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Abstract

We evaluate with simulated data a new type of sample variance for the characterization of

frequency stability. The new statistic (referred to as TOTALVAR and its square root TOTALDEV)
is a better predictor of long-term frequency variations than the present sample Allan deviation. The
statistical model uses the assumption that a time series of phase or frequency differences is wrapped

(periodic) with overall frequency difference removed. We find that the variability at long averaging
times is reduced considerably for the Jive models of power.law noise commonly encountered with

frequency standards and oscillators.

INTRODUCTION

The most common method of quantifying frequency stability between oscillators is to evaluate

the RMS of the fractional frequency changes vs. averaging time r, dubbed the Allan deviationlll.

For any sequence of average fractional frequency deviations {gt}, the widely used quantity 5u(r )

is ideally suited as a reliable, easily interpretable statistic for the characterization of frequency

stability for common kinds of FM oscillator noiselZ, 31.

There is a considerable literature on various methods and candidate statistics for the charac-

terization of relative oscillator frequency stability. Suffice it to say that for a given system and

noise, a statistic can be constructed to be nearly optimum. A single, unified approach will

have its compromises. The Allan deviation, however, has a remarkable range of applicability

in quantifying frequency and phase stability. This is because as a function of averaging time

% it is particularly well-suited in identifying the model of the trend in frequency stability or

what is called the underlying "power-law" over a range of -r values. The power-law is the

slope on a typical log-log cru('r ) plot, and _ru(v ) is suitably the RMS prediction error of fre-

quency stability. Predicting the long-term stability of a frequency reference rests ultimately on

predicting (correctly identifying) its power-law behavior. For an estimate of stability longer or
different than the measurement at hand, simply extrapolate from or directly apply an expected
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trend (power-lawslope). Lastly, we can estimate the evolution of a squared phase error a_,
proportional to _.2 times the modified Allan variance for a uniquely identified power-law slope.
This is the time variance or TVARf41.

A long-standing problem is that the best statistic, the two-sample Allan deviation, has rather

poor confidence at longer and longer T-values, where confidence is often needed most. A

new statistic has been developed which retains the intuitive simplicity of the RMS fractional

frequency changes (Allan deviation) and which has improved confidence at long-term averaging

timeslSl. The model for the new statistic uses the assumption that a time series of phase

or frequency differences is wrapped (periodic) with overall frequency difference removed[61.

Figure 1 illustrates the procedure. This variance (thus its square root) reduces estimation

errors universally seen in previous treatments, thereby providing a better estimate of frequency

stability for measurement times longer than say 20% of the data length.

We compare the response of the new statistic (as a variance) to the traditional Allan variance

by simulation of the five models of power-law noises commonly encountered with oscillators

and frequency standards. Results show that the new variance shows a promise for greatly

reduced variability hence uncertainty compared to the traditional Allan variance.

DISCUSSION

The sample Allan deviation O0(-r) and modt_0(r ) are square roots of two types of tau-domain

sample variances (AVAR and MVAR)B, 7]. They are recommended statistics in quantifying

frequency stability between oscillators. In certain situations their responses have high variability

at long averaging times -r, as indicated by traditional simulation studies using common noise types,

because the traditional sample Allan statistics are time-shift dependent. Therefore these statistics

have degraded confidence at long averaging times. The method of complex demodulation

motivates another statistic which is an improved sample variance for the characterization of

frequency stability[51. For average fractional frequency fluctuations {_3k'} = 01 .... , _0N-1 with

overall frequency difference removed, this sample variance is given by:

_o 1 - 2
& tat(r)= N 1 j 2 -1) = 0k+l,j--Yk,s ,

(1)

where (Ok'd) = 0j+1,/Tj+2,..., 0N-l, _01, 02,..., 0.i are spaced by _'0 and {.0k} is therefore

wrapped and re-indexed by j. Series {0k,j} - with unprimed k - are averages implied over

r = taro. Hence, as with traditional AVAR (and MVAR), the new sample variance trtota1^2 is
implicitly dependent on dimensionless quantity m, a scale parameter which determines -r and

which for efficiency can be limited to rational powers of 2, that is, 2" = m, i = 0, 1,2, 3,....

Measurements of relative phase differences {zk,} are preferred to average frequency {0k'} ai
in Equation (1). We have k' = 1, 2, 3,..., N and separated by interval 7"0and overall frequency

difference removed; therefore zl = ZN. Furthermore {zk,} is wrapped and assumed periodic;

hence zl = ZN+l and we eliminate the increment ZN to ZN+1 to avoid bias (see Figure 1). We
have

280



_1 M- 2m1 1 _ _ , _2]
 L,o (mro)- N - 1 2  ro (M - 2r ) + ] , (2)

where the argument in the brackets "[*]" has stride k'-m and is time-shifted by jro and

averaged for all N - 1 possible shifts. This notation centers the second-difference operation

(argument in parenthesis) at k ' with a span of +m which seems more intuitive especially

considering the wrap procedure.

STATISTICS COMPARED

The primary reasons for using 5u(r ) are that it is well-known, it is simple to calculate, it is

the most efficient estimator for FM noise, and it has a unique value for all r. The primary

disadvantage of using 5u(r) is that the results can be too conservative, sometimes very optimistic

at the long r-values. It can take much longer than the longest reportable r-values (often orders

of magnitude longer) to accurately quantify the underlying low-frequency variations between

the frequency standards being evaluatedlSl. For example, quantifying the frequency stability at,

say, r equals two weeks often requires no less than two months of actual measurement time.

We compare the new sample variance 5_ot,,l(r ) (also called TOTALVAR) to traditional AVAR

&_(r) using simulation studies of five common integer power-law noise types. These noise types
are white PM, flicker PM, white FM, flicker FM, and random walk FM. A version of _r2otal(Y)

called mod52tot,u(r) exists for MVAR; however since our present emphasis is on confidence at

long r-values, AVAR is of interest. MVAR's advantage is in distinguishing white PM from

flicker PM which usually are associated with short r-values. MVAR has no advantage for flicker

PM and beyond, which occur at long T-values. Furthermore, a chief disadvantage to MVAR is

that it only extends to 1/3 the total data length, whereas AVAR extends to 1/2 the same length.

For highly divergent noise types, the new statistic is not expected to be unbiased[ s, 91. However,

this report indicates that the new statistic essentially estimates the same unbiased quantity as

traditional AVAR for the five common integer power-law noise types but has better confidence
than AVAR.

GENERATION OF SIMULATED DATA

Most high level computer program languages can return random variables which we then order

as a time series {an}. The usual assumption is that variables are uncorrelated and normally

(Gaussian) or uniformly distributed. Thus {a,_} forms the basis for a white-noise-of-phase

process which is characterized by a constant power spectral density, S,,(f) ec fo. We build

from {an} the other four noise processes: flicker (o¢ f-l), random walk (cx f-2), flicker walk

(oc f-a), and random run (0(f-4). The treatment of non-integer power law noise types has

recently been exploredIlOl. We limit our simulations to the five common integer power laws.

Random walk of phase (RWPM) is equivalent to white noise of frequency (WHFM) and is

one integration (single summation) of {an}. Random run of phase (RRPM) is random walk
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in frequency (RWFM) and is two integrations (double summation) of {a_}. These operations

are among the simplest autoregressive (AR) procedures.

Flicker processes can be generated using an AR operation but must also include an (integrated)

moving average (MA). The ARIMA model used in generating the five integer noise processes

is adequately described by

xn : _lZn_l --I-_2xn-2 "Jr-o,n - OCLn--1,

where a,_ is an input random variable and zn is an output.

For flicker of phase (FLPM):

(3)

4)1 = 1.549,

_b2 = 0.56,

0 = 0.88

Flicker walk of phase is flicker of frequency (FLFM) and is one integration (single summation)
of an FLPM series.

As mentioned, random run of phase (or random walk FM, RWFM) could be adequately realized

as only a double summation of a,_ which means _bl = 2 and if2 = -1, and 0 = 0 in Equation

(3). Cleaner representations of RWFM are realized for 0 = v_- 21111. Thus we use:

_bl = 2,

_b2 = -1

0 = ¢5- 2= -0.268

For the simulations here, some thought went into initializing each sequence to obtain a

representation for the flicker and random run noise types, al was chosen to be between 0 and

1; xn-1, zn-2, and an-1 were derived from the end of previous simulations.

In each of the noise types, the top of Figures 2 to 6 show plots of 100 calculations of #tot_t('r)

followed below by plots of 100 calculations of #v(r) from the same 100 simulations. At the

bottom of each figure is a plot of the square root of the mean of _(_-) derived from the 100
simulations in order to see its agreement or disagreement with theory, that is, the theoretical

square root of a mean of an infinite set. Flicker of phase (FLPM) is the only type which does

not have a straight-line (log-log scale) theoretical slope owing to a logarithmic dependence on
bandwidth.
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WHITE PM (WHPM) AND FLICKER PM (FLPM) CASES

For short r-values, we usually find noise modulation of the phase (not frequency) originating

from noisy electronics not involved in the frequency-determining elements. White PM (WHPM)

noise is broadband phase noise and has little to do with the resonance mechanism. Stages ot

amplification are usually responsible for white PM noise. This noise can be kept very low with

good amplifier design, hand-selected components, the addition of narrowband filtering at the

output, or increasing, if feasible, the power of the primary frequency source.

Flicker PM (FLPM) noise may relate to a physical resonance mechanism in an oscillator, but it

usually is added by noisy electronics. This type of noise is common, even in the highest quality

oscillators, because in order to bring the signal amplitude up to a usable level, amplifiers are

used after the signal source. Flicker PM noise may be introduced in these stages. It may also

be introduced in a frequency multiplier or frequency synthesizer.

Figures 2(a) and 3(a) show 100 plots of calculations of the square root of b_o_at(r) for 100

simulations of white PM noise and flicker PM respectively. Equation (2) is used for these
calculations and N=1024 for each simulation. Each of the simulation averages of two-sample

variances at r = 1 is equal to one. Figures 2(b) and 3(b) are traditional square root of maximally

overlapped bu(r ) for the same 100 simulations. The bottom plot is the 100-simulation-total

square-root of the mean of the sample Allan variances and shows excellent agreement with

theory. The spread in the estimates is greater using AVAR instead of the new statistic b_ot,t(r).

White and flicker of PM both exhibit a r -1 slope in au(r) and hence b_ot,t(r). These noise

types differ from the others in an important regard: their amplitudes are significantly affected

by measurement (software and/or hardware) bandwidth[ 3, lau'od,,aioal. Because of this, modb2(7)

or modified Allan variance (MVAR) was invented (for analyzing phase data only, {zk,}) to take
1

full advantage of the 1Into slope in the standard variance of {zk,} for white PM and

slope for flicker PM. As mentioned earlier, we limit our present discussion to a comparison

between _r_(r) and b2tot,l(r). This is because the present interest is an improved confidence at

long r-values where more dispersive noise types are encountered and ultimately limit accurate

characterization of frequency stability. Again a significant disadvantage to MVAR is that a

single longest reportable r-value is limited to 1/3 the total measurement time; 50% more time

is required for equivalent results using MVAR vs. AVAR. It suffices to say, however, that for

white PM and flicker PM, the improvement in confidence in the long term is dramatic using

the new statistic £r2to_(r) as shown in Figures 2 and 3.

6. WHITE FM (WHFM) CASE

The cases of white FM, flicker FM, and random walk FM are of particular importance since they

are physically traceable noise types encountered in virtually all precision frequency standards,

and they often occur at long r-values.

White FM noise (au(r') o¢ r -1/2) is the type found in common passive-resonator frequency

standards. These contain a slave oscillator, often quartz, which is locked to a resonance

feature of another device which behaves as a high-Q filter. High quality cesium, rubidium,
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and passive hydrogen standards have white FM noise characteristicsllZl. 2. Howe has previously

presented results using white FM simulation that show that the new statistic TOTALVAR is an

improved estimate of the mean-square frequency deviations between oscillators, particularly at

long r-valueslSl. Figure 4 reproduces those results for the comparison here.

7. FLICKER FM (FLFM) CASE

Flicker FM (cru(r) cx r °) is a noise whose physical cause is not fully understood but may

typically be related to the physical resonance mechanism of an active oscillator, the design or

choice of parts used for the electronics, or environmental conditionsllZl. Flicker FM noise is

considered the quantum limit of resonance deviceslJ31. Flicker FM is common in the highest

quality oscillators bt, t may be masked by white FM or even white PM and flicker PM in lower

quality oscillators.

Figure 5(a) shows 100 plots of calculations of 5tot,a(r) for 100 simulations of flicker FM noise

and Figure 5(b) is the same set of calculations using traditional square-root of maximally

overlapped AVAR. The square root of the mean of the AVAR's of the 100 simulations as shown

in Figure 5(c) show a slight downward offset which can commonly occur at r = 512r0 = T/2.

Even though the power law is not exact, it is sufficient for the comparison of the spread in the

responses between &to_.,l(r) and traditional 5u(r) Again, the new statistic is preferred since it

is generally less susceptible to large variations at long T-values.

RANDOM WALK FM (RWFM) CASE

Of the five models of power-law noise types, random walk FM noise (ay(r) o( r 1/2) is most

difficult to measure since its power is concentrated mainly very close to the carrier. This

translates to near DC when considering phase differences {xk,} or average frequency differences

{_k,}. Random walk FM usually relates to an oscillator's physical environment. If random

walk FM is a predominant noise type then mechanical shock, vibration, humidity, temperature,

or other environmental effects may be causing "random" shifts in the carrier frequency[ 14, lsl.

Figure 6(a) and 6(b) are 100 plots of calculations of the square roots of 5_ot,t(r) and 5_(r)

respectively, for 100 simulations of random walk FM noise. Again, even though the simulated

power-law is assumed to be not exact as interpreted from the square root of the mean ot

AVAR's in Figure 6(c), the important point is the comparison of the spread between square

roots of TOTALVAR and AVAR (Figures 6(a) and 6(b)). And again, the square root of

TOTALVAR is preferred since the spread and skews are reduced at long r values.

CONCLUSION

We compare the response of the traditional sample Allan deviation &u(r) with a new similar

sample statistic _rtotal(r ) referred to as TOTALDEV (square root of TOTALVAR) for the five

models of integer power-law noise types. These integer noise types are white PM, flicker PM,

white FM, flicker FM, and random walk FM. Using traditional plots of sigma vs. tau and 100
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simulationsof eachnoise type, we find the variability in &tot,t(_')tobe lessthan in &y(-r)in
all cases.As a result,we can expecta reductionin the actualmeasurementtime involved to
characterizethe long-termfrequencystability of a standardor oscillator.
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Questions and Answers

JOE WHITE (NRL): Dave, what happens when you have any periodic effects in the data

that goes into this sample? Real world data, for instance, since they have diurnals and things

like that, what does that do to the confidence of this type of thing where we're wrapping it

around on itself now, and these things no longer necessarily line up particularly at the ends?

DAVE A. HOWE (NIST): Okay, well let me make a couple of comments about that, Joe.

One is that the simulations assume that there is no periodicity in the data. The Allan Statistic

is ideally suited for stochastic processes, but if there is a diurnal, then that's a problem for the
Allan Statistic.

On that, I would expect the results to be similar; that is, if there's a periodicity in the data,

then once again, as you go to longer and longer averaging times, one would expect some would

expect some nulls to occur. But actually thinking about it, maybe not. Because since this

variance is a time shift invariant variance, then I think, though, it will just show the high value

throughout the run. So, that's a good question.

JOE WHITE (NRL): Let me follow up with one more that's near and dear to my heart:

Are you ready to talk about what the error bars ought to be on this kind of data when you

do this sort of approach? You know, traditionally they run something like one over the square

root of N as a rule of thumb. What would you say here?

DAVE A. HOWE (NIST): I'm not in a position to talk about that.

DR. GERNOT WINKLER (USNO, RETIRED): I think the old question is very closely

related to the problem of how much systematics, how many systematics, do you first subtract

before you go into the statistical analysis. I remember that we discussed it about 20 years ago,

why this sudden drop in sigma tau. And Jim Barnes, in fact, at that time said that this is

inevitable as soon as you subtract a systematic part. You remove, of course, the low frequency

part; and therefore, the sigma tau has to drop at that point.

Now when you have periodic content, again the description is that before you go into statistical

evaluation, you must remove systematics. But how much, where you put that dividing line,

whether you stop at the linear substraction or a quadratic or a simple sinusoid, that is, of

course, the problem and the real question.

DAVE A. HOWE (NIST): Well, I understand. Typically, we use the model of just drift and

linear rate. That's as far as we go. We assume the rest of it is the residual noise.

I do appreciate the question, I'm not sure I can shed any more light on that. There were no

systematics in this data. There was no drift introduced.
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