/3), and we assume that the dynamic viscosity
varies with temperature according to p _ T 0"72 2 In all presented results we have used Burnett

and creep coefficients for Maxwellian molecules.

Numerical solution of Eqs. (1-4) was accomplished using the SIMPLE algorithm/ A non-

uniform mesh, typically of 21 and 41 nodes in the radial and axial directions, respectively, was

employed. Discretization of the thermal stress source terms in the momentum equations followed the

control volume procedure as outlined in Ref. 7. Inclusion of the third-order temperature derivatives
in the thermal stress terms would, in principle, require the specification of additional thermal

boundary conditions at the surfaces. However, energy transport is dominated by conduction for

the slow-moving conditions of the system. The energy equation thus becomes effectively decoupled

from the momentum equations, which results in a second-order system for the temperature field.
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In all cases, the presented results for temperature and velocity are within 0.5% of the values

obtained when the grid spacing was halved. Results from the code for free convection heat transfer

in cylindrical enclosures were found to be in acceptable agreement with previously published values.
We are unaware of previously published numerical calculations for thermal stress convection for
similar conditions to those examined here.

Calculation Results

Calculations were performed on a system corresponding to helium at 1 atm pressure in a L = 2

cm, R = 1 cm container. The end walls at z = 0 and z = L were isothermal at 300 and 600 K,

respecitvely. The side wall was maintained at 300 K, except for a 1 mm adiabatic strip adjacent to
the hot end of the container. The rationale for the thermal conditions is to devise a system which

minimizes temperature gradients along the surfaces (which drive creep flows along the surfaces)

while maintaining relatively large temperature gradients in the bulk gas (the source of thermal

stress). In this regard, an 'ideal' situation would have the top and side walls of the container at
uniform yet different temperatures. _ Such a condition, however, is both physically unrealistic and

numerically troublesome - and we therefore include the 1 mm adiabatic length between the cold
and hot surfaces.

Figure 1 shows calculated isotherms and dimensionless velocity vectors for a system at unit

gravity (directed towards the cold end). The origin of the container in the velocity vector plot is
in the lower left corner, and the legend refers to the scale of the velocity arrow in units of re�L,

where uc is the kinematic viscosity of the gas at the cold temperature (_ 2 cm2/s for helium

at STP). Thermal creep is seen to result in a strong recirculation of the gas along the adiabatic
section of the side wall, whereas buoyancy leads to a counter-rotating vortex within the main

section of the container. Reduction of g to 10 -3 results in the apparent disappearance of the

buoyant recirculation, as seen in Fig. 2. However, magnification of the velocity scale by a factor

of 20 reveals the convection pattern created by thermal stress, which is shown in the right-hand

plot. The vectors directly within the thermal creep recirculation zone have been removed here, to

avoid 'spilling' into the rest of the plot. The magnitude of the predicted velocities generated from

thermal stress for the given conditions, at around O.luv/L _ 1 mm/s, are consistent with order-of-

magnitude estimations by Viviani et al.. s Results for zero gravity are essentially unchanged from

those appearing in Fig. 2.

To distinguish between the flows resulting from thermal creep and thermal stress, we present

in Fig. 3 vector plots of the flows calculated with thermal stress and without thermal creep (a, left),

and with creep and without stress (b, right). The values of g is the same as in the previous plot. By

comparison of Figs. 3b and 2, one sees that thermal stress in the primary source of convection in all
but the adiabatic corner of the enclosure. It is difficult to draw any general conclusions regarding the

recirculation generated by thermal stress - except that it is considerably more complicated than

that generated by buoyancy. In Fig. 3a the largest velocities generated by stress act somewhat
similar to those produced by creep at the side wall, in that the flow is pushed along the adiabatic

section of the wall towards the hot end of the enclosure. However, a second recirculation pattern

results in a flow of gas along the wall towards the cold end. Additional calculations (not shown

here) have indicated that the nature of the thermal stress recirculation is strongly dependent on

the value of the hot/cold temperature ratio, the length of the adiabatic zone, and the variation of

viscosity with temperature.
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Flow Measurement Issues

A concurrent task in our work will be to identify feasible means of measuring gas velocities

that result from thermal stress convection in pg conditions. Methods based on the tracking of small
seed particles in the gas, such as LDV, would generally be biased by thermophoretic motion of the

particles - which would be significant in the highly nonisothermal conditions of an experiment.

However, since particle sedimentation is not as critical an issue in the pg environment as it is on

earth, relatively large particles - with correspondingly lower thermophoretic diffusivities - could
be used to track the flow.

To further examine this concept, we calculated the trajectories of 'test' particles that were

released into flowfields calculated under various thermal and gravitational conditions. Assuming

that the particles have zero inertia and zero Brownian motion, the positions of the particles are
obtained by integration of the motion equations:

I

drp fTV OT
dt - v T Or (8)

dz__zp = fTv OT
dt u T Oz Bmpg (9)

where fT is a thermophoretic diffusion factor for the particle, B is the particle mobility, and rap is

the particle mass. For spherical particles of radius ap, the mobility and thermophoretic factors are
approximated ass

S

fT

67rpap (10)

2fc Cs(¢ + Ct Knn) (11)
(1 + 3Cmgnn)(1 + 2_b+ 2Ctgnp)

where Knp = l/a I, is the particle Knudsen number, ¢ = ka/k p is the ratio of gas and particle

thermal conductivities, Cm and Ct (_ 1.14 and 2.2) are the momentum exhange and temperature

jump coefficients, and fc is the Millikan correction factor,

fc = 1 + Knp (1.2 + 0.41 exp(-O.88/Knp)) (12)

An increasing correspondence between the particle trajectory and the flow streamlines is

obtained by reducing both fw and rnpg. Equation (11) shows that former can be reduced by

increasing both particle size and particle thermal conductivity. Using, for example, a 10 #m

aluminum particle (¢ _ 0.001, Knp _ 0.03 for helium at 450 K, 1 atm) gives a thermophoretic

factor fT "" 0.07 - which results in roughly comparable magnitudes of particle thermophoretic and

thermal stress convective velocities for the conditions modelled in the previous section. Calculated

trajectories for the particle, which is released at the point r_, 0 = 0.1 and z_,0 - 1, are shown in
Fig. 4a. The flow conditions correspond to those presented in Fig. 2, except with unit, 10 -2, 10-a,

and zero gravity levels. Shown in Fig. 4b are results calculated under identical conditions, except
with the absence of thermal stress convection in the flow field.

In unit gravity, the trajectory of the particle is controlled mainly by gravitational forces,

and to a lesser extent buoyant recirculation of the gas. However, at lower gravity levels both

thermophoresis and thermal stress convection are shown to have a significant effect on the particle

trajectory. Since the temperature fields calculated with and without thermal stress are essentially
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identical,differencesin the trajectoriesshownin Figs.4aand b thereforeresult entirelyfrom the
actionof thermalstressconvection.

SUMMARY

Our preliminarycalculationsindicatethat thermalstressconvectionin gasescouldbe isolated
and examinedin the microgravityenvironment.Of course,much remainsto be performedto
completelyassessthe feasibilityof anexperimenttowardsthis end.Our future workwill examine
variousstrategiesof heatingan enclosedgas- with the objectiveof identifying methodswhich
maximizethepredictedconvectionfrom thermalstresswhileminimizingthermalcreepat thewalls.
Forexample,it maybedesirableto heata gasvia localizedabsorptionof radiation- asopposed
to maintainingdifferent temperatureson the wallsof the container.Wewill alsofurther explore
particle trackingmethodsfor measurementof the gasconvectivevelocities.Finally,the 'inverse'
problemneedsto beexamined,i.e., givenmeasurementsof convectiveflowsin nonisothermal,#g
conditions,what canbesaid about the veracityof the Burnett contributionsto the fluid stress
tensor?
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Fig. 1. Isotherms and velocity vectors, unit
gravity.

Fig. 2. Velocity vectors, reduced gravity
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Fig. 3. Separate effects of thermal stress (left)
and creep (right)

Fig. 4. Particle_ tracks with (left) and without
(right) thermal stress
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