L=
View metadata, citation and similar papers at core.ac.uk brought to you by:z CORE

provided by NASA Technical Reports Server

N95- 70894

The Least-Squares Finite Element Method for
Low-Mach-Number Compressible Viscous Flows

Sheng-Tao Yu
NYMA Technology, Inc.
NASA Lewis Research Center

[

ABSTRACT

— The present paper reports the development of the Least-Squarcs Finite Elcment Method (LSFEM) for
- simulating compressible viscous flows at low Mach numbers in which the incompressible flows pose as
an extreme. Conventional approach requires special treatments for low-speed flows calculations: finite
difference and finitc volume methods are based on the usc of the staggered grid or the preconditioning
technique; and, finite element methods rcly on the mixed method and the operator-splitting method. In
this paper, however, we show that such difficulty does not exist for the LSFEM and no special treatment is
nceded. The LSFEM always leads to a symmetric, positive-definite matrix through which the compressible
flow equations can be effectively solved. Two numerical examples are included to demonstrate the method:
first, driven cavity flows at various Reynolds numbers; and, buoyancy-driven flows with significant density
variation. Both examples are calculated by using full compressible flow equations.
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INTRODUCTION

_In this paper, low-Mach-number, compressible, viscous flows arc of interest. Low-speed flows with
significant temperature variations are compressible due to the density variation induced by heat addition. |
For example. a s1gmﬁcant heat addition occurs in combustlon related flow fields. lnsnde a chemical vapor
deposition reactor, strong heat radiation also results in significant density vanatlon " Although the flow
speed is slow, one must cmploy the compressnble flow equations to simulate such flows. However, it is
well known that the conventional mcthods ‘which can handle high- speed compressible flows easily, fail
miserably when applied to thesc low-Mach-number flows.

In the pabt because of wide apphcatlons of the low-Mach-number flows, the issue of the cfficiency
and robustness of the calculations has been mvestlgated Most of the research, however, utilizes the finite
difference and finite volume methods; few attempts have been made using the finite clement methods.
Conventional finite difference and finite volume methods in solving low-Mach-number flows can be
divided into two categories: the pressure-based methods, and the density-based methods. The pressure-
based methods have their root in the SIMPLE type algorithm. Esscntially, a staggered grid has to be
employed, i.e., the pressure and velocities are stored at different nodes. In addition, one usually has
to employ a pressure correction equation (or other derived equation) instead of the original continuity
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cquation when solving the cquation sct. This approach, to some cxtent, is similar to the Galerkin mixed
finite element methods for incompressiblc Navier Stokes cquations. In the Galerkin mixed method,
different elements have to be uscd to interpolate the velocity and the pressurc in order to satisfy the LBB
condition for thc existcnce and stability of the discrete solution. Moreover, this approach rcsults in an
asymmetric, non-positive-definite coefficient matrix which can not be cffectively solved by using iterative
methods.

On the other hand, the density-based mcthods use the same nodcs for the velocitics and the pressure.
Merkle et al. have successfully developed scveral density based methods for both low-Mach-number
flows and all-specd flows. Thesc mcthods are an extension of the computational schemes for high-speed,
compressible flows. All thesc acrodynamic codes are designed based on the hyperbolic characteristic
of the Euler equations; the viscous terms are effective only in a small portion of the domain and are
interpreted as the damping of the numerical waves. When simulating low-Mach-number flows, however,
the flow ficld is no longer dominated by the inviscid flow. The conventional aecrodynamic codes encounter
insurmountable slow-down. As a result, various trcatments have been developed to enhance the efficiency.
These treatments stem from precondltlonmg the Jacoblan matnees of the convective terms in the flow
cquations to improve their condition numbers. Usually, two steps arc involved. First, according to Chorin,
one adds a temporal derivative of pressurc together with a multiplicative variable /3, i.c., the pseudo-
compressibility term, to the continuity equation. As a result, numerically viablc time derivative terms
exist in every equation even for flows at the low-speed (incompressible) limit. Conscquently, based on the
inviscid terms of the flow cquations, the resultant cquations become hyperbolic. And, a numerical method
for a hyperbolic systcm can be employed to advance the system in time.

Since the trans1ent solution is not of intercst, one can enhance the computatlonal eﬁic:ency by tumng up
the propageflon speed and dampmg effect of numerical waves so that the calculation can reach stcady state
faster. This is done by premultiplying a precondltlonmg matnx to the equation set. The eigenvalues of the

convectlve-term Jacobian matrices are scaled to the same order of magmtude ‘Therefore, the stability of

numerical waves is ensured and the time marchmg process is under control.

However it is obvious. that when low-Mach number flows are of interest, the viscous terms play an

lmportant role and the flow system is elliptic. When using the precondmomng techmque, onc fabricates

an ert;ﬁcnal hyperbollc system in order to employ at time marchmg scheme to advance the system to a

steady state. In other words, the precondltlonmg method is based on condmomng the inviscid part of the

govemmg equations. For low speed f ﬂows, the viscous terms demand an implicit treatment due to the
infinite fast characteristic speed. Thercfore, as Merkle indicated that the real effect of the precondltlonmmér
matrix when using an implicit scheme is to eliminate the numerical stiffness caused by the approximate
factorization. For unstructured grid solver, it is largely unclear what will be the effcct of this type of
preconditioning technique and certalnly more study is needed.

In the finite element methods, fewer attempts have becn carncd out on calculatmg Iow-Mach number
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flows. For flow fields insidc chemical vapor deposition reactors, Einset and Jensen developed a low-Mach-
number formulation which was then solved by a Galerkin mixed mcthod. In developing the low-Mach-
number formulation, Einsted ct al. proposed a corrclation between the density and temperature based on
the low-speed condition. The density in the governing equations was then replaced by the tempcerature.
The equation set was solved by a mixed method which results in an asymmetric, non-positive-definite
coefficient matrix. Einsted et al. inverted the matrix by the conjugate gradient squared (CGS) method and
the generalized minimal residual (GMRES) method.

Because the low-Mach-number flows arc closcly rclated to the incompressible flows, it may be worth-
while to briefly review other treatments developed for the incompressible flows. On the finite difference
setting, Chorin proposed to usc a fractional stcp procedure to solve the incompressible flow equations.
Later on, it was pointed out by Schneider et al. and Kawahara et al. that, by using the fractional step
procedure, the restrictions imposed by the LBB condition for mixed formulation no longer apply. Various
finite element schemes based on this procedurc have been successfully developed and applied to incom-
pressible flows using equal order interpolation. Other approaches, such as the Galerkin Least Squares
method proposed by Hughes et al and Sampaio are shown to have similar effccts. A wider intcrpretation
of such schemes are described by Zienkiewicz and Wu. In addition, the fractional step procedure have
been extended by Zienkiewicz and Wu to high speed compressible Navier-Stokes cquations and shallow
water equations

In this paper, a new formulation is proposed for the low-Mach number flows, in which the unknowns
includes variables such as the vorticity, the pressure variation, and the divergence of velocity. With proper
nondimensionalization, the magnitude of each term in the governing equations, which depends on the
Mach number of the flow field, can be clearly discerned. As a result, a set of equations suitable for
low-Mach-number flows is derived.

We employ the LSFEM as the numerical scheme to solve the low-Mach-number flows. This approach
is an extension of the the LSFEM for incompressible flows which has been developed by Jiang et al.
The LSFEM always leads to a symmetric, positive-definite matrix which can be efficiently inverted by an
iterative scheme such as the conjugate gradient method. In the present paper, however, a direct solver is
employed because the formulation and the feasibility of the LSFEM for low-Mach-number flows are of
interest instcad of the computational efficiency.

We present the governing cquations to be solved by the LSFEM. In order to use simple C'° elements,
we convert the second-order transport equations to first-order ones by introducing new variables into
the equations. Then, the system of equations are nondimensionalized for low-Mach-number flows. In
the paper, the implementation of the LSFEM is elaboratcd in detail. The temporal derivative terms of
the flow equations are discretized by the Euler implicit method. Although, the transient solution is not
of interest, the temporal derivative terms serves as a relaxation scheme for marching towards a steady
state. The nonlinear terms are linearized by Newton’s method. The discrete equations are formulated
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in an increment form which is then solved by the LSFEM. In the last section, two numerical examples
are presented: driven-cavity flows at various Reynolds numbers, and buoyancy-driven flows at various
Rayleigh numbers. Both cascs are calculated by using the compressible flow formulation.
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