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ABSTRACT

The present paper reports the development of the Least-Squares Finite Element Method (LSFEM) for

simulating compressible viscous flows at low Mach numbers in which the incompressible flows pose as

an extreme. Conventional approach requires special treatments for low-speed flows calculations: finite

difference and finite volume methods are based on the use of the staggered grid or the preconditioning

technique; and, finite element methods rely on the mixed method and the operator-splitting method. In

this paper, however, we show that such difficulty does not exist for the LSFEM and no special treatment is

needed. The LSFEM always leads to a symmetric, positive-definite matrix through which the compressible

flow equations can be effectively solved. Two numerical examples are included to demonstrate the method:

first, driven cavity flows at various Reynolds numbers; and, buoyancy-driven flows with significant density

variation. Both examples are calculated by using full compressible flow equations.

INTRODUCTION

In this paper, low-Mach-numbe[, compressible, viscous flOWS are of interest. Low-speed flows with

significant temperature variations are compressible due to the density variation induced by heat addition.

For example, a significant heat addition occurs in combustion related flow fields. Inside a chemical vapor

deposition reactor, Strong heat radiationais0 resuJ_s'in 'si_i_cant _density_vafiati0n._ A lihough the flow

speed is slow, one must employ the compressible flow equations to simulate such flows. However, it is

well known thai the'conventionli methods_whic_ can%andie hlgh-speed compressibl_ flows easily, fail

miserably when applied to these iow-Mach-number flows.

In the past, because0f Wide applications0f theiow-Mach-number flows, the issue of'the efficiency

and robustness of the calculations has been investigatedl Most Of the research, however, utilizes the finite

difference and finite voiumemethods; few-attempts have been made using the finite element methods.

ConVentional finite differeni_e and finite v0lume m ethOs in s_Jlving low-Mich-number flows can be

divided intotWO categories: the pressure,based methods, and the density-based methods. The pressure-

based methods have their root in the SIMPLE type algorithm. Essentially, a staggered grid has to be

employed, i.e., the pressure and velocities are stored at different nodes. In addition, one usually has

to employ a pressure Correction equation (or otherderived equation) instead of the original continuity
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equation when solving the equation set. This approach, to some extent, is similar to the Galerkin mixed

finite element methods for incompressible Navier Stokes equations. In the Galcrkin mixed method,

different elements have to be used to interpolate the velocity and the pressure in order to satisfy the LBB

condition for the existence and stability of the discrete solution. Moreover, this approach results in an

asymmetric, non-positive-definite coefficient matrix which can not be effectively solved by using iterative

methods.

On the other hand, the density-based methods use the same nodes for the velocities and the pressure.

Merkle et al. have successfully developed several density based methods for both low-Mach-number

flows and all-speed flows. These methods are an extension of the computational schemes for high-speed,

compressible flows. All these aerodynamic codes are designed based on the hyperbolic characteristic

of the Euler equations; the viscous terms are effective only in a small portion of the domain and are

interpreted as the damping of the numerical waves. When simulating low-Mach-number flows, however,

the flow field is no longer dominated by the inviscid flow. The conventional aerodynamic codes encounter

insurmountable slow-down. As a result, various treatments have been developed to enhance the efficiency.

These treatments stem from preconditioning the jacobian matrices of the convective terms in the flow

equations to improve their condition numbers. Usually, two steps are involved. First, according to Chorin,

one adds a temporal derivative of pressure together with a multiplicative variable/L i.e., the pseudo-

compressibility term, to the continuity equation. As a result, numerically viable time derivative terms

exist in every equation even for flows at the low-speed (incompressible) limit. Consequently, based on the

inviscid terms of the flow equations, the resultant equations become hyperbolic. And, a numerical method

for a hyperbolic system can be employed to advance the system in time.

Since the transient solution is not of interest, one can enhance the computational efficiency by tuning up

the propagation speed and damping etTect of numerical waves So tha(tlae calculationcan reach steady state

faster. This is done by premultiplying a preconditioning matrix to the equation set. The eigenvalues of the

convective-term Jacobian matrices are scaled to the same order of magnitude. Therefore, the stability of

numerical waves is ensured and the time marching process is under control.

However, it is obvious that when iow-Mach-number flows are of interest, the viscous terms play an

important role and the flow system is elliptic. When using the preconditioning technique, one fabricates

an artificial hyperbolic system in order to employ a time marching scheme to advance the system to a

steady state. In other words, the preconditioning method is based on conditioning the inviscid part of the

governing equations. For low speed flows, the viscous terms demand an implicit treatment due to the

infinite- fast cimracteristic speed- _ereforef_-i_erkle indi_c_ated that th-e real effect of the preconditlonlng

matrix when using an implicit scheme is to eliminate the numerical stiffness caused by the approximate

factorization. For unstructured grid solver, it is largely unclear what will be the effect of this type of

p_reconditioning technique and certainlY more study is needed.

In the finite element methods, fewer attempts have been carried out on calcuiating low-Math-number
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flows. For flow fields inside chemical vapor deposition reactors, Einset and Jensen developed a low-Mach-

number formulation which was then solved by a Galerkin mixed method. In developing the low-Mach-

number formulation, Einsted et al. proposed a correlation between the density and temperature based on

the low-speed condition. The density in the governing equations was then replaced by the temperature.

The equation set was solved by a mixed method which results in an asymmetric, non-positive-definite

coefficient matrix. Einsted et al. inverted the matrix by the conjugate gradient squared (CGS) method and

the generalized minimal residual (GMRES) method.

Because the Iow-Mach-number flows are closely related to the incompressible flows, it may be worth-

while to briefly review other treatments developed for the incompressible flows. On the finite difference

setting, Chorin proposed to use a fractional step procedure to solve the incompressible flow equations.

Later on, it was pointed out by Schneider et al. and Kawahara et al. that, by using the fractional step

procedure, the restrictions imposed by the LBB condition for mixed formulation no longer apply. Various

finite element schemes based on this procedure have been successfully developed and applied to incom-

pressible flows using equal order interpolation. Other approaches, such as the Galerkin Least Squares

method proposed by Hughes et al and Sampaio are shown to have similar effects. A wider interpretation

of such schemes are described by Zienkiewicz and Wu. In addition, the fractional step procedure have

been extended by Zienkiewicz and Wu to high speed compressible Navier-Stokes equations and shallow

water equations

In this paper, a new formulation is proposed for the low-Mach number flows, in which the unknowns

includes variables such as the vorticity, the pressure variation, and the divergence of velocity. With proper

nondimensionalization, the magnitude of each term in the governing equations, which depends on the

Mach number of the flow field, can be clearly discerned. As a result, a set of equations suitable for

iow-Mach-number flows is derived.

We employ the LSFEM as the numerical scheme to solve the low-Mach-number flows. This approach

is an extension of the the LSFEM for incompressible flows which has been developed by Jiang et al.

The LSFEM always leads to a symmetric, positive-definite matrix which can be efficiently inverted by an

iterative scheme such as the conjugate gradient method. In the present paper, however, a direct solver is

employed because the formulation and the feasibility of the LSFEM for low-Mach-number flows are of

interest instead of the computational efficiency.

We present the governing equations to be solved by the LSFEM. In order to use simple C" elements,

we convert the second-order transport equations to first-order ones by introducing new variables into

the equations. Then, the system of equations are nondimensionalized for low-Mach-number flows. In

the paper, the implementation of the LSFEM is elaborated in detail. The temporal derivative terms of

the flow equations are discretized by the Euler implicit method. Although, the transient solution is not

of interest, the temporal derivative terms serves as a relaxation scheme for marching towards a steady

state. The nonlinear terms are linearized by Newton's method. The discrete equations are formulated
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in an increment form which is then solved by the LSFEM. In the last section, two numerical examples

are presented: driven-cavity flows at various Reynolds numbers, and buoyancy-driven flows at various

Rayleigh numbers. Both cases are calculated by using the compressible flow formulation.
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