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ABSTRACT

x,V_.summarize sev_'ral aspects of all ongoing investigation of the effects thai slochastic residnal acceh'ra-

1io.s (.q-ji11_'r) onboard spacecraft can have on ,,xperiments condncled in a microgravity environn|ent. The

residual acceh'ration fiehl is modeled as a aarrow band noise, characteriz_'d by three indepel.ien! parame-

ters: intensity (g2), dominant angular trequency _2. and characteristic corr_'lalion time r. Healistic values

for tlwse parameters ar0 ot)laine(l from an analysis of acceleration dala corresl_omling to the Sl,-.l mission.

as recorded by 1he SAMS instrum_'nts. We then use the lnOdel lo address the randoll| ll|oliol| of a solid

particle susp_'nde<t in an incoml)r,'ssil)le flui(l sul)je('10d to such random accelerations. As an extension, the

effect of g-jitter on coarsening of a solid-liquid mixture is I)riefty discnssed, and corrections to diffusion con-

1rolh'd coarsening _waluated. We conclude thai g-jit, tor will not be significant in 1he experiment "('oarsening

of solid-liquid mixtures" to be conducted in microgravity. Finally, mo(lifications Io 1]w location of onsel

of instabilily in systems driw'ii by a random force are discussed by extending the standard reduction 1o

the center manifold to th, • slochastic case. ]{('stilts l)erlaining to time-modulaled oscillatory convection are

briefly discussed.

STOCHASTIC MODEL OF G-JITTER

We have introduced a stochastic model [1] to describe in quanlilative detail 1h," ef[ecl of tlw high fre-

quency collll)onents of ID" residual acceh'ralions onboard spacecraft (often called g-jitter) on fluid motion

[2, 3, ,1]. Each ('artesian ('Oml)OtWnt of lhe residual acceleration field y(t) is mod('h'(I as a narrow band

noise characterized by three iIl(h'l)emh'nt parameters: its inlensity < g'-' >, a dominant frequency tt, and

a charact,.rislic speclra] width r -1 ,ql.WiIi('ally, g(l) is a (;aussian randonl t)rocoss, of zero swan. am]

aul o('orr(']al ioll

<. g(t)9(l t) ">=< 92 "> e-I'-t'l/'_ cos [t't(t -- t')]. (1)

Th. t)(,w,'r Sl..'trulu fl)r this autoc()rr*_latiou fm.'ti_ll is,

P(_')= 2,n- <'q- > r l+r_([_+_') =' + l+r='([_-_)'-'

Each realization of narrow band nois. caut),, viewed as a 1emporal Se(lU,'nce of I),'riodic functions of angular

frequ_'ncy t_ with amplitu(h" and phase that remain constant (rely for a finite anlount of time (T on average).

At rawl(>m int,,rvals, w,w values <)f the amplilude am] phase are drawn from Ire'scribed distrilmlions. "['his

model is based on th. following mechanism underlying lhe residual acceh'rat ion tieh]: on,' particular natural

froqu,.n('y of ,.ril)ratiol_ of tlw spactwraft structure (_) is excited by SOIIl(" uw('hanical dislurl,a.(',' inside

the Sl)a('t'craft, th. excilalion I)emg of random alnl)litude an(] taking place at a sequ,'nce of Hnknt)wn (and

essent tally randoul) ilJsl ants of t ilne.

/.[:rom a th.or,'lical stan(ll,oinl..arrow band noise lm)'.id,'s a cow.'eni,'nt way of int,'rl)olatmg betw,'on

ni,moc},romat i<' n(>is+' (aki,, to tll(>r+" t ra<lit i<mal st u<]i_'_ involving a tl,.t+'rminist i( and I)erio(li( • gravi! al i()nal

ti,'h]), am] ',vhit,' nob, e (iu which .(, frollU_'ncy ('on|p(,l.'|lt is i)roferre(t). In lh,' limit r -- 0 v.ith l) =< !/-' > r

tinil,', narrow band noise r,'(iucrs t(, v,hit_' nots-of inl,'llsily l): whereas, fi)r 7- _ _ v.ith < .q'-' > tinit,'.

IIIOIIO('hr()lllal i(' ll()iS,' is r,.('ov,'r,'d.

I. or,Dr to, a_c-rlam l]w validity <,f this n_.det, aml 1() (tetrrmilw lh,' ..al.,'s of t].' I>aramrters (Iofilling

tl., .ois,,. w_, hay,, aI,alvz.'d actuat g-jitl_'r data (ollrct.d during tl|e SI.-.I mis...i<,n (SAMS-25t_). aml slu(ib'd

i. ,letail lit,' li..' s,,ri,'s ,)f h,'a,l A l.'lw.m, ME'I 0017 aI.l Ml']'[ ()():23. ()r ro.ghly six hours, l:irst, a scaling

analysis ha_. l.,_'n l.'rl'(_rlu_'_l I(, ,h,l,,rmilw t].' _.xistcnc,. of _b.lrrminisli(' or _.l(,(haslic COml)(m,'nls in Ilw

lira- s,_rie_. Fig.r. ] sh(,ws th,, power Sl.'('Irmi_ of g-jill,'r ('ah'u]aled (,ver a win,low .f siz,' .\. aml lh,'.

av,.r;_,.d ov,'r _h,'_.ix-l.._r l-'ri(,d (lb. xa]m,s.f9 ar,''.atI_l,l,',l at :250 llz). _,\i_h _h,. m,rmalizali,).(,fth,'
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Figure 1: Left, power spectrum as a function of frequency for a six-hour interval during the SL-J mission.
The various curves shown correspond to spectra calculated over the window of indicated size. Right, intensity

versus window size for a few selected frequencies.

spectrum used, the power spectrum of a deterministic time series ought to be independent of N, whereas
for a stochastic signal, it should decay as 1/N when the window size is much larger than the correlation

time v. Figure 1 (right) shows the dependence of the power of a selected set of frequencies as a function

of the window size, displaying its scaling with N. Durin_L_this period of six hours, there appears to be a
monochromatic contribution at 17 Hz with an amplitude X/< _T _ = 3.56 x 10-4gE, where gE is the intensity

of the gravitational field on the Earth's surface. There are two additional components that have a finite
correlation time: For the component at 22 Hz we estimate _-< g2 > = 3.06 x lO-4gE and r = 1.09 s, whereas

for 44 Hz we find, _g_ > = 5.20 × lO-4gE and r = 0.91 s. As an estimate of the white noise background,
we obtain from the slope of the intensity of the 8 Hz component versus N the value D = 8.61 x 10-4cmZ/s 3.

RANDOM MOTION OF BUOYANT PARTICLES; COARSENING OF SOLID-LIQUID
MIXTURES

We study here the motion of a particle suspended in an incompressible fluid of different density, when the
fluid is subjected to an effective acceleration field like the one described above. This type of motion has been

termed inertial random walk because of the similarity with Brownian motion [5]. The difference, of course,

is that the random motion of the particle is not due to thermally induced collisions with the molecules of

the fluid, but results from an effective random buoyant force acting on the particle. The asymptotic mean

squared velocity of a particle subjected to narrow band noise is found to be,

(9 +
=

where Ap = (pp-PI)/Pp, 7 = 97r_l/2Pp R_, with _ the shear viscosity of the fluid, pp and pl the density ofthe

particle and fluid respectively, and R the radius of the particle. The particle undergoes diffusive motion (the

mean squared displacement is proportional to time), with an effective diffusion coefficient that is proportional

to the intensity of the fluctuating acceleration. On the other hand, if the acceleration field were periodic in

time (deterministic case), the mean squared displacement of the particle would remain bounded.
We have also performed an asymptotic analysis away from the deterministic limit (r --+ o¢) to illustrate

the emergence of diffusive behavior as the correlation time becomes finite. We have found an effective

diffusion coefficient given by,

Oe_r = Ap_ < g2 >7 ( _2 72) 1 + O(r-2) -2+V+h ;
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Therefore, from a measure of the autocorrelation function of the particle displacement, it should be

possible in principle to determine independently tile parameters that define g-jitter. Knowledge of this sort
could conceivably lead to the construction of an instrument that would complenaent the data set provided

by accelerometers.
A residual acceleration field can produce a number of deleterious effects on otherwise purely diffusive

controlled coarsening. We have focussed on two such effects: random motion of the suspended particles

induced by the effective (random) buoyant force and the concomitant increase in the likelihood of particle

coalescence, and additional flow in the fluid phase caused by g-jitter and its effect on solute mass transport.
Numerical estimates have been obtained for a solid-liquid mixture of Sn-rich particles in a Pb-Sn eutectic

liquid, the system thai will be used in a forthcoming microgravity experiment [6, 7].

Neglecting inter-particle interactions, precipitate particles will execute a random motion of the type
described above. For the case of monochromatic noise (fixed frequency and random phase), the average

quadratic displacement of each particle remains bounded. For values of the parameters appropriate for a a
Pb-Sn eutectic liquid and tile conditions of the planned microgravity experiment, _ = 260s -1 , and by using

the amplitude of the 17 Hz component of the power spectrum, we find that max {< x 2 >} _ 10-acre 2, and

hence negligible. At the other extreme, we find that for white noise the mean squared displacement after five

hours is < x 2 > (t = 5 hr.) = 8.85 × 10-Gcm or _-< x 2 > _ 30prn. Clearly the average square displacement

induced by the white noise component of the residual acceleration field is much larger than that induced by
the monochromatic component, but it is still about one half of the expected average particle size at the end

of the coarsening experiment. Therefore Brownian motion induced by g-jitter will not lead to appreciable

motion of the precipitate particles relative to their size.
Estimating the effect of g-jitter on mass transport in the fluid phase is far more complex. In the limit

of Stokes flow and non-interacting solid particles, (the former is appropriate for the size of the coarsening

particles involved), g-jitter induced flow acts to renormalize the solute diffusivity. We find an effective

diffusion coefficient given by,
Ap2D

De/] =D,+ 72 , (3)

where Ap is the relative difference in density between the liquid and solid phases, and D, is the solute

diffusivity. We find that

Ap2D - 5 x 10 -5 << l, (4)
72D,

and therefore negligible
Finally, the effect of particle-particle interaction can be estimated in the overdamped limit. We find that

although it would be asymptotically dominant in the limit of large particles (or long coarsening times), the
interaction terms also remain small within the range of coarsening times to be explored in the experiment.

CENTER MANIFOLD REDUCTION FOR STOCHASTICALLY DRIVEN SYSTEMS

The onset of oscillatory instabilities in stochastically driven systems is also being studied. The approach

that we follow applies to systems consisting of a "slow" variable u coupled to one (or more) "fast" variable(s) v

[8]. In the classical deterministic case, one simplifies the dynamics of the problem close to onset of instability

through the adiabatic elimination of the fast variable. The stochastic analog of this reduction scheme consists
in assuming a probability distribution of the form P(u,v,t) = P(u,t)b(v- vo(u)), with v = Vo(U) is the

center manifold of the a.ssociated deterministic problem (in tire weak noise limit). The resulting Fokker-

Planck equation is then integrated over v, yiehting an equation for P(u,t). Using this procedure, a generic

system of tile form

_, = 0 -)_ _, g(u,_,) +_(t) k-_,l k,_,,., v

where A, o > O, and ki] are known constants, reduces t,o the Fokker-Planck equalion,

Ott'(,,,t) = -O.[(c,,t+f(u, Vo(,,))P(u,t)]+OO_[(lq_u+k_2vo(.)) (6)

(kll + 2kl.,O,,vo(u))P(u, t) -/,'l._,(k'.,1 u + k._,._Vo(_))f'(n, t)

+(kll. + kl'_,Vo(U))'-'O_ P( u, t)].
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The value o = 0 corresponds to the deterministic threshold, while the functions f(u, v) and 9(u, v) involve

terms of the form uav b (a + b > 2). The random process _(t) is assumed to be Gaussian and white, of zero

mean and intensity 2D ((_(t)_(t')) = 2D6(t -t')).
As an illustration of the procedure, consider the Van der Pol oscillator

Oqt2X = OX -- 70iX -- ax 3, (7)

with the driving force having a stochastic component (i.e, o --* o +_(t)), 7 is a constant damping coefficient
and a > 0 a nonlinear coupling constant. The problem can be mapped to Eq. (5) by first defining y = 0,x

and then letting u = x + Y/7 and v = -Y/7 [8]. Assuming u, D << 1, the resulting Fokker-Planck equation

yields the stationary distribution

o a7
P(u) = Nlul-=+_ exp(-_-_u'), (8)

which is normalizable as long as o > D/7. The theory thus predicts a shift in the threshold from o = 0 to

o = D/?. This result agrees with that obtained by Liicke [9] by other methods, but contradicts earlier work
of Knobloch and Wiesenfeld. The probability density can either be unimodal (a >_ 2D/7, Fig. 2 (left) or

monotone with an infinite peak at zero (D/7 < _ < 2D/7, Fig. 2 (right).
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Figure 2: Probability density distribution for the Van der Pol oscillator with noise intensity D = 0.01(_ =

7=1).

The procedure can also be used to study the influence of fluctuations on time-modulated oscillatory
convection. The left and right traveling waves appearing at large Rayl,'igh mlmbers have been modeled by a

set of equations for their amplitude (z or y) and phase difference (_t) [10]. lu the parameter regime in which

bot.h waves have equal amplitude (thus corresponding to the emergence of standing waves), the system of

equations can be shown to reduce to

0 0 -2_ 0 + ", ' " (:_)= ., A- + a, 0-

close to onset. In Eq. (9), A = z + y, 0 = X - arcsin(ai/b) and the (,lher quantities are constant parameters

entering the model. The effect of fluctuations in the Rayleigh number can then be studied by letting

aR _ aR + _(t). The center manifold approach predicts changes in the various moments of A. but no shift

in the position of the threshold for this instabilily. This has been v,'rifi,d numerically, as shown in Fig. 3.
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Figure 3: Standing Wave bifurcation in time-modulated oscillatory convection.

CONCLUSIONS

A stochastic model of the residual acceleration environment onboard spacecraft has been introduced. It

provides a realistic description of the various contributions to the acceleration environment, as exemplified
by the power spectrum recorded during the SL-J mission. During the time window analyzed, the signal has a

deterministic component at 17 Hz (with a correlation time longer than 65 s), two other major components at
22 and 44 Hz that can be modeled as narrow band noise of short correlation time (of the order ofone second),

and a significant white noise background. Since the stochastic model used can smoothly interpolate between
the deterministic and white noise limits, it represents a useful tool for numerical analysis and statistical

predictions concerning the effect of g-jitter on a number of phenomena.
In particular, we have briefly discussed our results concerning three different situations. First, random

displacements of buoyant particles result in diffusive motion that could be used in passive accelerometer
devices to have an independent measurement of 9-jitter intensity. This random motion and the concomitant

fluid flow have been estimated in connection with the experiment "Coarsening of solid-liquid mixtures".

The effect of 9-jitter has been shown to be of the same order as ordinary Brownian motion and therefore
negligible, except possibly for experiments of long duration (over ten hours). Finally, the effect of noise on

the onset of oscillatory instabilities, such as in double diffusive convection, is being examined by extending
the classical center manifold reduction to the stochastic case. Two examples are briefly discussed that exhibit

the main qualitative features of the phenomenon, with particular emphasis being paid to possible shifts in
the instability point relative to the deterministic (noiseless) case.
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