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ABSTRACT

The mathematical basis for the forthcoming Angular Liquid Bridge investigation on board Mir

is described. The anticipated liquid behavior used in the apparatus design is illustrated.

INTRODUCTION

We describe here recent mathematical results that form the basis of our forthcoming space

experiment, developed jointly with Mark Weislogel of NASA Lewis Research Center, which is
scheduled for the Glovebox on the Mir 23/NASA 4 Mission in December, 1996. Our mathematical

work is based on the classical Young-Laplace-Gauss formulation for an equilibrium free surface

of liquid partly filling a container or otherwise in contact with solid support surfaces. In this

formulation, when gravity is absent or can be neglected, which is the situation we consider here,

the mechanical energy E of the system is given by

E = a(S - S" cos _,). (1)

The interracial liquid-vapor surface tension parameter a and the relative adhesion coefficient cos

of the liquid with the container walls are assumed to depend only on the material properties, which

are taken here to be homogeneous (the same value of cos 7 on all parts of the container, as will be

the case for the experiment). S and S* are, respectively, the areas of the liquid-vapor free surface

and of the solid-liquid interface.

Equilibrium configurations are those providing stationary values of the energy functional E

subject to the condition of fixed liquid volume [1]. The equilibrium liquid-vapor free surfaces

so determined are surfaces of constant mean curvature meeting the bounding walls with contact

angle V. We consider here values of the contact angle 0 < "7 < lr. Of particular interest in

our mathematical studies are situations in which small changes in contact angle or geometry can

result in large changes, possibly discontinuous, of the equilibrium fluid configuration. Impetus for
the present experiment arises largely from recent doctoral dissertations of two students associated

with our study, John McCuan [2] and Lianmin Zhou [3], from whose contrasting results striking
inferences can be drawn.
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ANGULAR LIQUID BRIDGE

In his work, McCuan found conditions under which an equilibrium tubular bridge in a wedge

domain (Fig. 1) would be possible in zero gravity, and he gave the shape such a bridge might take.
This work is a completely rigorous mathematical study, based on the classical formulation.

Consider a wedge domain with opening angle 2c_, 0 < 2a < 7r. The results McCuan proved

contain the following (if the contact angles on the two sides of the wedge are different, the following

results hold if '7 on the left of the inequalities is their average):

I]'7 > 7r/2 + el, a bridge in the shape of a portion of a sphere making contact angle "7 with the
walls exists.

If'7 _- r/2 + a, no physically realizable bridge is possible.

It has not yet been proved whether or not other shape bridges may be possible when

'7 > lr/2 + a, or whether the spherical bridges axe stable (provide a local minimum for the energy).

However, our numerical results and those of H. Mittelmann (private communication), obtained us-

ing the Surface Evolver software package [4], indicate that the spherical bridges are stable, at least

for the representative cases we considered. Also, no bridge shapes other than the sphere have been

found numerically. Note that McCuan's results imply that a bridge is possible only for "7 > 7r/2.
A spherical liquid bridge is shown in Fig. 4 for the case c_ = 25 °, '7 = 130 °.

BRIDGE BETWEEN PARALLEL PLATES - DISCONTINUOUS BEHAVIOR

The above results for liquid bridges in a wedge compare in a remarkable way with those for

bridges between parallel plates (Fig. 2). This latter problem was studied initially from a rigorous
mathematical point of view by Athanassenas [5] and by Vogel [6], and later using a more physical

approach by Langbein [7]. (Note that in these papers, as is the case in [3] and here, the boundary

conditions at the plates are prescribed contact angle, which arises from the variational condition for

(1). For fixed end conditions, as considered in much of the materials science literature, the behavior
of solutions is different.) In her doctoral dissertation, Zhou obtained definitive mathematical results

that imply the following:

For any value of the contact angle 7 and for any liquid volume V greater than or equal to a

critical value Vo('7), a unique stable liquid bridge exists between two parallel plates of given separa-
tion.

It is known that any equilibrium bridge must be rotationally symmetric [6], [8] and that its

free surface is a Delaunay surface [3], [9], [10]. For '7 > 7r/2 and for a specific liquid volume Vs(h)

depending on the plate spacing h, the free surface is simply a portion of the surface of a sphere.
For other values of the volume the Delaunay surface is different from a sphere.

These results, when combined with the results for the wedge, imply that a bridge between

parallel plates may change its configuration and position markedly when one of the plates is tilted,

even by a small amount, or it even may cease to exist as a bridge altogether; a liquid bridge between

parallel plates can behave discontinuously with respect to tilting of the plates. In stability studies

such as [3], [6], and [7], limited to the parallel plate geometry, this liquid bridge instability with
respect to plate tilt is not observed.

As a specific example to illustrate the possibilities, consider the case 7 > 7r/2 and a bridge with

volume V_ between parallel plates of spacing h, so that the bridge is spherical. Suppose the top

plate is tilted clockwise by an angle 2c_ < 27 - n about a pivot line in the plate that is a distance

½h tan a from the symmetry axis of the bridge. Then this particular bridge remains an equilibrium
one for the new tilted plate configuration, without any change m the radius of the sphere or in the
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bridge's position on the lower plate. However, a bridge with any volume V different from V_ (and
with the same contact angle) would change both position and shape discontinuously in altering to

a spherical bridge in conjunction with the tilt, shifting to the right for V < V_ or to the left for

V>Vs.

For -y _< _/2 an initial bridge would always behave discontinuously with respect to the tilt,

regardless of volume, as it cannot persist as a bridge. It has to be expected that the liquid will jump

to the edge of the plates in this case. If the tilted plates touch forming a wedge, then configurations
described in the following section may form. The above phenomena are ones we wish to study in

our forthcoming experiment.

OTHER CONFIGURATIONS

When the conditions for a bridge in a wedge are not satfsfied, liquid may assume a position

as a blob in the shape of a portion of a sphere in contact with the edge, see Fig. 3. The condition
for such a configuration to be possible is that h' - rr/2] _< c_. (Recall we consider here only the

case 0 < 2a < 7r.) Although the edge blobs have not been studied with the same mathematical

completeness as have the bridges, they have been noted in [11] and [12] and for some examples
studied numerically. Our numerical computations indicate that, as for the angular bridges, the

spherical edge blobs are stable, and as yet we have found no other edge blob shapes numerically.

In our earlier work, which considers fluid behavior in the neighborhood of the vertex of a

wedge, we have shown that if c_+ _/< 7r/2, then fluid cannot remain as a blob in the edge but must
spread arbitrarily far along the edge [1], [10]. See also [12] and the references there for a discussion

of stability of liquid colunms in a wedge.

ANTICIPATED EXPERIMENT BEHAVIOR

The liquid behavior one might expect in a physical experiment in space, based on the Laplace-

Young-Gauss formulation, is summarized in Fig 4. This figure illustrates the information discussed
above, based in part on mathematically rigorous results and, where these are not available, on

computational evidence for particular cases. The numerical solutions depicted in Fig. 4 were ob-

tained using the Surface Evolver software package. The computations were carried out with initial

approximations and transitions between configurations similar to those in which the experiment is

designed to proceed, thereby enhancing appropriateness of the numerically based predictions on

uniqueness and stability.

The upper two rows of Fig. 4 depict the nonwetting case 7 > 7r/2: A liquid bridge between

parallel plates is convex (part of a sphere for a specific fluid volume). Spherical tubular bridges

and edge blobs exist for tilted plates, for the range of values indicated. Edge spread is not possible.

For fixed _, > 7r/2, transition from tubular bridges to edge blobs occurs as ct increases through the

value _/- 7c/2.

For the wetting case 7 < 7r/2, a liquid bridge between parallel plates is concave. A tubular

bridge between tilted plates is not possible, but the (spherical) edge blob and edge spread are.

For fixed 3' < 7r/2, the transition from edge blob to unbounded edge spread occurs as cr decreases

through the value 7r/2 - 7. Computed edge blobs are shown (from different viewing perspectives)
for the case c_ = 25 ° , "_ = 100 ° in the second row and for ct = 20 °, 3' = 75° in the bottom row.

The planned experiment will explore the transition between the configurations for a nonwetting
and for a wetting fluid. As discussed above, when initially parallel plates are. tilted, the fluid is

predicted to 1)ehave discontinuously in general, the exception being the special case of a spherical
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bridge and a particular pivot line. The other transitions, horizontally across the second and fourth

rows of Fig. 4 as c_ changes value, are gradual, as can be demonstrated by the explicit spherical
solutions.

CONCLUDING REMARKS

We have described fluid behavior predicted mathematically and computationally for the forth-

coming Angular Liquid Bridge investigation on board the Mir 23/NASA 4 Mission. The predictions,

which include discontinuous behavior, are based on the classical Young-Laplace-Gauss formulation.

In the experiment there will be an opportunity to check the predictions against physical behavior

and to observe the effects of hysteresis and other phenomena not included in the classical formula-
tion.
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Figure 1. Tubular bridge in a wedge.

Figure 2. Bridge between parallel plates.

2c_

Figure 3. Edge blob.
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WETTING LIQUIDS (y < _ / 2)

Wedge bridge
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Bridge between parallel plates
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Figure 4. Fluid ¢:onfigurations. Ut_p('r two rows: nonw(,tting liqui,l,_: h_w_r tw(, rows: wetting liquids.
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