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INTRODUCTION

When alloys solidify in a gravitational field there are complex interactions between solidification

and natural, buoyancy-driven convection that can alter the composition and impair the structure

of the solid product. The particular focus of this project has been the compositional convection
within mushy layers that occurs in situations where the lighter component of the alloy is rejected

into the melt during solidification by cooling from below. The linear stability of such a situation

was described at the 2nd Microgravity Fluid Physics Conference [1] and has been further elucidated

in a number of published articles [2-4]. Here we describe some recent developments in the study
of the nonlinear evolution of convection in mushy layers.

The system under consideration is illustrated in figure 1. A two-component alloy is solidified

upwards at a constant rate V. It is completely solid at temperatures below the eutectic temperature

TE in the region z < 0, where z is the vertical coordinate in a frame of reference moving with the

solidification rate. Between the eutectic front (z = 0) and the liquidus isotherm (at z = h(x, y, t)),

solid and liquid coexist in close proximity within a mushy layer. At temperatures above the liquidus

temperature the alloy is completely molten. The mush-liquid interface is a free boundary whose

position z = h(x, y, t) has to be calculated. We have studied convecting states that are steady in

the moving frame of reference and have analyzed the stability of those states.

The dimensionless governing equations in the mushy layer are

°)oz

u = -n(¢)(Vp + P 0a.),
V-u=0,

(I)

(2)

(3)

(4)

where

8 = T - TL(Co) = C - Co (6)
AT AC '

AT = TL(Co) - TE, AC = Co - CE, represents both the dimensionless temperature and the

dimensionless liquid composition, since they are coupled by the liquidus relationship T = TL(C)

throughout the mushy layer. The mushy layer is treated as a porous medium with locally isotropic

permeability 12(¢) that is a function of the local solid fraction ¢. Convection in the system is
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Figure 1. A schematic diagram showing the steady upwards solidification of an alloy at speed V. On
the left is shown the steady temperature profile T and the profile of liquidns temperature TL(C), which is
proportional to the local concentration of the liquid C, in the absence of flow. These give rise to the density
profiles shown on the right. The overall density p = pr + pc is unstably stratified throughout the mushy
layer and can give rise to convection in the mushy layer leading to the formation of chimneys.

controlled by the Rayleigh number

vV

mediated by the dimensionless parameters

L Co-Co
S= _ C = and

Cj, AT' Co - CE

BACgII*
(T)

Too - TL(C0)
0oo = AT (8, 9, 10)

Interactions between the liquid and mushy regions are further influenced by the Darcy number

=  2/V2
If* ' (11)

which is proportional to the square of the ratio of macroscopic lengthscales to the interstitial

lengthscMe of the mushy layer and is typically very large. One effect of this is that the dynamic

boundary condition at the mush-liquid interface is simply that the pressure is continuous.

WEAKLY NONLINEAR ANALYSIS

We have determined the evolution of small, finite-amplitude perturbations to the steady state

with no fluid flow. The coupled equations in the mushy and liquid regions are extremely complex so

we have analysed a simpler system in which the mush-liquid interface is assumed to be horizontal,
fixed in the moving frame and impermeable to fluid flow. This greatly simplifies the analysis

without compromising _he modelling of processes that are internal to the mushy layer. The fixed

dimensionless height of the mushy layer 6 replaces 0oo as a controlling parameter. In the basic,

steady state of the full system, 6 = 1/0oo.

The dependent variables are expanded in the form

0 = OB(z) + y, z, t) (12)
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Figure 2. The nonlinear bifurcation diagram determined from the small-amplitude expansions. Solid curves

indicate stable steady states of the system, while dashed curves indicate unstable steady states. In the

parameter regime investigated, convection with a hexagonal planform bifurcates sub-critically while convec-

tion in the form of two-dimensional rolls bifurcates super-critically. The analysis has determined the global

stability limit Rg and its explicit dependence on the various dimensionless parameters of the system. When

the Rayleigh number P_ < Rg no convection can occur in the mushy layer.

(with similar expressions for ¢ and u), where e << 1 measures the perturbation amplitude. To

simplify the analysis further we employed the near-eutectic approximation [5], which amounts
to taking the distinguished asymptotic limit 6 << 1, with C = 0(6 -1) and S -- O(di-1). To

leading order in this limit one recovers the analysis of convection in a passive porous medium [6].

Phenomena intrinsic to a mushy layer are then reintroduced at 0(6).

The central result of this analysis is a set of coupled evolution equations

aAl = 2rrR2A1 + bA2A; - cA1 JAIl2 - dAI(IA2I 2 + IA312),

aA2 = 27rR2A2 + bA1A_ - cA21A212 - dA2(IA112 + 1A312),

aA3 = 27rR2Aa + bA2A*I - cmalA312 - dAa([A2I 2 + IAll2),

(13)

(14)

(15)

for the amplitudes of three intersecting two-dimensional rolls oriented at 120 ° to each other. Using

these equations one can determine steady two-dimensional convection by setting two of the am-

plitudes to zero, or steady convection with hexagonal planform by setting the three amplitudes to

be equal. Such steady states were analysed by Amberg & Homsy [7]. The fully coupled equations
allow interactions between these modes of convection and their stability to be determined. The

structure of the nonlinear bifurcation diagram in the vicinity of the linear critical point /_ = Rc

is illustrated in figure 2.

The figure is drawn for the case b > 0 in which the first stable steady convecting state has hexag-

onal planform with upflow in the centres of the hexagons. This is the case when the nonlinear
interactions are dominated by the variation in the permeability with solid fraction [7], which has

long been thought to be the primary interaction leading to focusing of the flow. }towever, experi-

ments [8] have indicated that convection in mushy laycrs is initiated in the form of hexagons with

downflow at their centres. Our analysis [9] has shown that b can have either sign, i.e. that hexagons
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Figure 3. A diagram showing the regions of parameter space where convection in the form of either up-
flowing or down-flowing hexagons are the preferred stable mode. The shaded region shows the parameter
values where oscillatory convection is predicted to occur.

with either upflow or downflow at their centres can be the preferred, stable mode, depending on

the dimensionless parameters of the system, as indicated in figure 3.

OSCILLATORY CONVECTION

A surprising result of the nonlinear analysis is the fact that the coefficient of the time derivative, a,

can be negative for certain parameter values. This signals the existence of a hitherto unsuspected

oscillatory mode of convection. A detailed linear analysis [10] has revealed such an oscillatory

instability, in which the convection can take the form of travelling rolls. Although these might
be difficult to observe directly, they leave a signature in the solid in the form of slanted regions

of compositional alteration. Perhaps more importantly, the discovery of the oscillatory mode has
highlighted a significant interaction between convection and solidification within mushy layers that

has previously been neglected in asymptotic analyses.

THE FORMATION OF CHIMNEYS

The small-amplitude perturbation analysis shows that the solid fraction becomes zero inside the

mushy layer when the upward velocity becomes sufficiently large. It suggests the formation of

narrow, vertical channels of zero solid fraction -- chimneys. Chimneys have been observed in

many laboratory experiments, particularly those in which ammonium chloride is crystallized from

solution [11-13] and those in which metallic alloys are solidified from below [14].

An important question is, following the nonlinear bifurcation from the linear critical point, does

a chimney form first on the lower, unstable branch or on the upper, stable branch. In the latter

case, finite-amplitude, steady convection can exist without the formation of chimneys. In the
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Figure 4. The thin lines show the streamlines through the mushy layer and up through a chimney (the central

portion). Superposed on the left, in thicker curves, are isotherms. Superposed on the right are contours of

solid fraction. The width of the chimney and the aspect ratio of the mushy layer are not to scale. The width

of the chimney is inversely proportional to the cube root of the Darcy number 7-I and so is typically much

narrower than its height.

former case, any triggering of convection must lead inexorably to the formation of chimneys. The

weakly nonlinear analysis reveals that either can occur depending on the dimensionless parameters

of the system. Our recent numerical study of the fully nonlinear system has confirmed this finding.

FULLY DEVELOPED CHIMNEYS

In many systems, chimneys may be difficult to avoid. It then becomes important to be able to
assess their effect on the structure of and compositional variations within a casting. To this end,

models have been proposed for convection through fully developed chimneys. Roberts & Loper [15]

developed a framework for such a model in which each chimney is treated as a vertical cylinder of

possibly varying radius in which the liquid flows in response to its own buoyancy and the pressure
at the chimney wall. The wall pressure and the heat and mass fluxes through the chimney wall

couple to the flow and heat transfer in the rest of the mushy layer. This idea was adopted by

Worster [16], who presented a scaling analysis, valid for Rm >> 1, that revealed the structure of
the flow and the temperature distribution in the mushy layer. We have recently used this same

idea in a numerical evaluation of steady convecting states in a mushy layer with fully developed

chimneys. The calculations performed to date have been two-dimensional. The flow in the chimney
is solved using an approximate analysis based on lubrication theory. This analysis provides dynamic

boundary conditions for the flow, temperature distribution and solid fraction in the mushy ]yacr,
which are calculated numerically.

Typical results are shown in figure 4. The depth of the mushy layer was allowed to vary

dynamically, controlled in an average way by the heat transfer from the overlying liquid region.
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However, the mush-liquid interface was kept horizontal. Nevertheless, the contours of solid fraction

are strongly indicative that the mush-liquid interface should be raised to form a conical vent around

the chimney, as has been observed in experiments. It is also apparent from figure 4 that the solid

fraction at first increases towards the chimney before decreasing sharply to zero very close to the
wall.

From calculations such as these we shall be able to extend the weakly nonlinear bifurcation

diagram (figure 2) into strongly nonlinear regimes. From a practical point of view, we are able

to calculate the solute fluxes from the mushy layer to the liquid region and hence to calculate

macrosegregation in castings. Further, we plan to investigate the stability of such fully convecting

states in order to determine the mean spacing between chimneys.

CONCLUSIONS

Studies of nonlinear convection in mushy layers have elucidated the parametric controls on the

plan form of convection and the global stability limit for convection leading to chimney formation.

Depending on parameter values, finite-amplitude convection can exist in a mushy layer without

chimneys forming or the onset of convection can lead inexorably to the formation of chimneys.

Numerical analyses of convection in mushy layers with fully developed chimneys have revealed the

internal structure of a convecting mushy layer and promise to yield important results concerning

macrosegregation in cast alloys.
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