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Abstract

We have investigated the effect of uneven data spacing on the computation of az(r). Evenly

spaced simulated data sets were generated for noise processes ranging from white PM to random

walk FM. af(r) was then calculated for each noise type. Data were subsequently removed from
each simulated data set using typical TWSTFT data patterns to create two unevenly spaced sets

with average interva/s of 2.8 and 3.6 days. az(r) was then calculated for each sparse data set

using two di_erent approaches. First, the missing data points were replaced by linear interpolation

and az(r) calculated from this now full data set. The second approach ignored the fact that the
data were unevenly spaced and calculated az(r) as if the data were equally spaced with average

spacing of 2.8 or 3.6 days. Both approaches have advantages and disadvantages, and techniques

are presented for correcting errors caused by uneven data spacing in Vypical TWSTFT data sets.

INTRODUCTION

Data points obtained from an experiment are often not evenly spaced. In this paper, we

examine the application of a_(r) = 3-1/2r(moday(r)) ill to the unevenly spaced time-series

data obtained from two-way satellite time and frequency transfer (TWSTFT). We do so by

using a_(r) with both evenly and unevenly spaced simulated data of known power-law noise

type and magnitude. The noise types examined are white phase modulation (WHPM), flicker

phase modulation (FLPM), white frequency modulation 0VHFM), flicker frequency modulation

(FLFM), and random walk frequency modulation (RWFM) [21.

Vernotte et al. D! studied the analysis of noise and drift in unevenly spaced pulsar data. However,

the data obtained from pulsar studies are much more sparse in time, with only about 2% of

the possible data available. In TWSTFT, the task is less daunting: time transfers are typically

measured on Monday, Wednesday, and Friday, so, in a perfect world, we would have a data

density of 3 data points present out of a possible 7.

This paper is not intended to be a rigorous treatment of how to calculate a_(r) in all possible

cases of unevenly spaced data. Rather, our purpose is to suggest methods and corrections

which may be applied to data such as those produced by TWSTFT in order to obtain a more

accurate assessment of the underlying time stability and noise type.
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The National Institute of Standards and Technology (NIST) regularly performs time transfers

with several laboratories in North America and Europe. Two of these laboratories are the United

States Naval Observatory (USNO) in Washington, D.C. and the Van Swinden Laboratories (VSL)

in Delft, the Netherlands. Typical data sets covering a 384-day period were chosen from the

NIST-USNO and NIST-VSL time transfers to be used as templates.

METHOD OF EVALUATION

We evaluated the use of _r=('r) with unevenly spaced data having the five different power-law

noise types: WHPM, FLPM, WHFM, FLFM, and RWFM. Ten independent data files were

generated for each noise type. The WHPM, WHFM, and RWFM files were generated using

a random-number generator and integration. The FLPM and FLFM files were generated

according to the algorithm of Kasdin and Walter[41. All 10 data files of each noise type had

384 evenly spaced data points spaced one day apart. In the next step, we removed data points

from each file so that the remaining data points aligned with the data points obtained from

NIST-USNO or NIST-VSL TWSTFT. This produced files containing 137 or 108 unevenly spaced

data points, respectively. The missing data points were then filled in by linear interpolation

between the remaining data points. After this last step, there are once again 384 evenly spaced

data points. Therefore, for each simulated data file of each noise type, we finally had five data
files:

File "l_e 1: the originally generated 384 evenly spaced data points with known noise

type and magnitude.

File "I_jpe 2: a data file of 137 data points spaced as in the NIST-USNO time transfers.

This file is obtained by removing the appropriate data points from File

1. The average spacing (see below) is 2.816 days.

File "l_]pe 3: File 2 with the missing data points filled in via linear interpolation.

File "l_e 4: a data file of 108 data points spaced as in the NIST-VSL time transfers.

This file, like File 2, is obtained by removing points from File 1. The

average spacing (see below) is 3.579 days.

File "I_ype 5: File 4 with the missing data points filled in by linear interpolation.

Having created all 50 files for a given noise type, we then performed a cr=(r) analysis of each

file. For the data files with even spacing (File Types 1, 3, and 5 above) we computed _,=(m'r0,_,,)

in the usual fashionlll, where m = 1, 2, 4, 8, 16, 32, 64, 128 and "r0,_,, = 1 day. For the files

with unevenly spaced data (File Types 2 and 4) we computed _=(r) by treating the adjacent

data points as if they were evenly spaced, with r0_,_9 calculated as follows:

ro , = (MYl z - MJDf, , )I(N - 1) (1)

where MJD/i,.,t and MJD_ are the time tags for the first and last data points, and N is the

number of data points. For File "Iype 2, ¢0,,g = 2.816 days, and for File Type 4, "r0_,,,g= 3.579

days. In both of these latter cases, we computed a=(nz0,,g) for n ffi 1, 2, 4, 8, 16, and 32.

Having obtained a=(r) vs r for all 50 files, we then computed the average values of c,=0- ) for

each file type. Therefore, for each power-law noise type, we finally have five plots of _,=(r) vs
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1. Average az(r) = 1, 2, 4, 8, 16, 32, 64, and 128 days) for File Type 1, that is, the files

with known noise type. This plot shows the "correct" values for az(r).

2. Average az(r) ffi 2.816, 5.632, 11,264, 22.528, 45.056, and 90.112 days) for File Type 2.

This represents the results we obtain by using unevenly spaced data with the NIST-USNO

distribution.

3. Average a_(r) -- 1, 2, 4, 8, 16, 32, 64, and 128 days) for File Type 3. This represents

the results we obtain by taking unevenly spaced data with the NIST-USNO distribution,

performing linear interpolation to make an evenly spaced data file, and then performing

the az(r) analysis.

4. Average a_(r) = 3.579, 7.158, 14.316, 28.632, 57.264, and 114.528 days) for File Type 4.

This represents the results we obtain by using unevenly spaced data with the NIST-VSL
distribution.

5. Average a_(r) = 1, 2, 4, 8, 16, 32, 64, and 128 days) for File Type 5. This represents

the results we obtain by taking unevenly spaced data with the NIST-VSL distribution,

performing linear interpolation to make an evenly spaced data file, and then performing

the az(r) analysis.

Finally, for each average value of a_(r) for File Types 2-5, we computed a "correction factor."
The correction factor is defined as

avg a=(r)F_/e r_e 1
correction factor(_=(r)Fite Type j) -- avg ffz(T)File Tilpe j

(2)

In other words, multiplying the #.(r) values obtained using File Type j by the correction factors

for File Type j produces the correct value for az(r) as given by File Type 1. Because the r

values for File Types 2 and 4 do not match the r values for File Type 1, various types of

interpolation were used to obtain the correction factors for these two file types. The details of

obtaining the correction factors for the different noise types and file types are discussed in the

next section.

RESULTS

Figures 1-5 show the results obtained for the noise types WHPM, FLPM, WHFM, FLFM,

and RWFM. Each of the points shown corresponds to the mean of ten values. The standard
deviation of each set of ten values was also computed, but, for visual clarity, error bars indicating

11 standard deviation are shown only on the File Type 1 (i.e., correct) values. Approximately

the same size error bars should be applied to each of the file type curves.

Figure 1 shows the results obtained for white PM noise. There are several important points
here. First of all, File Types 3 and 5 (interpolating unevenly spaced data to form evenly spaced
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data) yield values of a=(r) which are much too small when r is less than the T0,_g of the

corresponding unevenly spaced data set. On the other hand, File Types 2 and 4 (the unevenly

spaced data) yield a=0") values which have the -1/2 slope appropriate to white PMIII, but which

are consistently too high. In fact, for r >_ 8 days, both of the methods used converge to yield

approximately the same too-large values for a=(T). For File Types 2 and 4, the white PM

correction factor is in theory constant for all values of _- and can be expressed as:

correction factor (WHPM) = (_'_'_ / 1/_
(3)

This occurs because with WHPM noise each data point in the time series is independent of all
others.

Figure 2 shows the flicker PM results. Once again, File Types 3 and 5 yield values of a=(l-)

which are too small at short averaging times. Also, the lower-_- values of a=(_') for File Types

2 and 4 are again too high. However, the results obtained from all file types converge toward

the correct value as 1- increases. Similar results are obtained for white FM (Figure 3) and

flicker FM (Figure 4).

Figure 5 shows the RWFM results. Here, the use of interpolated data (File Types 3 and 5)

provides virtually the same results as the originally generated data file (File _ype 1) and the use

of unevenly spaced data (File Types 2 and 4) provides values of a=(T) which are too large at

small I". In fact, as we progress from the WHPM process to the low-frequency-dominated noise

processes (e.g., RWFM)Pl, the use of linear interpolation to fill in missing data points becomes

an increasingly better approximation of the truth. For lower values of _-, using the unevenly

spaced data becomes an increasingly worse approximation of the truth. As we progress from

FLPM to RWFM, the results obtained using all methods converge on the correct value as 1-
increases.

>From the results shown in Figures 1-5 we have computed correction factors. Table 1 shows

the correction factors obtained from the file types (3 and 5) which have evenly spaced data.

These correction factors were obtained by simply taking the ratio

a= (m_'0,e,,n) FaeYVVel

o,. (m _,_,,_ ) Fa_ vw3o,.5

Tables 2-3 show the correction factors obtained for the file types (2 and 4) with unevenly spaced

data. Because the averaging times for the unevenly spaced files (e.g. 2.816, 5.632, ..., etc. days

for File Type 2) do not match the averaging times for File Type 1 (1, 2, 4, ..., etc. days), we

cannot simply take a ratio of two values to get the correction factor. Generally, interpolation
of some sort is required. Note that the correction factors for WHPM in Tables 2 and 3 all fall

within 10% of the values calculated from Equation (3).
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DISCUSSION

There is, unfortunately, no way to apply these results blindly. The user will need to have an

idea of what sort of noise types make sense in the context of his measurement. Initially, one

should construct one log tr,(r) vs log (r) plot using the original set of unevenly spaced data

and one log (try(r)) vs. log (r) plot using a full data set formed by linear interpolation.

At medium-to-large averaging times (in our analysis, r > 8 days), almost all methods, in their

uncorrected state, provide the correct slope for the log try(r) vs log (r) plot. For WHPM, the

unevenly spaced data give the correct slope at all values of r. Thus, the user can determine

which power-law noise process dominates at medium-to-long averaging times. (The exception

to this rule occurs when RWFM predominates, and the unevenly spaced data are used to make

the log az(r) vs. log (r) plot. In this case, the slope of the plot is slow in converging to the

correct +3/2 value.) The more difficult part arises when the value of m in r = taro is small.

It is here that we see the largest effects of not having an evenly spaced data set. In addition,

in this regime the noise process which dominates a measurement often changes from one type
to another.

If data are recorded on Monday, Wednesday, and Friday, it will be impossible to get a reliable

estimate of a_(r = 1 day) - that information simply is not available. We can, however, make a

fair estimate of ax(r = 2 days) in this case because Monday-Wednesday and Wednesday-Friday

are each two-day intervals. To be completely safe, one could avoid stating values of trx(r) for

r < r0_,,g. Finally, in this analysis, the ratio of the data length (384 days) to r0,_g (2.816 and

3.579 days) was always greater than 100; therefore, it may not be appropriate to use these

results with short, sparse data sets.

If there is only one, known, noise type present, then the correction factors shown in Tables

1-3 can be applied. Unless one has exactly the same average data spacing as we did, some

interpolation may be needed in order to use the correction factors. Fortunately, the values
of most of the correction factors are not strongly dependent on the average spacing for the

range of spacing that was examined. If the noise type is not known, one could begin by

deciding whether their results contain only measurement noise, or if there is a mixture of

measurement noise and clock noise. Examples of the former are common-clock or closure

TWSTFT experiments. An example of the latter is performing TWSTFT between two remotely
located clocks. We examine each of these situations below.

MEASUREMENT NOISE

If the results contain only measurement noise, then the noise type will most likely be white

PM or flicker PM. Fortunately, as Figure 1 shows, if WHPM is the dominant noise type, the

log az(r) vs log (r) plot for the unevenly spaced data will have a clear -1/2 slope and it will be
obvious that the WHPM corrections should be applied. This method was used in Reference

5. Similarly, if the log tr,(r) vs log (1") plot has zero slope at large r (Figure 2), then apply
the FLPM corrections. In this case it is important to be certain that the noise type at large

r has been correctly ascertained because, if the noise type is FLPM, the corrections which

are applied at large r are fairly small. If the noise type is WHPM, the corrections which are
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applied at large r are relatively large.

COMBINATION OF CLOCK NOISE AND MEASUREMENT NOISE

If the experiment measures clock behavior (or some other quantity which is characterized by a

low-frequency-dominated noise type), then the situation becomes more complicated because the

results will contain a mixture of noise types - the noise type associated with the measurement

and the noise type(s) associated with the behavior of the clocks under study. We have evaluated

various analysis techniques and have arrived at the following recommendations which combine

ease of use with acceptable accuracy.

First, examine the az(r) plots for evidence of measurement noise (WHPM, FLPM). The simplest

way to see if there is any measurement noise is to look at the _r.(r) plot of the interpolated

data set in the region where r is small to medium. As Figures 1-3 show, for WHPM, FLPM,

and WHFM, the offi(r) plot of the interpolated data will curve down as r decreases to approach

r = 1 day. In the case of FLFM, the affi(r) plot of the interpolated data makes a straight

line as r decreases. In the case of RWFM, the a_(r) plot curves up slightly as r decreases.

Therefore, if the curve is downward at small r and if there is evidence of a flat transition area

at medium r, there is probably significant measurement noise present.

If there indeed is measurement noise mixed in with the long-term noise, we suggest the following

procedure (hereafter called the "hybrid method"): compute r0_,,9 from the unevenly spaced

data and then simply use the crz(r) values obtained from the interpolated data for r > ro_vg.

Then, estimate a_(raro._), where rnro,_,, is the largest integral multiple of r0._,,, that is less

than r0_,,,a, as follows:

.

.

Using the values of log crz(r = r0_,,g) and log cr.(r = 2r0,_,,g) obtained from the unevenly

spaced data, perform a linear extrapolation to smaller r to obtain an estimate for log
¢r_(r = mr0.e,,,) for the unevenly spaced data set.

Compute the average of log _rffi(r = mr0,_,,,,) obtained from Step 1 and log a_,(r = mro,_)

obtained from the interpolated data set.

3. Use this average value as an estimate of the correct value of log a_(r = rnr0,ev,_).

For example, the NIST-USNO data have ¢0_g = 2.816 days. Therefore, to obtain values of

az(4 days _< r _< 128 days we would use the cry(r) values obtained from the interpolated data.

To get an estimate of a=(r = 2 days) we would use the three steps outlined above. Further
examples of this process are presented below.

This technique works because, for typical clock noise types (WHFM, FLFM, RWFM), the

uncorrected values obtained from the interpolated data set are a pretty good estimate of the

true values for medium to long averaging times. For measurement noise types WHPM, FLPM,

and WHFM, at small values of r, taking the average of the logarithm of az(r) associated with

the interpolated and the unevenly spaced data sets yields an acceptable estimate of the true

value of a_(r). If inspection of the az(r) plots reveals no hint of measurement noise (i.e., it

appears that clock noise dominates even at small r, then determine the noise type from the
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larger values of az(r) and then apply the appropriate correction factors from Table 1 to the

a_,(r) values obtained from the interpolated data set.

We now show three examples of the analysis of mixed noise types, ranging from situations in
which the measurement noise dominates out to medium r to situations in which the measurement

noise is quickly overwhelmed by clock behavior. In Combination 1 (Figures 6a-6b), we see

a case in which inspection of the initial az(r) plots (Figure 6a) reveals obvious signs of the

presence of both measurement and clock noise. The average data spacing is 2.816 days. As

Figure 6b shows, using the hybrid method provides very good estimates of the correct values

of a_(r): the largest error is only 10% of the true az(r). In addition, we do not need to know

precisely what types of noise are present (in this case, WHPM and WHFM) in order to arrive
at the final estimates for az(r). Finally, we do not attempt to obtain a value for r = 1 day.

In Combination 2, we again see signs of both measurement noise and clock noise in the initial

a_,(r) plots (Figure 7a). The average data spacing for Combinations 2 and 3 (see below) is

3.008 days. As Figure 7b shows, the hybrid method again provides a good estimate of the
correct values for this combination of WI-IPM and FLFM.

In Combination 3, it is difficult to tell if there is any measurement noise present. The ax(r)

plot of the interpolated data set exhibits a very faint downward curve as r decreases toward

1 day, but other than that, it looks like FLFM (Figure 8a). We have used both the hybrid

technique and the simple application of the FLFM corrections (Table 1). As Figure 8b shows,

the FLFM corrections work marginally better. As it turns out, the true ax(r) curve shows clear

evidence of measurement noise (WHPM) only at r = 1 day - a time interval about which we

can gain no information from the sparse (r0,a,,g = 3.008 days) data set.

CONCLUSIONS

We have used two typical TWSTFT time series data sets to investigate the impact of unevenly

spaced data on the calculation of crz(r). We have analyzed simulated data sets that have had

points removed to match the TWSTFT data patterns, a_(r) was calculated from these sparse

data sets using two techniques. One involves analyzing the sparse data as if they were evenly

spaced with an average time interval, and the second uses interpolated data to recreate an

evenly spaced data set. Correction factors for both approaches have been calculated for noise

processes ranging from WHPM to RWFM. For all of the noise processes except WI-IPM, the

values of _rffi(r) calculated with either of the two approaches converge on the correct values

at large r. However, significant errors may be introduced for small r. Finally, we suggest

techniques for estimating correct values of crx(r) in situations where the type of noise is unknown

or where more than one noise type is present.
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