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ABSTRACT

This program will investigate the fluid dynamics and simultaneous solidification of molten solder drop-

lets impacting on a flat substrate. The problem of interest is directly relevant to the printing of microscopic

solder droplets in surface mounting of microelectronic devices. The study consists of a theoretical and an

experimental component. The theoretical work uses axisymmetric Navier-Stokes models based on finite ele-

ment techniques. The experimental work is performed in microgravity in order to allow for the use of larger

solder droplets that make feasible the performance of accurate measurements while maintaining similitude

of the relevant fluid dynamics groups (Re, We) and keeping the effect of gravity negligible.

INTRODUCTION

A schematic of the two distinct stages (flight and impact) of the problem examined is shown in Fig. 1. The

primary application of interest (solder microdroplet dispensing) employs solder droplets approximately 50 to

100_m in diameter, which collide, spread, recoil and eventually solidify on the substrate. Due to the small size

of the droplets and the relatively high surface tension coefficient of solder, gravity effects are negligible. This

solder application technology has shown great promise in microelectronic packaging and assembly, therefore,

the development of a good understanding of the pertinent fluid dynamics and solidification phenomena is

essential for its successful commercial implementation. However, progress in this area has been hindered

by the small length scales of the problem (50 to 100/_ra), which have made experimental measurements of

the relevant transport phenomena difficult. Alternative approaches, which employed much larger (mm-size)

droplets, yielded results that were affected by the masking effects of gravity. Hence, even though mm-size

droplets yield significantly improved resolution, the applicability of the obtained results for much smaller

droplets remains suspect. Conducting experiments in a microgravity environment eliminates the unwanted

influence of gravity and makes the experimental investigation of large droplet dispension directly relevant.

The Reynolds, Weber and Froude numbers characteristic of the process shown in Fig. 1 are defined by

Rc = Yo,'oP,,Wc = r,- = Yo /rog (1)

where V0, r0 denote droplet impact velocity and radius, while p, u, 7 correspond to the density, kinematic

viscosity and surface tension coefficient of the liquid. To exemplify the disparity in the importance of grav-

ity in the dispension of large and small droplets, the values of Re, We and Fr were calculated for a set
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of parameters corresponding to the real dispension process in normal gravity (50 micron diameter solder

droplet impacting on a flat surface with a velocity lm/s). These values were Re=78.5, V_e=0.6, Fr=4077,

and illustrate the importance of inertia and surface tension, as well as the insignificance of gravity effects.

If a larger (1ram) drop is used in normal gravity experiments, a slower impact velocity V0 is required for

similitude based on Re. In turn, similitude in terms of the Weber number requires a smaller surface tension

coefficient. To maintain similitude in this specific example, the surface tension coefficient as well as the

impact velocity of the larger droplets need be reduced by twenty-fold. The resulting values of the above

dimensionless groups are then Re=78.5, We=0.6, Fr=0.5. Clearly, the drastic decrease in the value of the

Froude number proves that gravity effects become significant for mm-size droplets, and that the presence of

a microgravity environment is necessary in large solder-droplet impact experiments.

OBJECTIVE

The study will be aimed at identifying the degree of influence of the dominant process parameters on

specific aspects of solder droplet dispensing. These parameters are: droplet size and velocity; droplet, sub-

strate and ambient gas temperatures; and contact angle between the solder and substrate before and after

solidification. The sensitivity of the final bump shape and size to variations in the above parameters is

critical because solder bump volume, position, and height variation are key metrics for solder jet technology.

The data produced in this program will be analyzed to define the domains of solder microdroplet dispensing

operational parameters that result in optimal and consistent production of solder bumps as needed for spe-

cific industrial applications. At the same time, through a series of numerical simulations, the effect of the

dimensionless groups defined in Eq. (1) (and the physics they represent) will be thoroughly documented.

METHODOLOGY

The research consists of both a theoretical and an experimental component. The theoretical component

investigates the fluid dynamics and solidification of a molten solder droplet during its impact on the sub-

strate, in order to attain an understanding of the miniature solder deposition process. The experimental

component tests the numerical predictions and provides necessary input data (such as wetting angles) for

the theoretical model. Details of both components are given below.

Theoretical

A schematic description of the impacting droplet problem was presented earlier in Fig. 1. In this figure,

a microscopic liquid-metal droplet is shown after impact, while it spreads on the substrate. Cooling of the

liquid metal takes place almost entirely by conduction through the substrate, and solidification ensues some

time during this process. The theoretical model for the fluid dynamics, which uses a Lagrangian formulation
to solve the axisymmetric Navier-Stokes equations accounting for surface tension effects, has been outlined

and tested in [1, 2]. The model takes into account the important effect of wetting in the advancement of the

contact line, if the dynamic contact angle is known from experiments.

Wettin$: In order to model the wetting phenomenon, knowledge of the contact angle _c is necessary. A
number of issues relevant to static and dynamic contact lines on solid surfaces have been reviewed by Dussan

[3] and de Gennes [4] who showed that a clear distinction exists between the static and the dynamic values

of contact angle. The value of the contact angle in this work will be measured experimentally. With the

contact angle known, the following boundary condition is satisfied at the contact line

5. ff = -(27Hc + Po)ff (2)
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where 5 is the stress tensor, 7 the surface tension coefficient, p0 a reference pressure, Hc the mean surface

curvature, and ff the normal vector (Fig. 2). The mean curvature of the free surface is defined by

H = ,_(r'z" - z',") + [(,')_ + (z')_lrz '
2r2[(r') 2 -t- (z')2] 312 (3)

All symbols in Eq. (3) are defined in Fig. 2 with the primes denoting differentiation with respect to the free
surface coordinate, s. At the contact line r' = -cos_bc, z' = sin_bc, thus the mean curvature expression

becomes
1 sin_c

He = _(-z"cos_c - r"sin¢c + --)r (4)

Solidification: With the velocity field provided by the fluid dynamics simulation, the axisymmetric energy

equation will be solved both in the liquid metal droplet and the substrate, in order to attain the temperature

field. Convection will be taken into account in the energy equation for the liquid solder and conduction

in the substrate. Typically, the substrate consists of a number of layers each of different material, parallel

to the exposed surface (Fig. 1), a fact that will also be taken into account in the substrate conduction

model. Continuity of temperature and heat flux will be imposed at the substrate/droplet interface. After

the initiation of solidification, the contact resistance at this interface will be taken into account to the extent

allowed by the currently existing limited data for relevant contact resistance values [5].

The solidification modeling will focus on eutectic solders (for example Sn63/Pb37 which is commonly

used by manufacturers of microelectronic components) to circumvent additional complexities associated with

the possible presence of a mushy zone in non-eutectic solders. When solidification is initiated during the

impact process, it does so in the presence of undercooling and recalescence. Several issues regarding the

modeling of solidification with undercooling and recalescence are discussed in [6]-[9]. Given the parametric

domain of the solder dispension process (low to moderate impact velocities and temperature differences), it is

speculated that the effect of undercooling will not be significant. In the absence of undercooling, the freezing

front velocity will be determined from an energy balance at the interface, with the interface temperature

being the freezing temperature of the eutectic solder.

For the finite element implementation of the solidification process the exact specific heat method proposed

by Bushko [10] will be adopted. This method demonstrated superior accuracy over the enhanced specific

heat method in energy conservation tests. It is especially suited for materials with specific heat functions

that can be represented by Dirac delta functions in the neighborhood of phase transition

C(T) = [C,(T),Q(T)] + L_(T - Tin) (5)

where C is the specific heat, L the latent heat of fusion, T the temperature, the subscripts s,l, and m

denote the solid phase, liquid phase and melting point, respectively, and _f is the Dirac delta function [10].

Many metals and alloys, including solders, exhibit this characteristic which makes this method attractive

for the planned research. Figure 3 shows a bump shape as obtained during experiments in 1-g utilizing an

initially 50#m-diameter Sn63/Pb37 solder droplet. This picture depicts the final state of a single droplet

after complete solidification. The ripples on the surface of both solidified bumps may be explained as follows:

After impact the droplet spreads and recoils (oscillates) several times prior to achieving its sessile state. As

the droplet oscillates, solidification initiates at the bottom of the splat and advances upward. The dynamic

interaction between the flow oscillations and the advancement of the solidification front yields the ripples on

the surface of the solder bump shown in Fig. 3.

Experimental

Since this is a new program, the experiments have not commenced yet. Molten-metal single droplet

impaction tests will be conducted in a low-gravity environment. The 2.2 second drop tower at the NASA
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Lewis Research Center will be used to conduct these studies. Our estimates of the characteristic times

for the various stages involved (droplet deployment, oscillations decay, impaction and solidification) have

shown that 2.2 seconds of microgravity are sufficient for the single droplet experiments. In addition to the

direct information obtained from the experimental results, this component of the study will serve to generate

wetting-angle information, necessary to the theoretical work, and will provide specific criteria to validate the

model predictions.

Measurements of the wetting angles and the splat dimensions will be made from high-speed films. The

films will be used also to calculate the droplet preimpact velocity required for the simulations. A photoelec-

tric method (Fig. 4) will be used as a means of providing data on the transient behavior of splat radius and

spreading velocity for comparisons with theoretical predictions. This technique has been proven feasible in

1-g laboratory environments and does not involve recording of the droplet image; yet it is accurate, despite

the short time scales of the experiment.
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Figure 1: Schematic of the problem of interest, a) Flight stage, b) Impact stage. The multiple layers of the

substrate represent practical situations of interest.
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Figure 2: Schematic defining various symbols in the mathematical formulation of a droplet impacting on

the X-Y plane in a direction parallel to the Z axis.
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Figure 3: Solder microbump obtained experimentally m normal gravity. The
solidified bump was produced by the deposition of a single 50 gm-diameter droplet.
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Figure 4: Photoelectric droplet spreading measurement system,
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