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Objectives

• Theoretical and experimental investigation of the stability of nonaxisymmetric
and nonaxisymmetric bridges contained between equal and unequal radii disks
as a function of Bond and Weber number with emphasis on the transition from

unstable axisymmetric to stable nonaxisymmetric shapes.

• Numerical analysis of the stability of nonaxisymmetric bridges between unequal
disks for various orientations of the gravity vector

• Experimental and theoretical investigation of large (nonaxisymmetric)
oscillations and breaking of liquid bridges.

Introduction

A liquid bridge, or captive drop, is a mass of liquid held by surface tension between
two or more solid supports. Liquid bridges occur in a variety of physical and technological
situations and a great deal of theoretical and experimental work has been done to determine
axisymmetric equilibria for various disk configurations, bridge aspect ratios and rotations
(for example, see [1-6]). There have also been numerous investigations of the dynamics of
axisymmetric liquid bridges subject to different excitations (impulses, vibration, etc.).
Such investigations have been motivated both by practical considerations and basic
scientific interest. Liquid bridges and drops are important factors when considering
propellant management in liquid fuel chambers and in the positioning of liquid masses
using surface tension forces. In crystal growth, they are associated with the floating-zone
growth technique. Their oscillation and relaxation properties can also be used for viscosity
and surface tension measurements of molten materials at high temperatures [7]. Pendular

liquid bridges occur widely in the powder technology industry and are a major influence on
powder flow process and mechanical properties [8]. In porous media flow, liquid-liquid
displacement can lead to evolution of pendant and sessile lobes or lenticular bridges. The
formation of liquid bridges from the gel that coats lung micro-airways results in occlusion
of the bronchioles and is a precursor to respiratory problems and lung collapse [9].

In addition to the above, we note that liquid bridges have been involved in a number

of past microgravity experiments. In addition to the primary objectives listed above, our
research will provide results useful for the quantitative assessment of g-jitter effects on

such experiments.

Research approach
Experiments
The Plateau or neutral buoyancy method [3] works on the following principle: if

two immiscible liquids of equal density are configured such that one envelops the other
then the curvature of the equilibrium interface is a constant. That is, despite the fact that

gravity creates a hydrostatic pressure gradient in each liquid, the interface between the two
liquids behaves as if gravitational acceleration is zero. In each liquid the pressure p i, i= 1,2,

satisfies

grad p* i = O,

where P*i = Pi + Pi gz, P*i is reduced pressure and Pi is the density. At the interface
between the two fluids

P* 1 - P*2 = (Pl -P2)g z + 27"K .
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Here K is the mean curvature of the surface. When P l and P2 are equal, the

curvature is a constant, and equivalent zero-gravity conditions are obtained. In general, the
shapes and stability of liquid bridges are governed by the following dimensionless numbers

Bo = ApR2g/? "

V = VO/JrR2L

A =L/2R

We = apR3.02/7

K = RI/R2

¢2

-- Bond number

= relative volume

-=slenderness

-- Weber number

= Ratio of supporting disk radii.

- lower and upper contact angles

Here ap is the density difference between the liquid bridge and the surrounding liquid or
gas, R is the characteristic length associated with the bridge (usually the radius of the
supporting disk), g is the gravitational acceleration, 7 is the surface (or interfacial) tension,
L is the distance between the disks, VO is the actual liquid volume and n is the angular
rotation rate of the disks. Bo is a measure of the ratio of buoyancy to surface tension
forces. The Weber number represents a balance between centrifugal and surface tension
forces. For a non-zero Bo the outer bath density can be changed by adjusting the bath
composition or temperature [5].

Figure 1 schematically depicts our Plateau chamber. Liquid bridges are formed
between rigid sharp-edged 1 cm diameter circular disks. The disks are mounted on
supports that allow for independent rotation and lateral and vertical translation. These
motions are facilitated through two 3-axis precision motor/drive systems. This provides for
vertical oscillation, rotation and small amplitude lateral oscillation (the slip-ring gasket
constrains the allowable lateral motion of the lower disk). The upper disk is supported by
an injection tube. The disks are made from stainless steel. The bridge liquid is injected or
removed through an injection tube which terminates in a 4 mm-diameter hole in the center
of the upper disk. A calibrated syringe driven by a variable speed electric motor is used for
the injection of a fixed volume of liquid. The bridge is simultaneously lengthened by
slowly moving the disks apart to the required separation distance. This distance can be
determined to within 1-2 _m. A 3-way purge valve is suitably positioned to trap air
bubbles.

Each support can be independently vibrated at frequencies less than 10 Hz. Bridge
injection is automated with simultaneous recording of precise volume data (_+0.1 mm 3 ).
We use two imaging methods. Video images are obtained from two orthogonal cameras. A
high quality Fourier transform imaging system is used for edge detection. The important
physical parameters are the aspect ratio of the bridge, the liquid volume and the static and

dynamic Bond numbers. The liquid volume and the slenderness (aspect ratio) of the bridge
depend on the precision with which lengths can be determined. The disk diameters are
known to within 10 _m. The length of the bridge is set by the positioning device and can be
determined with a precision of 1-2 _m. Thus, for bridges of 2.5 cm length the
slenderness, A = L/2R0, can be determined to within + 0.04%. Volume can be measured
with a precision of 0.1 mm 3 and an accuracy of 0.1%. The liquid bath is a methanol-water
solution. Variation of the methanol concentration changes the density difference between
the Dow Corning 200 ® silicone oil bridge and the bath. We control the bath temperature

and change the methanol concentration to adjust Bo. At 83% water concentration a
condition of neutral buoyancy is obtained.
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Fig. 1
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Plateau Chamber: (1) upper vertical displacement motor V 1; (2) upper rotational motor;

(3) upper lateral displacement motor, LI; (4) bridge fluid injection line; (5) upper
spindle; (6) upper feed disk; (7) lower feed disk; (8) slip-ring gasket; (9) lower rotational
motor; (10) lower lateral displacement motor, L2; (11) lower vertical displacement
motor V2; (12) cooling coils; (13) bath circulator.

Theoretical work
Our theoretical work will focus on the numerical modeling of the oscillation and

breaking of bridges subject to axial and lateral forcing. The problem of stability of bridges
subject to steady axial and nonaxial gravity will be examined through a combination of
analytical and numerical work (see discussion below).

Results to date

Stability of nonaxisymmetric configurations subject to axial and nonaxial gravity.

We have examined the stability of nonaxisymmetric shapes of liquid bridges (with
a fixed volume V0) held between equidimensional coaxial disks of radius R. The disks

are separated by a distance L and subject to lateral acceleration. We employed Surface
Evolver [11] to find the minimum energy configurations of the bridges. In comparison,

for axisymmetric bridges subject to axial gravity, the stability limits correspond to a
situation when the axisymmetric bridge breaks, or when the axisymmetric bridge loses

stability to a stable nonaxisymmetric shape. The lateral acceleration stability limit is
defined solely in terms of loss of stability by breaking. This limit is determined for both
large and small values of the relative volume. The stability limit can be divided into two
basic segments (stable regions are to the left of the curves, see Fig. 2). One segment
appears to be indistinguishable from part of the margin for the zero-Bond number case.
The other segment belongs to a one-parameter (Bo) family of curves which, for a given
Bo and a fixed value of A, have a maximum and minimum stable relative volume. Each of

these curves is asymptotic to another part of the minimum volume zero-Bond number limit
up to a point determined by the particular value of Bo and has a turning point
corresponding to a maximum value of A. For V >> 1, the maximum volume stability limit
tends to infinity as A ---)0. For any given lateral Bond number, the minimum volume
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stability limit is decreased and becomes indistinguishable from the zero Bond number limit

when A becomes sufficiently small. For unstable bridges in the vicinity of the stability
limit a consistent sequence of shapes can be readily identified and are recognizable by their
overall shape and the number of necks.

In a recent bifurcation analysis for V = 1 bridges subject to lateral gravity (Laveron et
al. [10]) it was speculated that, because the eigenfunction associated with a suberitical
bifurcations for A >Ac is antisymmetric with respect to the z = 0 plane, the bridge would

break into two drops of unequal volumes. Likewise it was speculated that, for A <Ac ,

loss of stability would lead to equal size drops since destabilization occurs through a
turning point and the associated eigenfunction is symmetric. Our results confirm this,
although we note that, when breaking occurs, three drops form. Two of these remain
attached to the disks while the third is a smaller, free, satellite drop.
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Fig. 2 Stability limits of liquid bridges held between equidimensional coaxial circular
disks and subject to lateral gravity. (Points shown are stable bridges close to the
stability limit). From [12].

Stability of equilibrium of axisymrnetric bridges subject to arbitrary perturbations

The stability problem for an isorotating bridge between equal disks in an axial
gravity field has been solved under constraints typical for the materials purification
processes and growth of single crystals by the floating zone technique. For the constraint
that the relative volume, V, is equal to 1, the critical values of the slenderness, A, have
been determined for a wide range of the Bo and We numbers. For a prescribed value of
the liquid contact angle at the upper or the lower disk (the chosen values correspond to
growing angle values of 0 ° and 15 ° ), the dependencies of critical A and V values on Bo
and We have been calculated. The influence of unequal radii disks on the boundary of the
stability region in the (A, V )-plane has also been investigated for the case of finite axial
gravity [13]. Unlike earlier work, arbitrary (not only axisymmetric) perturbations are
accounted for and the entire stability boundary is constructed. The approach taken is
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described in [14]. This work is stiil in progress and selected results will be presented at

the workshop.

Numerical modeling
When a liquid bridge is at, or exceeds, its stability limit it will either change its

shape, (for example, from an axisymmetric to a nonaxisymmetric shape) detach from the
support disks, or break up into smaller drops. The process of breaking involves the
decay of the bridge radius to zero at some points. When this occurs the bridge separates.
This means that the governing equations must be singular at this point. Linear stability
theory fails to describe this situation adequately and cannot predict the shape of the
surface as breaking is approached, nor does it account for the non-uniform break-up of
the bridge, i.e. that separation of the bridge into two or more large drops is accompanied
by the formation of much smaller "satellite drops". The breaking of liquid bridges has
been studied using 1D models [15]. Numerical treatment of the breaking of liquid jets
beyond the singularity has been studied recently by Eggers and Dupont [16] using a 1D
model, and Shulkes [17] has compared the predictions of 1D models of inviscid bridges

as breaking is approached with the results of a 2D axisymmetric velocity-potential
calculation for which no simplifying assumptions were made. At early times the
differences between the three are small, however, however, as the bridge deformation
became severe, the 1D models deviated significantly from the trends exhibited by the 2D

velocity-potential results. The major shortcomings of 1D models are their inability cope
with the bending of the bridge well below the lower disk edge. The velocity-potential
model was able to handle this degree of deformation. Recently, we have applied a
modified Volume of Fluid (VOF) method to the dynamical problem of breaking of
viscous axisymmetric and non-axisymmetric bridges. Selected results will be presented at
the workshop.
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