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CASCADED VLSI NEURAL NETWORK 
ARCHJTECTURE FOR ON-LINE LEARNING 

What differentiate models are the actual network topologies 
and the mathematical learning formalisms. 

This application is a continuation of application Ser. No. LEARNING HARDWARE ISSUES 
071941,335, filed Sep. 4, 1992, now abandoned. 5 

While numerous learning methods exist for software 
based neural network simulators, the same is not true for 
hardware. There are several reasons for this. Most impor- 
tantly, the majority of neural learning algorithms are formu- 
lated for software implementations. They are based on 

easily adapted to analog hardware and furthermore, they 
implicitly assume that the available synaptic dynamic range 
is from 32 to 64 bits of precision. This is in contrast to analog 

to neural network archi- 15 hardware, where 12 bits or more of resolution is pushing the 
techologY. For example, let us consider the feedforward 
architecture with the backpropagation gradient descent 
learning scheme for weight adaptation. The calculation of 
the incremental weights requires not only knowledge of 

20 local synaptic weight values, but also the computation of the 
derivative of the activation function, and the knowledge of 
the network connectivity information. For on-chip hardware 
learning, synaptic weights must be stored locally. This can 

Neural network architectures typically consist of mas- be achieved, for example, with a capacitor where the syn- 
SivelY Parallel systems of Simple computational dements. 25 aptic weight is proportional to the charge on a capacitor. The 
While software-based implementations are adequate for calculation of the derivative is more comp]icated. One 
Simulating these mnlinear dYnamical Systems, the Physical possible scheme for doing it is to perturb the input signal to 
realization of the true computational Processing Power the neuron with a very weak signal and calculate the ratio of 
inherent in Such architectures Can O d Y  be unleashed with the output to input signal differences. This quantity would be 
their hardware implementation. This assumes that the elec- 3o proportional to the derivative. As can be surmised, the 
t r O N C  implementation retains the fine grained massive Par- complexity of the electronics rapidly scales up. There is, 
allelism feature inherent in the model. There are a multitude however, an additional problem of tremendous importance 
of hardware approaches Currently being takenforthe h P l e -  that is not at all related to clever circuit designs, but rather 
mentation of neural network architectures, and these tests the limits of the malog implementation medium. 
imAh-k analog approaches; biologicallY motivated Pulse- 35 Because the incremental weight updates in gradient descent- 
Stream arithmetic approaches; O P t ~ l e c ~ O n i c  approaches; based learning are often exceedingly small quantities, a large 
charge coupled device approaches; and digital approaches. dynamic range is required of the synaptic weights. Unpub- 

The application of neural networks to problems that lished results have suggested that up to 16 bits of quantiza- 
require adaptation (either from example or by self-organi- tion are typically required for the successful hardware 
zation based on the statistics of applied inputs) is among the 40 implementation for the popular backpropagation learning 
most interesting uses of neural networks. In either case, a algorithm. This is considerably higher than the range 
critical issue for any hardware implementation, is the inclu- obtained from analog fully parallel implementations to date. 
sion of either on-chip or chip-in-the-loop learning capabili- Learning with less synaptic weight precision leads to oscil- 
ties based on one or more of the current learning paradigms. lations and instability. Currently, 11 bits of resolution have 
Real-time adaptation constraints might even finther focus 45 been achieved with the synapse chips implemented by the 
the on-chip learning requirements by specifying a need for inventors herein. 
the adjustment of the synaptic weights in a fully parallel and Due to the difficulties of implementing learning in hard- 
asynchronous fashion. ware, a number of methods have been developed that use a 

Of the numerous neuromorphic learning paradigms cur- host computer to perform portions of the learning process. 
rently available, the broad majority are aimed at supervised 50 Firstly, it is possible to train the network in simulation and 
learning applications. These range from simple Hebbian then download the resulting weights into a feedforward 
models with learning rules that require local connectivity ‘production’ network. While this method results in uncom- 
information only, to complex hierarchical structures such as pensated errors as a result of mismatches between the 
the Adaptive Resonance Theory (ART) model. Intermediate simulated and actual circuits, it may only be useful for very 
in complexity are algorithms for gradient descent learning 55 small neural networks. This is especially true if the simu- 
that are most commonly applied to feedforward neural lation incorporates a first-order characterization of the hard- 
networks, and to a lesser extent to fully recurrent networks. ware. Secondly, hardware-in-the-loop learning is a method 
These gradient descent algorithms are used to train networks for taking into account all time-independent errors in a 
from examples. Whether used for implementing a classifi- neural network. Learning is controlled by the host computer, 
cation problem or a conformal mapping from one multidi- 60 but the hardware is exercised as a part of the learning cycle. 
mensional space into another, adaptation involves selecting The hardware is considered as a ‘black box’ with both input 
an appropriate set of input and output training vectors. and output channels of analog data, and of which only 
Common to any supervised learning paradigm, training is adjustable parameters are the synaptic weights. In response 
achieved by applying an input to the network and calculating to an input prompt vector, the output vector can be made to 
the error between the actual output and the desired target 65 swing to a specified value by suitable fine adjustment of the 
quantity. This error is used to modify the network weights in internal weight parameters. The effect of weight changes can 
such a way that the actual output is driven toward the target. then be measured experimentally a postejori, Le., by apply- 

ORIGIN OF INVENTION 

The invention described herein was made in the perfor- 
m ~ ~ c e  of Work under a NASA contract, and is Subject to the 

Contractor has elected not to retain title. 

TECHNICAL FIELD 

provisions of Public Law 96-517 (35 UsC 202) in which the mathematical expressions and formalisms which Cannot be 

mS invention relates 
tectures and more specifically to a neural network hardware 
architecture in which a digiM-analog hybrid synapse inte- 
grated circuit chip is cascaded with a synapse-neuon 

integrated circuit chip to achieve uniquely high reso- 
lution synaptic weights. 

BACKGROUND OF THE INVENTION 
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ing an input and measuring the output. The objective then is 
to seek incremental weight changes that cause the output to 
approach the target. Finally, both methods may be com- 
bined. An initial weight set is calculated by simulation and 
can be downloaded into the hardware. This is followed by 
chip-in-the-loop learning to compensate for differences 
between the simulation and the actual hardware. This 
approach has been pursued to train the ETANN chip (manu- 
factured by Intel) to identify upper and lower case characters 
and numerals in two different typefaces and in two different 
font sizes. 

Historically, the first hardware implementations of neural 
systems using discrete component neurons and synapses 
were the Adaline and Madaline disclosed by Bernard Wid- 
row. (See for example, “Generalization and Information 
Storage In Networks Of Adaline Neurons”, Spartan Books, 
1962). These systems utilized programmable electrochemi- 
cal weight elements in a variety of applications including 
pattern recognition and broom balancing. These network 
architectures were extremely simple topologically and could 
contain as few as a single neuron. They were capable of 
real-world applications in adaptive filtering and adaptive 
signal processing. 

The first analog single chip learning machine was the 
stochastic Boltzmann machine of Joshua Alspector et al. 
(“Performance of a Stochastic Learning Microchip”, Vol. 1, 
Morgan Kaufmann Publishers, 1989). This machine utilized 
6 analog neurons, 15 bidirectional 5-bit multiplying digital- 
to-analog converter (MDAC) synapses, and variable ampli- 
tude noise sources. The system incorporated digital counters 
and analog noise to determine correlations between the two 
neurons that the synapse connects, both when the neurons 
were clamped during training and when allowed to run 
freely during production. If the neuron states were correlated 
during training but not during production, the connecting 
synapse weight was incremented; if the opposite was true, 
the synapse weight was decremented. The training circuitry 
was essentially digital, with highly quantized weights. Up to 
a few hundred training cycles were required for correct 
classification. One of the difficulties with this chip was that 
the analog noise sources became correlated, confounding 
controlled annealing. In recent work, a digital pseudoran- 
dom shift register with multiple taps was used to obtain 
multiple noise sources that were uncorrelated over short 
windows of time. 

To date, there have been a multitude of approaches to the 
hardware implementation of neuromorphic architecture. An 
objective leading to development of the present invention 
has been to take an analog CMOS ‘building block‘ modular 
approach capable of building moderate-sized networks with 
up to a few hundred neurons and several thousand synapses 
total and implement chip-in-the-loop learning. 

The following U.S. patents and publications are relevant 
to the present invention: 
4,961,005 Salam 
4,994,982 Duranton et al 
5,004,932 Nejime 
5,053,645 Harada 
5,068,662 Guddanti et al 
5,109,275 Naka et al 
4,972,187 Wecker 
4,996,648 Jowjine 
5,047,655 Chambost et al 
5,063,601 Hayduk 
5,095,443 Watanabe 

Publication entitled “FuzzyNeural Split-Chip Personal- 
ity” Electronic Engineering Times, Apr. 2, 1990; and Pub- 
lication entitled “A Neural Chips Survey’’, AI Expert, 
December 1990. 
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4 
STATEMENT OF THE INVENTION 

The present invention comprises a variety of hardware 
neural network building block chips fabricated with 2y 
CMOS technology. The cascadable and stackable building 
block chips are fully parallel and reconfigurable and there- 
fore offer high speed. Furthermore, the synaptic memory is 
based on SRAM design and unlike capacitive synapses does 
not require refresh circuitry overhead. Disclosed herein are 
a synaptic array chip and a neuron-synapse composite array 
chip which have been successfully applied to solve a range 
of data classification and optimization problems. These 
problems often require higher resolution synapses and/or a 
larger network. The disclosed cascadable and stackable 
chips are therefore quite well-suited for such applications. 
Iterative leaming techniques, such as gradient descent, have 
been developed primarily for fixed neural architectures. On 
the other hand, the Cascade Correlation (CC) algorithm 
described by Eberhardt, Duong and Thakoor in an article 
entitled “Design Of Parallel Hardware Neural Network 
Systems From Custom Analog VLSI Building Block 
Chips”, Proc. of JJCNH, 1989, overcomes the problem of 
specifying a priori the number of hidden neurons. The 
present invention further modifies the CC algorithm into a 
hardware implementable “Cascade Backpropagation” and 
its embodiment has been applied to solving real problems. 
There are two types of building block chips disclosed herein: 
synapse chips and neuron-synapse chips. The synapse chip 
contains a 32x32 crossbar array of synapse cells in which 
each cell consists of these three blocks: V-I convertor; 6-bit 
digital-to-analog convertor; and a current steering circuit to 
provide the sign bit. 

The neuron-synapse chip also has a 32x32 synapse array 
in which one diagonal of synapses is replaced by 32 neurons 
having full connectivity. Each neuron, through three circuit 
functions (Comparator, I-V convertor, and gain controller), 
performs a nonlinear (sigmoidal) transformation on its input 
current and produces a corresponding voltage as output. 

A fully-connected network with 64 neurons is obtained by 
cascading two synapse and two neuron-synapse chips. Fur- 
thermore, by paralleling these four chips with four addi- 
tional synaptic chips (in effect paralleling each synapse of 
one chip with a respective synapse on the other) and setting 
chip gain levels accordingly, the effective dynamic range of 
weights was increased to 11 bits. In stacking two chips, one 
may be referred to as a high-order bit chip (HOB), and the 
other, a low-order bit chip (LOB). With the same input 
voltage applied to both the LOB and HOB cells, the biases 
are adjusted such that the LOB cell current is 64 times less 
than the current input at the HOB cell. This would provide 
a nominal synapse resolution of 14 bits, but the transistor 
mismatches and processing variation restrict the resolution 
to around 11 bits. The 11-bit resolution is a requirement for 
hardware-in-the-loop learning using Cascade Backpropaga- 
tion. 

By setting feedback weights to zero, a feedforward archi- 
tecture was mapped onto this system of eight cascaded 
neurochips. A new resource-allocating learning algorithm 
(Cascade Backpropagation) was used that combines Back- 
propagation with elements of Cascade Correlation. This new 
algorithm starts with a single layer perceptron, wherein 
pseudo-inverse calculated weights are downloaded and are 
then frozen. Neurons are added as hidden units one at a time 
to learn the required input to output. The added neuron 
weights are computed using a gradient-descent technique. A 
host computer sends the input to the network and reads the 
hidden unit and the output neuron outputs. Perturbing the 
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bias weights to find the change of outputs determines the 
derivatives of the hidden neuron and output neuron transfer 
curve. With the input, hidden and output neuron outputs, 
their derivatives, and the differences of actual and target 
outputs determined, the change of weights can now be 
calculated and effected through the software. The iterative 
process is repeated until the learning saturates (no change in 
output) or an iteration limit is reached. The weights are then 
frozen and a new hidden unit is added to continue the 
learning process. The learning process is ended when the 
desired degree of tolerance between target and actual output 
is reached. 

It is therefore a principal object of the present invention 
to provide a hardware implemented, on-line learning neu- 
roprocessor having cascaded integrated circuit chips to 
provide extremely high electronic synaptic weight resolu- 
tion, combined with a new learning algorithm and a hard- 
ware design that offers reconfigurability, cascadability and 
high resolution for on-line learning. 

It is another object of the invention to provide a high- 
resolution neuroprocessor architecture in which a fully con- 
nected synapse-neuron chip is cascaded with synaptic chips 
to obtain larger-size networks for on-line learning. 

It is still an additional object of the invention to provide 
a cascaded neuroprocessor system (both a lateral cascading 
to obtain larger-size networks and a piggyback synaptic 
connectivity to obtain higher bit resolutions) in which on- 
line learning is made possible by the achievement of 11 or 
12 bit resolution in electronic synaptic weights. 

Many of the terms and general concepts described herein 
may be better understood by referring to an article entitled 
“How Neural Networks Learn From Experience” by Geof- 
frey E. Hinton, Scientific American, Volume 267, Number 3, 
September 1992, pages 145-151. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The aforementioned objects and advantages of the present 
invention, as well as additional objects and advantages 
thereof, will be more fully understood hereinafter as a result 
of a detailed description of a preferred embodiment when 
taken in conjunction with the following drawings in which: 

FIG. 1 is a block diagram illustrating the building block 
approach to neuroprocessors; 

FIG. 2 is a schematic illustration of a multiplying digital- 
to-analog converter synapse chip cell showing binary coded 
current sources; 

FIG. 3 is a graphical illustration of the transfer charac- 
teristic of the cell of FIG. 2; 

FIG. 4 is a schematic diagram of a cascade-backpropa- 
gation neural networks in accordance with the present 
invention; 

FIG. 5 is a schematic illustration of a piggyback chip 
stacking architecture of the invention; 

FIG. 6 is a photograph of the synapse-neuron integrated 
circuit chip of the invention; 

FIG. 7 is a graphical illustration of the measured transfer 
characteristics of a neuron showing the sigmoidal nature of 
the curve and variable gain; 

FIG. 8 is a graphical illustration of measured neuron 
characteristics compared with theory and SPICE simulation 
results; 

FIG. 9 is a graphical illustration of the characteristics of 
a synapse showing the linearity of behavior; and 
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FIG. 10 is a schematic circuit diagram of a wide range 
neuron. 

DETAILED DESCRIPTION OF A PREFERRED 
EMBODIMENT 

Building Block Hardware Modules 

Analog hardware systems have reemerged as an important 
class of computing devices. There are several reasons for 
this. Perhaps the most exciting reason is that one can 
fabricate large-scale analog VLSI circuits that are capable of 
implementing the fully parallel architecture of neural net- 
works, thereby exploiting their inherently high speed pro- 
cessing capabilities. A further advantage of analog technol- 
ogy over digital technology is in the tremendous 
simplification of circuitry associated with the exploitation of 
the physics of the device and the consequent savings in the 
VLSI real-estate. For example, the neuronal function of 
aggregating the post-synaptic excitatoryhhibitory outputs 
and summing them prior to the application of the neuron’s 
nonlinearity is achieved in the analog domain with a bare 
wire. The same function can be achieved in the digital 
domain by using large functional blocks such as registers 
and accumulators and the corresponding software protocol. 

The general philosophy behind the present invention has 
been to synthesize large-scale analog neural network sys- 
tems from a library of VLSI ‘building block’ chips. These 
chips should be capable of being cascaded, so that it should 
be possible to directly connect synapse inputs as well as 
outputs. This implies that input values should be encoded as 
voltages, because voltage replication can be performed by 
one wire. The output values, however, must be encoded as 
currents, since synapse outputs must be summed and current 
summation can likewise be performed by using just a bare 
wire. It should be noted that this sum requires normalization 
and that the scaling factor cannot be known in advance in the 
building block paradigm. Consequently, it is necessary for 
the neuron circuit to be capable of programmable gain 
variation. Such chips can be cascaded to form networks of 
arbitrary size and connectivity. By selectively externally 
wiring chip outputs to corresponding chip inputs, feedfor- 
ward, feedback, or a combination of neural network archi- 
tectures can be carved out. This concept for a general 
purpose neuroprocessor is shown schematically in FIG. 1. 

It is important to note that very few methods exist for 
implementing analog memories in standard CMOS VLSI. 
The most obvious is to store the values as digital words, and 
use a digital-to-analog converter. The drawback of this 
approach is that the synapse cell size is too small to 
implement a high-precision digital-to-analog converter. One 
must be content with 5-7 bits of resolution accuracy. A 
second approach is to store the weights as charges on small 
on-chip capacitors and serially refresh these analog charges 
by an external download interface circuit. This interface 
circuit stores the weights in digital form in a random access 
memory (RAM) and invisibly refreshes the synapse. This 
design offers about 10-bits of resolution and meets most 
requirements. Its major drawback is the associated extensive 
downloadhefresh circuitry. Both of the above approaches 
are volatile in nature. Another approach taken for a synapse 
chip, addresses the volatility problem by storing charge in a 
nonvolatile fashion on a transistor’s floating gate using 
ultraviolet (UV) radiation. This design significantly reduces 
the complexity of the download interface and offers long- 
term nonvolatile storage of weights. However, weight writ- 
ing is a very slow process and the bit resolution obtained is 
much lower (5 to 6 bits). 



5,479,579 
7 

chip 
Multiplying Digital-To-Analog Converter Synapse 

The simplest method for implementing synapses in hard- 
ware is based on a hybrid digital-analog design which can be 
easily implemented in CMOS with a straightforward digital 
interface and analog circuit. The hybrid design utilizes 
digital memories to store the synaptic weights and digital- 
to-analog converters to perform the analog multiplication. 
This synapse design is organized as a 32x32 cross-bar array 
of synaptic cells and constructed through MOSIS using 2p 
feature sizes. The basic design and operational characteris- 
tics of the synapse chip are described as follows. Although 
earlier versions of the MDAC cell exist with less dynamic 
range, the synaptic cell described in this implementation 
consists of a 7-bit static latch and a 6-bit two-quadrant 
multiplying digital-to-analog converter (MDAC) along with 
current steering to provide the sign bit. 

A circuit schematic of the 7-bit DAC is shown in FIG. 2. 
The MDAC consists of a current input circuit, a set of binary 
weighted current sources with selecting switches Do to D, , 
and a current steering circuit with selecting switch D, 
(K). In operation, the externally generated input current is 
mirrored at each of the binary weighed current sources in the 
synaptic cell. Although a single FET transistor could have 
been used to convert the synapse input voltage into a current, 
we have preferred to employ an external resistor for this 
conversion. This results in a highly desirable linearity in the 
synaptic transfer characteristic. 

For each synaptic cell in the MDAC array, the expression 
for the current I,, flowing out of the cell as a function of 
the input current IIN (given a specific state of the latch) is 
given as follows. Recall that the current from each of the 
binary weighed current sources, I ,  is given by the quantity: 

W I N @ i )  

where (DJ gives the state of the switch Di and is either 1 or 
0, i.e., either ON or OFF. The total current from the 7-bit 
static latch is then given by 

where D6:& determines the excitatory or inhibitory con- 
figuration of the synaptic cell, and is either 1 or -1. 

Typical measured synapse response (I-V) curves for these 
hybrid 3 2 ~ 3 2 ~ 7 - b i t  chips are shown in FIG. 3 for 25 weight 
values evenly spread over the full weight range of (fi63) 
levels of quantization. The curves in FIG. 3 were obtained 
using an external 10-megaohm resistor for the I-V conver- 
sion. For input voltages greater than about twice the tran- 
sistor’s threshold voltage (-0.8 v), the synapse’s current 
output is a highly linear function of the input voltage. 

The synapse also exhibited excellent monotonicity and 

8 
HARDWARE LEARNING SYSTEMS 

WEDFORWARD NETWORKS) 

Dynamically Reconfigurable Neural Networks 

In selecting a neural network architecture, it has been 
shown that careful thought must be given to matching a 
network topology to the given problem. In fixed-topology 

10 neural networks, the allocation of too few neurons can lead 
to poor memorization, and the allocation of too many 
neurons can lead to poor generalization. 

There exists a novel class of neural network architectures 
that address this problem by permitting the assignment of 

l5 new computational elements, i.e., neurons and associated 
synapses, to a given architecture on the basis of the difficulty 
of learning a given problem’s complexity. In prior models, 
the network‘s architecture was determined a priori on 
empirical or heuristic grounds and consequently frozen prior 
to training. Three, such new architectures include the 
Resource Allocating Neural Network (RANN) of John Platt 
(See Neural Computation, 3(2), 1991), the Cascade-Corre- 
lation Neural Network (CCNN) of Scott Fahlman et al (See 
Neural Information Processing Systems, 1990) and the 
Cascade-Backpropagation Neural Network (CBNN) of Tuan 
Duong a coinventor herein. All three architectures are char- 
acterized by the dynamic assignment of neurons in a non- 
topology static network with the specific goal of reducing 
the network’s training time. The speed-up in learning is a 
consequence of the following three reasons. Firstly, all three 
architectures select a minimum network topology prior to 
training that meets the posed problem’s input and output 
requirements. Secondly, once training is initiated, new neu- 
rons are dynamically inserted into the architecture based on 

35 performance optimization. This means that the network will 
attempt to learn the input-output transformation (via a 
learning algorithm such as gradient descent) with its initial 
network configuration and if necessary assign new neurons 
to the architecture in order to minimize the error below some 
minimum acceptable tolerance requirement. Lastly, when 
presented with new external stimuli, these networks can 
learn to provide the desired response without the need for 
retraining the entire network and consequently destroying 
past learning. The techniques for achieving these desired 
results vary from model to model. 

In the 2-layer RANN architecture, Platt makes use of 
Gaussian transfer functions for the neurons having param- 
eters, i.e., center, height and width, which are locally tun- 

50 able. These neurons have local response functions, and 
depending on the Gaussian’s full-width-at-half-maximum, 
the neurons can be made to respond to input values ranging 
from a delta neighborhood away from the Gaussian’s center 
all the way to all values. It is because the neurons respond 

55 to only a small region of the space of input values that newly 
allocated neurons do not interfere with previously allocated 
neurons. This network architecture is currentlv being imule- 
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step size consistency. Based on a random sampling of merited in 
synapses from several chips, the step size standard deviation The CCNN and CBNN architectures differ from the 
due to mismatched transistor characteristics is typically less 60 RANN architecture in that they make use of the standard 
than 25%. neuron transfer function with the sigmoid activation 

A variation of this MDAC chip which was also fabricated, response, among other things. In both the CCNN and 
incorporates 32 neurons physically and electrically on the CBNN, the learning algorithm initializes the network with a 
same chip. To achieve this, the 32x32 cross-bar synaptic minimalist architecture based solely on the interface require- 
matrix was modified to physically locate the neurons along 65 ments to the external world, Le., the number of input and 
one of the diagonals, and 32x31 synapses at the nondiagonal output units. At this stage, the network topology does not 
nodes of the matrix. contain any hidden units. 

hardware. 
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The distinctions between the CCNN and CBNN models 
come about in both the training methodologies used as well 
as the subset of synapses that are subsequently trained after 
each new neuron allocation. Both algorithms assign hidden 
units one at a time to the network topology. Each new hidden 
unit receives a connection from each of the network‘s 
original inputs and also from every pre-existing hidden unit. 
In the case of the CCNN, the outputs from these new 
neurons are not connected to the network’s output neurons 
initially. The training algorithm then relies on adjusting the 
input weights to maximize the correlation between the 
neuron’s input and the residual network error. When the 
correlation score reaches a plateau, the hidden unit’s input 
weights are frozen and the unit is added to the network. The 
next stage is to retrain all the weights going to the output 
units, including those from the new hidden unit. Each new 
unit therefore adds a new one-unit layer to the network. This 
algorithm typically leads to multiple layers of hidden units 
and consequently very deep architectures. 

In the CBNN, the network architecture also forms mul- 
tiple hidden layers. Like the CCNN algorithm, the CBNN 
learning algorithm assigns hidden units one at a time to the 
network topology. The distinction between the two models 
lies in training methodology of the synaptic weight subset 
attached to the new allocated neuron. A schematic of the 
CBNN is shown in FIG. 4. Each new hidden unit receives a 
connection only from each of the network‘s original inputs 
and also from every pre-existing hidden unit. This hidden 
neuron fans-out and makes connections with each of the 
network’s original outputs. 

The learning algorithm for this problem is particularly 
simple and readily amenable to hardware implementations 
as compared to the CCNN. The network starts with a 
minimum configuration neural network with no hidden 
units. The input and output neurons are connected through a 
single synaptic block. The synaptic weights of this single- 
layer network can be calculated using a pseudo-inverse 
technique. These synaptic weights are then fixed. A new 
neuron is allocated to the network and small random weights 
are assigned to the connecting synapses. The backpropaga- 
tion learning algorithm is applied to this single-neuron/ 
single-hidden-layer problem. The weights are adjusted at 
every input pattern presentation according to the rule 

w&+l)=wt,(t)+qqJ* 

where wii is the synaptic connection strength between node 
i and node j ;  the term xi is the output of the neuron i;q is a 
gain term; and Sj is the error signal. The error term, given by 

1 E = -  z(r i -xi)* 
2 i  

is monitored during training. If the error term falls below the 
minimum acceptable value, training stops. However, if the 
error reaches an asymptotic limit well above the minimum 
acceptable value after a few hundred training cycles, the 
synaptic weights linking this new neuron to the remainder of 
the network are frozen for the remainder of the training and 
a new neuron resource is allocated, making connections to 
the original network and to all other allocated hidden layers. 
By allocating a sufficient number of new neurons, the CBNN 
can eventually represent the targeted input-to-output linear/ 
nonlinear transformation. 

10 
The feedforward network for supervised learning imple- 

menting the CBNN architecture was constructed using a 
7-bit (6-bit+sign) 32x32 synaptic array chip and a 32x31 
composite synapseheuron chip. For hardware based learn- 
ing, it has been shown that a synaptic resolution greater than 
10-bits is required. This requirement was met by cascading 
the synapse chips and composite neurodsynapse chips along 
the z direction. This architecture is shown schematically in 
FIG. 5. Chip B represents the synapse-only chip, and chip A 
is the hybrid neuron-synapse chip. 

Increasing the synaptic dynamic range was achieved in 
the following way. A suitable bias voltage for all synaptic 
cells on chip B was determined and fixed. The correspond- 
ing input current Ii per synaptic cell was measured. This 
ensures that the synaptic output current variation be over the 
range - 6 3  I ,  +63 I? The bias voltage for the synapses on 
chip A was subsequently adjusted such that the correspond- 
ing input current was I, where I,=64 I? Chip A having 
equally 7-bits of resolution results in an output current 
variation over the range -63 Ij, +63 I? As the respective 

20 synapses of the two stacked chips provide a current common 
to the output line, the synapse output is thus seen to vary 
over the range 4 0 9 5  I ,  A095 Ii thereby providing a 
nominal 13-bit (12-bit+sign) synapse. However, practical 
considerations such as mismatch reduce the effective reso- 

25 lution to about 11 bits. 
This neuroprocessor was successfully trained on the stan- 

dard benchmarks, namely the XOR and parity problems. For 
example, the XOR transformation was learned with the 
allocation of 3 hidden neurons on the average. 

This new scheme for obtaining 11 bits of synapse reso- 
30 lution is achieved by cascading a 7-bit resolution digital- 

analog hybrid synapse chip with a newly developed com- 
posite synapse-neuron chip (FIG. 6 )  consisting of a 32x31 
matrix of electrically programmable, non-volatile, fully con- 
nected, 7-bit resolution synaptic weights (FIG. 2), and thirty 

35 two diagonally placed, variable-gain neurons with sigmoidal 
transfer characteristics (FIG. 7). The neuron characteristics 
derived by circuit analysis and obtained by SPICE simula- 
tion show a very good match with those measured in 
hardware (FIG. 8). This fully connected network interfaced 

40 to a PC is configured in a feedforward architecture by 
nulling the feedback and unused synapse transconductances. 
The hardware is then used for learning the solution to the 
“exclusive or” (XOR) problem with our new learning algo- 
rithm called cascade backpropagation (CBNN) that has 

45 useful features of both BP and CC algorithms. The hardware 
indeed learns the solution by presenting four training 
examples (0,O; 0,l; 1,O; and 1,l) to it and iteratively adjust- 
ing the weights. 

5 

THE INVENTIVE CHIPS 
50 

SYNAPSE DESIGN: Implemented with a 2 - p  feature 
size CMOS VLSI process, each synapse in the two chips 
contains a two-quadrant multiplying digital-to-analog con- 
verter (DAC) based on a cascode current mirror design that 
achieves high linearity of current in its multiplying operation 
(FIG. 9). Externally addressable multi-bit static latches are 
incorporated to program the required weights into the syn- 
apse. Additionally, a current steering circuit allows bipolar 
current output (positive for excitation, negative for inhibi- 
tion), and hence a single current summing node, where an 

60 algebraic sum of synapse output currents is likely to be much 
less than the sum of their absolute magnitudes. 

NEURON DESIGN An operational amplifier imple- 
ments the required neuron transfer characteristics of sigmoi- 
dal function from its input current to its output voltage. The 

65 neuron circuit (FIG. 10) comprises three functional blocks. 
The first block consists of a comparator circuit that provides 
the thresholding sigmoidal function and compares the input 

55 
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current to a reference. The second block performs the 
currents-to-voltage conversion whereas, the third block has 
a gain controller to modify the amplifier gain, thereby 
changing the Sigmoidal slope. This feature is important in 
neural networks for simulated annealing function. The 5 
design offers four distinct regions in neuron characteristics. 
Regions 1 and 4 are the flat regions where the output nearly 
saturates for larger magnitudes of the input currents for the 
positive and negative values of the input current, respec- 
tively, and the regions 2 and 3 are the b e a r  Parts of the 
curve, again for positive and negative values of the input 
current. A smooth transition into successive regions allows 
for a monotonically increasing sigmoidal curve as input 
current to the neuron increases from a large negative value 
to a large positive value, and the output voltage is bounded 
by the rail voltages. 

CONCLUSIONS 

a synapse-neuron composite chip comprising one said 
synapse chip in which a diagonal line of synapse nodes 
within said matrix of synapse nodes is replaced by a 
plurality of neurons; 

a thresholding comparator having a sigmoidal function to 
input currents, a current-to-voltage converter and a 
variable-gain voltage amplifier circuit for adjusting 
said sigmoidal function; 

wherein said synapse chip and said synapse-neuron com- 
posite chip are connected in a parallel cascaded con- 
figuration wherein output current variation of the syn- 
apse-neuron composite chip is added to an output 
current variation of the synapse chip to provide a 

15 combined resolution commensurate with a sum of 
resolutions of both chips. 

2. The neuroprocessor as claimed in claim 1 wherein said 
synapse chip and synapse-neuron composite chip are imple- The building block approach to the construction of fully 

parallel neural networks allows the implementation of net- 2o 
a small 3. The neuroprocessor as claimed in claim 1 wherein said 

set of custom VLSI chip designs. This has made it possible SYnaPse-neurOn Composite Chip comprises a mOdified form 
to rapidly prototype application-specific neuroprocessors of said synapse integrated circuit chip wherein a diagonal 
without the need for extensive VLSI design and fabrication. line of synapse nodes in said matrix of synapse nodes is 
A critical issue however is the ease of implementing on-line replaced with a plurality of neurons in Mid synapse-neuron 
learning with chip-in-the-loop approaches. In our 25 composite chip. 
approaches, we have been able to configure hardware to 4. The neuroprocessor as claimed in claim 1 wherein each provide 11 bits of dynamic range or better. Consequently, it 
has become possible for the first time to implement analog 
neural networks with the capability for supervised learning. a thresholding comparator having a sigmoidal function to 

Having thus described a preferred embodiment of our 30 input Currents, a Current-to-voltage converter and a 
invention, what is claimed is: variable gain voltage amplifier circuit for adjusting said 

1. A neuroprocessor comprising at least one synapse chip sigmoidal function. 
formed as a matrix of synapse nodes and a 5. The neuroprocessor as claimed in claim 1 wherein said 
plurality of voltage inputs and a plurality of current outputs, SYnaPse-neuron composite Chip is configured for full con- 
each such synapse node comprising a voltage-to-current 35 nectivity wherein each neuron therein is connected to every 
converter, a two-quadrmt multiplying digital-to-analog con- other neuron including itself. 
verter, a plurality of static weighting latches and a current 

in VLsl circuits. 
of various sizes and architectures using 

of said comprises: 

steering circuit; * * * * *  


