
../

"7

THERMOCAPILLARY MOTION IN AN EMULSION
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ABSTRACT

The phenomenological model for the motion of an emulsion or a gas-liquid mixture exposed to the
thermocapillary forces and microaccelerations is formulated. The analytical and numerical investigation of
one-dimensional flows for these media is fulfilled, the structure of discontinuous motion is studied. The

stability conditions of a space-uniform state and of the interface between an emulsion and a pure liquid are
obtained.

MAIN ASSUMPTIONS

Let us consider the motion of a liquid with inclusion of small drops of another liquid immiscible

with the first one. It is supposed that the system is in local thermodynamic equilibrium. The relative phase
motion is primarily due to the nonuniformity of the temperature field which produces the thermocapillary
effect by virtue of the dependence of the coefficient of the surface tension o" on the temperature T. For

simplicity, we suppose that this dependence is linear, o- = o-0-o-7,(T-T0)where o-0, To and o-rare some

positive constants. In addition to the thermocapillary forces, the system is exposed to the microgravity with

acceleration _.

Further, it is supposed that the drops or bubbles have the spherical form, that they are of equal
radius R, and that the volume concentration c of the disperse phase is small. Moreover, we assume that the
mean distance between the drops l satisfies the inequalities R << l<< diam,, where f] is the volume

containing the liquid. In this case, the concepts of mechanics of heterogeneous media are applicable to
describe the motion of such a system. Besides, below the Peclet numbers for the liquid matrix and disperse

phase are assumed small. This allows us to restrict ourselves to the medium model with the single

temperature.

GOVERNING EQUATIONS.

The system of governing equations involves the following unknown functions: T,c, averaged

velocity of drops or bubbles _, and carrying phase _, pressure of carrying phase p. Let us use the indices d

and m to denote the parametres of the disperse phase and liquid matrix, correspondingly. The thermal
conductivity of the mixture is determined from the Maxwell formula, whereas, the dynamic viscosity
coefficient from the Taylor formula. The resulting system is as follows

c_ + div( c{t) = O,

(1-c), +di [(1- =0,

#,,,+ 5 #a/2"
+(vO']I+ +p,,(l- c)_,

+C n,+ _t a )
= -Vp+ div{ ,Um[l

P,l,;t jC( T, + h' V T)+p mA,,,(1- c)( T, + i;. VT)= div{k,,[l-c

(I)

(2)

(3)

(4)
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.-v= 3km, o-TVT I
3,u (2_,,+3,ua)(pa-pr,,lR_+(2k,_+ka)(,,+/.ta) (5)

where p,,u,2 ,k stand for density, dynamic viscosity, heat capacity, and thermal conductivity of the

corresponding phase. These coefficients are assumed constant.
System (1) - (5) was obtained in [1]. It should be noticed that this system does not contain any

empiric parameter. Equations (1) and (2) are the exact forms (within the framework of the approach of
heterogeneous mechanics) of the mass conservation law for the disperse and carrying phases. When deriving
the momentum equation (3) and the energy equation (4) we neglected the terms of the second order with
respect to c in viscous stresses, and the diffusion heat flow, correspondingly. Besides, we omitted the
dissipation function in (4) taking into account the smallness of the arising velocities of the motion.

The completing equation of system (1) - (5) requires a special comment. This relation gives an

approximate value of the relative phase velocity in the equation (5) we neglected the effect of added masses
and Basset's hereditary force, which is inefficient for the flow with low Reynolds numbers calculated from
the drop radius and for smoothly changing external conditions. The coefficients in the right-hand part of (5)
correspond to the known dependences in the Hadamard-Rybczinski, [2,3], and Young-Goldstein-Block, [4],
formulas. In this connection, it is worth mentioning work [5] where the problem of creeping motion of a
small drop with the gravity acceleration collinear to the temperature gradient at infinity was solved
explicitly. Also, this paper discussed limits of applicability of formula (5).

Let us consider now the motion of a gas-liquid mixture under the effect of thermocapillary forces

and microaccelerations. In the case when the gas is the disperse phase we have Pa << Pro, ,ua << /Ira,

ka << kin. The corresponding system of governing equations can be obtained from (1) - (5) by a simple

limiting procedure. Historically, the model of a gas-liquid motion in weak force fields was derived before in
work [6]. Its further analytical and numerical investigation was fulfilled in [7] where, in particular, self-
similar solutions and travelling waves were studied.

STABILITY OF SPACE - UNIFORM STATE

The simplest solution of system (1)-(5) corresponds to a uniform relative phase motion with a
constant concentration and the temperature distribution being linear function of Cartesian coordinate x in
the absence of gravity:

c = co, T = Gx + Ht,p = const,

u = (1 - co)LG, v = -coLG (6)

where Co e (0, 1) and G are given constants,

H = Co(l-.)LO_( po2 _- pa_)[ p_2 _. + po2 _(l - Co)]-'

L = 2R k,, (yr(2/_,, + 3/.ta)-'(2 km+ ka)-'; (7)

u and v designate projections of vectors _ and _ on the direction x.
The linear analysis of the stability of solution (6) with respect to the 3D disturbances proportional

to exp(at + ifl. Y) where ct is the complex frequency and/_ is the wave vector leads to a cubic equation

for ct(fi). It turns that two of its roots, or2 and or3, always have the negative real part. As for the first

one, the real part of a_ has no definite sign. For the small concentration co we have

Rea' = Z I' \ 2-- m p + O(C0 )'

where Z,, = k,,/p,.2 ,, is the thermodiffusion coefficient of the carrying phase, fl is x-component of the

vector/J and L is defined by formula (7). Therefore, the stability conditions is
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2( pJ _ k_a) Pa2 aka
-- + + _>5, (8)
pm_,m tom2 ,,k,,

moreover one-dimensional disturbances are the most dangerous ones.
It follows immediately from condition (8) that the uniform distribution of bubbles in the liquid

( Pa << P,,, ka << kin) under the constant gradient of temperature is unstable. The mentioned unstability

is of the heat nature. It disappears when Zm -+ 0 andzm _ oo and has no analogy among the flows in the

two-phase media.
On the other hand, given a liquid matrix, we can point out such properties of the disperse phase that

inequality (8) will be fulfilled. An example of such a situation is delivered by the emulsion "aluminium-

lead" with aluminium as the carrying phase. We also note that the emulsion having the same coefficients of
the carrying and disperse phases is neutrally stable in the sence indicated above.

ONE - DIMENSIONAL MOTION

System (1)-(5) is very complicated due to its nonlinearity, high order and mixed type. However, in
the case of the one-dimensional motion with plane waves it can be simplified radically. (In this case, we

suppose that vectors ff and _TT are collinear and parallel to the axis x). In fact, the two first equations of

(I)-(5) provide the integral

cu+(1-c)v= f(t) (9)

where f(t) is the mean volume velocity of the mixture. Now we can express u and v from (9) and the last

equation of system (5) in terms of c, T and f. As a result, we obtain a system to determine T and c

c,+ {[c (Kg+ LT,)-/](l-c)}, =0; (10)

[ pu2 uc + ;,,,A m(1-c)](T,+ fTK) +(Pd.¢ U-- p,,,A ,,)C (1-c)(Kg + L T,.) = k,,[(l- Mc) T_]_(I1)

Here we introduce the following notations:

2 R2( p.- p,,,)(/_,,, +/lu) 3(k,.- ka)
K= , M= ;

3 fl,_(2flm+3 fl_ ) 2k,,+ka

parameter L is defined by formula (7) and g = ff.

System (10), (11) should be completed with appropriate initial and boundary conditions. An

additional boundary condition is necessary to determine the new sought function f(t) (for example, f = 0

in the motion possessing a plane of symmetry). The typical problem of such kind was set up in [6]. The gas-
liquid mixture is restricted by two parallel solid impermeable walls. The initial distributions of
concentration and temperature are given. The heat flux at both walls is prescribed as a function of time. In

addition, the impermeability condition for liquid phase is fulfilled at boundaries of the flow domain. The
solvability of formulated problem is proved in [8].

DISCONTINUOUS SOLUTIONS

System (10), (I 1), as well as the original one, does not have a definite type. In some sence, it contains
both hyperbolic and parabolic parts. This peculiarity leads to a special structure of discontinuities in its

solutions. Namely, the concentration has a jump across the line of discontinuity x = X(t), while the

temperature and heat flux are continuous across this line. The jump of concentration gives rise to a jump of

the phase velocities. Proceeding in the standard way and using the notation D= X'(t) for the jump

velocity, we obtain the conditions on the line of discontinuity:

[c ]D =[{c(Kg+LT,)- f}(l-c)],

[T] :0, [(I-Mc)T_]=O. (12)

Here the symbol [r] denotes the difference of values of the function r in front and behind the jump.

339



One of the important cases of concentration discontinuity is a boundary that separates the emulsion

and the pure liquid (c = 0). In this case D = u÷ where u÷ is a velocity of drops in the emulsion (after a
jump). Symbol "+" denotes below the emulsion characteristics. The problem of the thermocapillary motion
of a single drop near the moving boundary of the emulsion at weightlessness is considered on the base of

relations (12) and the Young-Goldestein-Block formula. The difference of the velocities of the boundary u+

and the drop u- equals

u +- u- = L(k,,-akd)(2k,, + kd)-_c + T_. (13)

If T increases in the direction from the boundary of emulsion into the pure liquid, then the drop is
absorbed by the emulsion when km > 4ka and it runs away from the boundary when km < 4kd. If the sign

of Tx is the opposite, the effect also changes its sign. The loss or the absorption of a drop by the weighted

layer is important for its stability. Either lower or upper boundary is unstable. Correspondingly, the
suspensed layer will occur near a heated or a cooled wall of the vessel. The formula (13) shows where
exactly.

Let us consider now the problem of the motion of a single drop relatively the boundary of a

stationary weighted layer of drops. The equilibrium of this layer is possible if KG = -L T_x. The absence of

coalescention of drops is important for the realization of such a layer. The conditions of "attraction" or
"repulsion" of the drop from the layer differs in this case from that given above. Namely, if km> ka, the

single drops are absorbed by the lower boundary of the layer and run away from the upper one (the
direction of the increasing of temperature is denoted as the upper one). If km < ka, the single drops run

away from the upper boundary and, on the contrary, are absorbed by the lower boundary. In the first case
the layer is located at the bottom of the vessel, and in the second case it is positioned overhead.

EXAMPLE OF NUMERICAL SOLUTION

Nonlinear initial boundary value problem for system (10), (11) was solved numerically for different
combinations of disperse and carrying phases and for different initial distributions of temperature and
concentration. We present here the results of its solution in case when the carrying phase is a melted
aluminium and the disperse one is a liquid lead. Initial distributions of temperature and concentration are
shown on Figures 1 and 2, correspondingly; two other pairs of curves on these figures demonstrate profiles

of temperature and concentration at moments t = 90sec and t = 180sec. The boundary conditions are the
following: T= To = 1000 K if x = 0, Tx = 0 if x = 10 cm; c= 0.03 if x = 0. The gravity is absent, the

parameter crr R entering into the definition (7) of the coefficient L is chosen as 0.001 gram. cm / sec. K.

CONCLUDING REMARKS

In the process of derivation of system (1)-(5), we supposed that all drops or bubbles are of the equal
radius. This assumption allows us to minimize dispersion effects. The equations of motion of a polidisperse
emulsion or gas-liquid mixture can be obtained using the procedure described above.

A specific trait of the space-uniform state (6) is the dependence of temperature distribution of time.
Namely this peculiarity, together with the dependence of mixture heat conductivity coefficient of
concentration, lead to the origin of a non-zero real part of the first root in the dispersion equation. Ignoring
these factors, we obtain the neutral stability of the convective mode corresponding to the root a_.

The conclusion concerning the instability of uniform distribution of bubbles in a gradient
temperature field correlates with the results of numerical simulation of !D thermocapillary motion in a gas-

liquid mixture [7]. Here we mention one of them. Let as suppose that initial distribution of concentration is
like to a smoothed shelf while initial distribution of temperature is close to a linear one, moreover, the
derivatives of both functions are of the same sign. Nonlinear development of process brings to the

steepening of the concentration profile and to the loss of its monotonicity: after passing the region of large
gradients, the concentration peak appears and this peak is growing rapidly. At the same time, the
temperature profile remains close to linear and deforms slightly in the zone where the concentration changes

abruptly.
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As for stability conditions of the interface "emulsion-pure liquid", they were obtained on the base of
conservation laws on the discontinuity. In spite of that, an intrinsic mechanism of instability of two-phase
flow was not taken into account. Therefore, the mentioned conditions of stability should be considered as
the necessary ones.

In conclusion, we remark that system (1)-(5) can be used for the study of solidification process of an
emulsion. To this end, we have to add to these equations appropriate Stefan-type conditions at the front of
solidification as well as, in the simplest case, the heat equation in the solid phase. Generally speaking, the
solidification temperature of disperse phase is not the same with one of liquid matrix. This circumstance
leads to complication of the problem under consideration due to possible appearance of two fronts of
solidification. On the other hand, the situation is feasible when drops are driven back from the front of
solidification of the pure liquid. Besides the direct problem, the inverse one has an interest: to get the given
(for example, constant) distribution of inclusions in the solid material by the control of the boundary
regime of cooling.
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Fig.2

Nonlinear evolution of temperature ( Fig. 1 ) and
concentration ( Fig.2 ) in the process of the motion

of lead droplets (trrR = 0.001 gram. cm / sec- K)
in a melted aluminium.

342


