
111111 11111111 1111111111111 11111 Ill11 11111 Ill11 11111 11111 llllll111111111111
United States Patent
Loftin et al.

[54] GENERAL PURPOSE ARCHITEcmTRE FOR
INTELLIGENT COMPUTER-AIDED
TRAINING

[75] Inventors: R. Bowen Loftin, Houston; Lui Wang,
Friendswood; Paul T. Baffes,
Houston; Grace C. Hua, Webster, all
of Tex.

represented by the Administrator of
the National Aeronautics and Space
Administration, Washington, D.C.

[73] Assignee: The United States of America as

[21] Appl. No.: 545,235

[22] Filed: Jun. 28,1990

US0053 1 1422A

[I 13 Patent Number: 5,311,422
[451 Date of Patent: Mas 10, 1994

Lyndon B. Johnson Space Center, Houston, Tex., pp.
53-59.
“An Intelligent Training System for Payload-Assist
Module Deploys,” R. B. Loftin, L. Wang, P. Baffes &
M. Rua, Proceedings of the SPIE 1987 Cambridge
Symposium on Advances in Intelligent Robotics Sys-
tems, Nov. 1-6, 1987, Cambridge, Mass., pp. 83-89.

(List continued on next page.)

Primary Examiner-Roy N. Envall, Jr.
Assisrant Examiner-A. Bodendorf
Atzorney, Agent, or Firm-Hardie R. Barr; Guy M.
Miller; Edward K. Fein

D71 ABSTRACT
A training system for use in a wide variety of training
tasks and environments comprising a user interface

the task environment which allows the trainee to assert
actions to the system; a domain expert which can use
the same information available to the trainee and carry
out the same task; a training session manager for evalu-
ating such trainee assertions and providing guidance to

1511 Iat. (3 . 5 .. GO6F 15/52
[52] U.S. Cl. 364/401; 364/578
[58] Field of Search 364/578; 434/224, 335, the Same to a trainee in

434/262; 395/23, 53, 68

[561 References Cited
U.S. PATENT DOCUMENTS

3,311,995 4/1967 Hudson 35/12
4,337,048 6/1982 Hatch et al. 434/219
4,538,994 9/1985 Suzuki et al. 434/219

....................... 4,545,167 10/1985 Suzuki et al. 434/224
4,613,952 9/1986 McClanahan
4,622,013 11/1986 Cerchio 434/118
4,623,312 1111986 Crawford 43412.24
4,730,259 311988 Gallant 364/513
4,776,798 10/1988 Crawford 434L224 fact base for communication between the other compo-
4,905,163 2/1990 Garber et al. 395163

4,949,267 8/1990 Gerstenfeld et al. 364/439 ice trainees. Also, the training session manager com-
prises “intelligent” error detection and error handling 4,964,125 10/1990 Kim 37V15.1

4,965,743 10/1990 Malin et al. 364/513
4,977,529 12/1990 Gregg et al.
4,979,137 12/1990 Gerstenfeld et al. 364/578 language having a control structure using a specific
5,016,204 5/1991 Simoudis et al. 364/578 message passing protocol for tasks which are proce-
5,101,362 3/1992 Simoudis 395/53

reach “the solution” by any of a number of alternate
valid paths.

the trainee appropriate to his acquired skill level; a
trainee mode] which contains a history and summary of
the trainee actions; an intelligent,training scenario gen-

364/578 erator for training exer-
cises based On the current level and any weaknesses
Or deficiencies that the trainee has exhibited in Previous
interactions; and a blackboard that provides a common

nents of the system. The domain expert contains a list of
4,907,973 3/1990 Hon 436/262 “ma]-ru]es” which typifies errors usually made by nov-

....................................
364/578 components* The present invention a

dural or step-by-step in structure. The trainee may

OTHER PUBLICATIONS
“An Intelligent Training System for Payload-Assist
Module Deploys,” R. B. Loftin, L. Wang, P. Baffes &
M. Rua, Proceedings of the First Annual Workshop on
Space Operations Automation, and Robotics, Aug. 5-7,
1987, National Aeronautics and Space Administration, 29 Claims, 35 Drawing Sheets

TRAINEE

Y

/ + ,
P

https://ntrs.nasa.gov/search.jsp?R=19940030995 2020-06-17T23:42:01+00:00Z

5,311,422
Page 2

OTHER PUBLICATIONS
“An Intelligent Training System for Space Shuttle
Flight Controllers,” R. B. Loftin, L. Wang, P. Baffes, &
G. Hua, Proceedings of the 1988 Goddard Conference
on Space Applications of Artificial Intelligence, May
24, 1988, NASA Goddard Space Flight Center, Green-
belt, Md., pp. 3-15.
“An Intelligent Training System for Space Shuttle
Flight Controllers,” R. B. Loftin, L. Wang, P. Baffes, &
G. Hua, Informatics and Telematics, vol. 5, No. 3, pp.
151-161.

“Simulation Scienaro Generation for Intelligent Train-
ing Systems,” R. B. Loftin, L. Wang, & P. Baffes, Pro-
ceedings of the Third Artificial Intelligence and Simula-
tion Workshop, Aug. 22, 1988, St. Paul, Minn., pp.

“An Intelligent Training System for Space Shuttle
Flight Controllers,” R. B. Loftin, L. W a g , P. Baffes &
G. Hua, Proceedings of the 1989 American Association
for Artificial Intelligence Conference on Innovative
Applications of Artificial Intelligence, Mar. 28-30,
1989, Stanford University, pp. 1-8.

69-74.

U.S. Patent May 10,1994 Sheet 1 of 35

TRAIN E E
I

L- r' USER F4'
INTEFFACE '1

- f - -.-GO
/ @

,-\BLACK BOAR^.-
I I

30 I I

I' TRAINEE - \

'L. F"\

TRAINEE EVALUATOR

20-4,

5,311,422

I :.I TSG I
I EXPERT I

FIG. 1A

U.S. Patent May 10, 1994 Sheet 2 of 35 5,311,422

W
W z- a
U
I-

--- I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I

$ 1 I
I
I

2 1
I
I
I

8

1

1
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I k (-L

U.S. Patent

ro

I

Q

May 10,1994 Sheet 3 of 35

W

z
U
3

U
w
I-

w cn
w
-I
P

z
P

5
a

5,311,422

4

c5

N

n
E4

U.S. Patent

k J

Io

u
.s,

I

U
a

May 10, 1994 Sheet 4 of 35 5,311,422

U.S. Patent May 10, 1994 Sheet 5 of 35 5,3 11,422

a
3
Y
0

I-
3
a
0

a
3
Y
0 s
ts
W
I cn
Y oc
0
3

B
W -
I-
W
(3 oc
I-
a

r a
W
U
W
I- m
5

W

I +

V-OVO,O I
000000 I
000000 I

+ II

(3
F
a
W
(I)

I
I
I
I
I

I
I
I
I

II

z
U c

I

I
I
I
1
I

I
I
I

II

z is

I
a
I
I
I
1 >

a II
5
W
n

I - I I I I

1 1 1 1 I
I I I I I
I 1 1 1 I
1 1 1 1 I

1 1 1 1 I
I l l 1 II

I! II II II 0
: : : : g

w I

X
h >
h a

US. Patent May 10,1994 Sheet 6 of 35 5,311,422

U.S. Patent May 10, 1994 Sheet 7 of 35 5,3 11,422

U.S. Patent May 10,1994 Sheet 8 of 35 5,3 11,422

21
PI
ZI

U.S. Patent May 10,1994

(A) PREVIOUS ENVIRONMENT
FACTS TRIGGER RULES IN
DOMAIN EXPERT

(B) POSSiBLE CORRECT ACTIONS
ASSERTED AS OPTIONS ON THE
BLACKBOARD

(C) ANY SPECIAL REQUESTS OR

Sheet 9 of 35 5,3 1 1,422

BLACKBOARD llME
ENV. FACT 1
ENV. FACT 2
ENV. FACT 3 A* - - - - - - - - . - STEP N

ENV. FACT 2

oPiiot;r i *
OPTION 2

a . .
ERRORS ARE HANDLED HERE BY ------,

a THE TRAINING SESSION MANAGER

BY OR FOR THE TIWNEE MATCHES
(D) EVENTUALLY, AN ACTION TAKEN

AN OPTION AND IS REASSERTED
AS A NEW ENVIRONMENT FACT

ENV. FACT 3
ENV. FACT 4,

opiiorj i
TRAiNEE ACTION

OPTION 3

(E) UNUSED OPTIONS
DELETED BEFORE
NEXT STEP

BLACKBOARD NOW READY FOR
THE NEXT STEP; ENVIRONMENT
HASBEENUPDATEDTOREFLECT
TRAINEE ACTION

ENV. FACT 1
ENV. FACT 2
ENV. FACT 3

OPTION 1

OPTION 3

ENV. FACT 3
ENV. FACT 4

ENV. FACT 1

FIG. 3

US. Patent May 10,1994 Sheet 10 of 35 5,3 11,422

DETAILS FROM TRAINEE ERROR, THEN
ASSERTS ERROR MESSAGE SPECIFICS
TO BLACKBOARD

TRAINEE ERROR *

EVENT 1
EVENT 2
EVENT 3

. - OPiiON - - *

DOMAIN * OPTION 2-+ EXPERT
OPTION 3 MAL-RULES

I * * '

HISTORY OF ALL
TRAINEE ERRORS
STORED IN THE
TRAINEE MODEL

PREVIOUS ERRORS - MADE DURING

- - - - - -

ERROR HANDLER SECTION OF

(B) PAST HISTORY AND
CURRENT SESSION
COMBINED TO SET
RESPONSE

6 RESPONSE TO TRAINEE

FIG. 4

U.S. Patent May 10,1994 Sheet 11 of 35 5,3 11,422

(A) IF TRAINEE INPUT IS NOT A
SPECIAL REQUEST AND DOES
NOT MATCH A DOMAIN EXPERT
OPTION, THE ACTION IS SPLIT
FOR THE ERROR DETECTOR

(B) GENERAL AND SPECIFIC
RULES DETECT ERRORS
WHICH ARE ASSERTED
TO THE BLACKBOARD

(C) ONLY ONE ERROR, THE
MOST SPECIFIC, IS PASSED
ON TO THE ERROR HANDLER

TRAINEE ACTION

SPECIAL REQUEST GOOD MATCH

SPLIT TRAINEE ACTION INTO
ACTION/ARGUMENT PAIRS

ERROR SELECTION

U.S. Patent May 10,1994 Sheet 12 of 35 5,311,422

TRAINEE TEMPLATE- I

>
<STEP-TEMPLATE-2>.. .)

STEP SEQUENCE (csv-I CSV-2....)

SESSION LEVEL csv
csv
(<TRAINEE TEMPLATE),..)

STEP- TE PLATE- I

NAME csv
ACTION TEMPLATE <ACTION-TEMPLATE- I >
HELP DEFINITION <HELP-DEFINITION- I >

ACTION- TEMPLATE-I

REQUIRE ACTION <ACTION-DESCRIPTION-I>

I -. OPTIONAL ACTIONS (<ACTlON-DESCRIPTlON-2>
<ACTION-DESCRIPTION-3>

. . e .)

U,S, Patent

csv
csv
csv
csv
csv

EXPLAIN LAST CONTEXT
EXPLAIN CURRENT CONTEXT

BACKUP TO LAST CONTEXT
EXPLA1N LAST CONTEXT

i

May 10, 1994 Sheet 13 of 35 5,3 11,422

<ACTION DESCRIPTION>

I csv ACTION NAME

<ERROR CATEGORY-1.

<ERROR-CATEGORY-1 >

csv
csv
csv
csv
csv
csv
csv
csv

GENERAL OUT OF CONTEXT FORWARD
SPECIFIC OUT OF CONTEXT FORWARD

SPECIFIC BAD ARGUMENT
SPECIAL AVOID
NOT TAKEN
UNKNOWN csv

FIG, 5B

US. Patent May 10,1994 Sheet 14 of 35

f Trainee Model 1

Inputs for the storage

210 value to be stored (V)

-220

5,311,422

Place the new value V
into the appropriate
slot

F I G , 6

U,S, Patent

GET CURRENT LEVEL
GET LIST OF STEPS

May 10,1994

PARSE THE INPUT FOR
THE INCOMING STEP

Sheet 15 of 35 5,311,422

ALLOCATE A NEW
STEP TEMPLATE '

r

4 RETURN THE OLD STEP
TEMPLATE

GOT0 RA

&NO

RETURN HELP TEMPLATE

FIG. 7

U,S, Patent

l%ROR PRFZNT

May 10,1994

e

RETURN REQUIRED ERROR
CATEGORY TEMPLATE

Sheet 16 of 35

>
NORMAL
ACTION

5,311,422

RETURN REQUIRED ACTION
DESCRIPTION TEMPLATE

ERROR PRESENT > RETURN OPTIONAL ERROR
CATEGORY TEMPLATE

FIG, 7A

>
NORMAL
ACTION

RETURN OPTIONAL ACTION
DESCRIPTION TEMPLATE

U.S. Patent May 10,1994 Sheet 17 of 35 5,311,422

GET PREVIOUS VALUE

SET VALUE TO 0 OR

ON SLOT TYPE
+ NULL, DEPENDING

APPEND NEW VALUE V
TO THE LIST OF PREVIOUS
VALUE@)

RETURN TEMPLATE WITH
UPDATED VALUE

FIG. 8

U.S. Patent May 10,1994 Sheet 18 of 35 5,311,422

BASIC TASK MlXlN

SLOT: TYPE
SLOT: LOWER BOUND
SLOT: UPPER BOUND
SLOT: LIST RESOURCE OBJECT

SLOT NAME PROCEDURE: SELECT FUNCTIONS F- SLOT TYPE
SLOT: LOWER BOUND

PROCEDURE:
SELECT FUNCTIONS

FIG. 10

FIG. 9

U,S. Patent

31 8 1

May 10,1994

TRAINING SCENARIO
CREATED

ICAT SYSTEM

320x TRAINEE OR
SUPERVISOR ENTERS

NAME AND

ENVl RONM ENTAL FACTS
DESCRIBING SCENARIO

ASSERTED TO I

Sheet 19 of 35

326- (-31 4

5,311,422

SYSTEM CLOCK
INITIALIZED

N e

PASSWORD
I

GO TO
1B

SUPERVISO 4%

328'

TRAI'NEE I

FDO MAIN
MENU WRllTEN

TO SCREEN

I I

I

TSG EXAMINES
TRAINEE MODEL

31 6 DEPLEX ASSERTS

TRAINEE ACTIONS
3 3 0 x EXPECTED

FIG, 1 lA

U.S. Patent May 10,1994

1-1 TRAINEE MAKES 334
AN INPUT

NO

N b c, WORKSHEET YES

Lo

Sheet 20 of 35 5,3 11,422

.p.
YES {%I

ACTION TAKEN
WITH PARAMETERS

7 3 5 8

TSM COMPARES
TRAINEES

ACTION/PARAMETER
PAIR WITH EXPECTED

AIP PAIR

TRAINEES
ACTIONPARAMETER

PAIR IS MATCHED
WITH DEPLEX

ASSERTION VIA
APPROPRIATE
CHECKPOINT;

SEE FIGURE 19
FOR MORE DETAIL

(3
FIG. 11B

U.S. Patent May 10, 1994 Sheet 21 of 35 5,311,422

I
WRITE ACTION/

PARAMETER PAIR TO
SYSTEM WINDOWS OR
RESPOND WITH ERROR

MESSAGE

7370

RETRACT PREVIOUS
DEPLEX

ASSERTIONS

UPDATE SCENARIO
CONTEXT

374

DEPLEX ASSERTS
EXPECTED

TRAINEE ACTIONS
TO BLACKBOARD

FIG. 11C

U.S. Patent

&

May 10,1994

LOGOUT TRAINEE; GENERATE AND DISPLAY
UPDATE TRAINEE END OF SESSION

Sheet 22 of 35

e

5,3 11,422

SELECTS CURRENT ENVIRONMENT
~

BACKUP -, FROM BLACKBOARD

-
FACTS RETRACTED PREVIOUS STEP

MENU -

ALL TRAINEES
OR DATA FOR A

SYSTEM PROMPTS FOR
AND EXCEPTS
SUPERVISORS

PASSWORD

@-

SUMMARY OF
ALL TRAINEES

INITIALIZE TRAINEE
MODEL

FOR NEW TRAINEE

TRAINEE SELECTS THE 7

APPROPRIATE FLIGHT -
CONTROLLER POSITION
FOR A RESPONSE TO A

SPECIFIC REQUEST

TRAINEE TYPES IN MESSGE IN
RESPONSE TO A MESSAGE SENT

FROM ANOTHER FLIGHT CONTROLLER

I ' 'MODEL I I REPORT
- I

TRAINEE SELECTS A
SPECIFIC DISPLAY '

FROM A MENU LIST

DISPLAY IS CREATED, BASED ON
CURRENT CONTEXT, AND SENT

TO THE USER INTERFACE

SPECIFIC
TRAINEE

U.S. Patent

MENU OF SUPERVISOR

ITEM; DATA IS
SUMMARY DATA - SELECTS
AVAl LABLE' IS

DISPLAYED ~ DISPLAYED

May 10, 1994

RETURN TO
MENU TO END
SESSION OR
CONTl N U E

Sheet 23 of 35 5,3 11,422

TRAINEE
SUMMARY

I
MENU OF

SUMMARY DATA
AVAILABLE** IS

DISPLAYED
I

SUPERVISOR
SELECTS

ITEM; DATA IS
D ISP LAY ED

RETURN TO
MENU TO END
SESSION OR
CONTl N UE

SUPERVISOR
SELECTS

ITEM; DATA IS
DISPLAYED

RETURN TO
MENU TO END
SESSION OR
CONTl N U E

FIG. 11E

US. Patent May 10,1994 Sheet 24 of 35 5,3 11,422

THE FOLLOWING LISTS ARE NOT EXCLUSIVE; THE SYSTEM DESIGN CAN
SUPPORT ADDITIONAL ITEMS THAT MIGHT BE DEEMED IMPORTANT FOR
DIFFERENT TRAINING TASKQENVIRONMENTS.

*THE MENU ITEMS AVAILABLE ARE:

LIST OF ACTIVE TRAINEES
PROFILE OF PROGRESS

BAR CHART SHOWING NUMBERS OF TRAINEES AT EACH
COMPETENCY LEVEL

COMPETENCY LEVEL GROUPINGS OF ACTIVE TRAINEES
LIST OF TRAINEES BY LEVEL

LIST OF TRAINEES BY TRAINING TIME
LET OF TRAINEES BY NUMBER OF SESSIONS COMPLETED
GRAPH OF AVERAGE TIME PER SESSION VS. SESSION NUMBER
PROFILE OF ERROR TYPES

BAR CHART SHOWING NUMBERS OF TRAINEES MAKING EACH
TYPE OF ERROR WITH A SELECTABLE FREQUENCY

"THE MENU ITEMS AVAILABLE ARE:

NUMBER OF SESSIONS COMPLETED
COMPETENCY LEVEL
TOTAL TRAINING TIME
AVERAGE NUMBER OF ERRORS PER SESSION
GRAPH OF SESSION LENGTH VS. SESSION NUMBER
GRAPH OF ERROR NUMBER VS. SESSION NUMBER
GRAPH OF NUMBER OF HELP REQUESTS VS. SESSION NUMBER
ERROR PROFILE

TIME AND SESSIONS AT EACH COMPETENCY LEVEL
BAR CHART SHOWING NUMBER OF ERRORS BY TYPE

***THE MENU ITEMS AVAILABLE ARE:

LIST OF ALL SCENARIO PARAMETERS

SESSION LENGTH
NUMBER OF ERRORS
LIST OF ALL ERRORS
LIST OF NUMBER OF ERRORS BY TYPE
LIST OF NUMBER OF ERRORS BY ACTION CATEGORY
LIST OF BAD ARGUMENTS FOR SELECTED ACTION CATEGORY
COMPETE TRACE OF SESSION

BY EXPERT'S SEQUENCE
BY TRAINEES ACTUAL SEQUENCE

LIST OF NON-NOMINAL PARAMETERS

LIST OF HELP REQUESTS
LIST OF TAKE ACTION REQUESTS
LIST OF EXPLAIN STEP REQUESTS

FIG. 11F

U.S. Patent May 10, 1994

TRAINEE SELECTS
INFORMATION ITEM
I

I

Sheet 25 of 35

IOM MENU I

5,311,422

- HFI Pi PROVIDES A LIST OF SUGGESTED
ACTIONS TO TAKE (LE., HINTS)

- PROVIDES A TEXTUAL
DESCRIPTION OF THE CURRENT CONTEXT AND THE

TYPE OF ACTION(S) EXPECTED OF THE TRAINEE

I AIN I AST STFP; PROVIDES A TEXTUAL
DESCRIPTION OF THE CONTEXT AND EXPECTED

ACTIONS ASSOCIATED WITH THE LAST STEP
TAKEN BY THE TRAINEE (OR THE SYSTEM)

-

-TAKE NEXT AC TION; DEPLEX PERFORMS AN ACTION
APPROPRIATE FOR THE CURRENT CONTEXT

- EXPLAIN ACTION: PROVIDES A MENU OF
POSSIBLE ACTIONS; WHEN THE TRAINEE
SELECTS AN ITEM FROM THIS MENU, THE

SYSTEM PROVIDES A TEXTUAL
EXPLANATION OF THAT ACTION

pL AIN SYNTA>(; PROVIDES A MENU OF POSSIBLE -
ACTIONS: WHEN THE TRAINEE SELECTS AN ITEM FROM

THIS MENU, THE SYSTEM PROVIDES AN EXPLANATION OF
THE PARAMETERS ASSOCIATED WITH THAT ACTION

RRFNT STATU% PROVIDES THE CURRENT "MISSION -
ELAPSE TIME", THE SIGNAL STATUS, AND A TRACE OF ALL

COMPLETED ACTIONS

1 OAn DATAL PROVIDES A LIST OF DATA DESCR~B~NG
THE PAYLOAD TO BE DEPLOYED BY THE TRAINEE; THIS

DATA IS SUPPLIED BY THE TSG

FIG. 11G

US. Patent

' FDO DEPLOYMENT
WORKSHEET IS

May 10,1994

TRAINEE GETS
CHECKPOINT ANOTHER CHANCE

ERROR-REPORT

Sheet 26 of 35

GET
TRAINEE
INPUT

I DISPLAY ED

FIG. 1 lH

5,3 11,422

CHECKPOINT 6

/ \ ASSERT
ACTION
OPTIONS

FIG. 12

U.S. Patent

r 4 0 7 I

May 10,1994

UPDATE THE FACT BASE

Sheet 27 of 35

EXECUTE THE TOP RULE
ON THE AGENDA

'

5,3 11,422

START T
40 1

MATCH ALL COMBINATIONS
OF FACTS IN DATA BASE
AGAINST THE -
LEFT-HAND-SIZE OF THE 1 RULES I I

FROM MATCHING, DETERMINE - AN AGENDA OF RULES WHICH
ARE ACTIVATED

NO

NO

YES
r 4 0 5

SELECT ONE RULE FOR EXECU-
TION BASED ON PRIORITY OR
RANDOM SELECTION. PUT RULE
AT TOP OF AGENDA

1
I IC r 4 0 6

FIG. 13

U.S. Patent

b

May 10,1994

MATCH RULES FOR CORRECT ACTIONS I

Sheet 28 of 35

b

5,311,422

MATACH RULES FOR OPTIONAL ACTIONS I

Q

b

YES No <GOTOS)

MATCH RULES FOR FLEXIBLE ACTIONS I

b INCREMENT TO NEXT STEP FOR COMPLETED FLEXIBLE ACTIONS D

b

I 414-\

MATCH BOOKKEEPING RULES 4

CLEANUP LEFTOVERS FROM B
THE LAST STEP

U.S. Patent

SWITCH
CHECKPOINTS

May 10, 1994

Q
Sheet 29 of 35 5,3 11,422

MATCH? v

41 7 ' 1 r 4 1 8

k GOTOE

1
.
MATCH AN OPTIONAL ACTION
TAKEN BY THE TRAINEE

CHECKPOINTS TO
"N EXT-PROM PT."

4 2 1 7
GOTON

\

MATCH A SPECIAL REQUEST
ACTION TAKEN BY THE TRAINEE

U.S. Patent May 10, 1994 Sheet 30 of 35

RESET TEXT BUFFERS FOR REPORTING
ERRORS TO TRAINEE

MATCH SPECIFIC TRAINEE ERROR

MATCH GENERAL TRAINEE ERROR

5,3 11,422

f428
I

SWITCH CHECKPOINTS TO
RROR-SELECT". GOT0 E

4 CHANGE LEVEL OF ERROR CHECKING
L I

FIG. 16

U.S. Patent

-,

May 10,1994

MATCH RULES TO REPORT ERRORS
TO TRAINEE MODEL

Sheet 31 of 35 5,311,422

YES NO GOTO S

4 3 0 7 t
I \ I

DELETE GENERAL ERRORS IF SPECIFIC
ERRORS ARE PRESENT

I I

432-7
MATCH RULES FOR ERROR COUNT

BOOKKEEPING

"ERROR-REPORT". GOTO ER

FIG. 17

U.S. Patent May 10,1994

b

Sheet 32 of 35

MATCH RULES TO ECHO ERROR TO
TRAINEE

5,311,422

b
MATCH RULES TO TAKE ACTION FOR
TRAINEE

RESPONSE TO TRAINEE

MATCH RULES TO MAKE SUGGESTIONS
TO TRAINEE

U,S, Patent

r

MATCH ON CHECKPOINT CHECK-INPUT
SWITCH TO CHECKPOINT ERROR

May 10,1994

MATCH ON CHECKPOINT ERROR-REPORT
SWITCH TO CHECKPOINT NEXT-PROMPT

Sheet 33 of 35 5,3 11,422

,

MATCH ON CHECKPOINT DEPLEX
SWITCH TO CHECKPOINT NEXT-PROMPT

1 1 1

1 I

FIG. 19

U.S. Patent

-b

May 10, 1994

MATCH RULES TO RESET ERROR LEVEL I

Sheet 34 of 35 5,311,422

MATCH RULES TO WAIT FOR TRAINEE
ACTION

I I

447
1

MATCH RULES TO CLEANUP ERROR
CHECKING SIDE EFFECTS

I I

448f
MATCH RULES TO CATCH TRAINEE
ACTION

SWITCH CHECKPOINTS TO
"CHECK-INPUT". GOT0 T

US. Patent

,
I

'I
450

b MATCH ON BACKUP RULES b

451-

b MATCH ON RULES FOR HINTS b

4 5 2 7
r

L
b MATCH ON MONITOR UPDATE RULES v

i

b

.
MATCH ON BACKGROUND

b INFORMATION RULES b

4 5 5 7

b MATCH ON SYNTAX EXPLANATION
RULES

b

4 5 6 7

b MATCH ON CURRENT STATUS RULES w

May 10,1994

I

I

I

A

Sheet 35 of 35 5,311,422

+ MATCH ON STEP EXPLANATION RULES

5,3 11,422
1 2

for general application. PROUST, and its related pro-
GENERAL PURPOSE ARCHiTEcmTRE FOR gram MICRO-PROUST, is a “debugger” for finding

INTELLIGENT COMPUTER-AIDED TRAINING nonsyntactical errors in Pascal programs written by
student programers. The developers of PROUST claim

The invention described herein was made by employ- 5 that it is capable of finding all of the bugs in at least 70%
CF!S of the United States Government and may be manu- of the “moderately complex” programming assign-
factured and used by or for the Government of the ments that it e x w e . PROUST = expert
United States of America for governmental purposes pascal programer that ‘igd~* for
without the payment of any royalties hereon or there- the assignments given to students. Bugs we found by

10 matching the assertions of the expert program with that for.
FIELD OF THE INVENTION of the student; mismatches are identified as “bugs” in

the student program. After !inding a bug, PROUST
The present invention relates generally to the use of provides an English language description of the bug to

artificial intelligence for providing computer-aided the student, enabling the student to correct his or her
training. Specifically, the present invention relates to a 15 error. PROUST cannot handle &dent that

amming “style” of the general purpose architecture adaptable for use in the depart radically from the progr training of personnel in the performance of complicated expert. tasks to produce the desired results with a minimum The Tutor is used to teach the introductory expenditure of energy, time, and/or resources. LISP course offered at Camegie-Mellon University.
BACKGROUND OF THE INVENTION 2o The LISP Tutor system is based on the ACT (Adaptive

Appljcations of Artificial Intelligence in T ~ - ~ and Control of Thought) theory and consists of four ele-
ments: a structured editor which serves as an interface Tutoring
to the system for students, an expert LISP programmer

A number of academic and industrial researchers that provides an “idefl solution to a
have used artificial intelligence in an effort to teach a 25 problem, a bug that efliors made by

gramming languages, medical diagnosis and electronic provides immediate feedback and @idance to the

suggested the application of artificial intelligence con- achieve to those obtained by human tu- cepts to teaching tasks appeared in the early 1970’s. The 30 tors. One of the Tutor,s primary features is its article entitled “AI in CAI An artificial Intelligence enforcement of what its authors regard as a Approach to CAI” by J. R. Carbonell in the IEEE programming The programming style
Transactions on Machine Systems, Vol. 11, No. 4, p.

variety of subjects including geometry, computer Pro- novice programmen, and a tutoring component that

shooting. The published which student. Evaluations ofthe LISP Tutor show that it can

190 (1970) and the article entitled “Towards Intelligent
Teaching Systems” by J. R. Hartley and D. H. Sleeman 35
in the International Journal of Machine Studies, Val. 5,

feature prevents creative authorship by the student*
The existing systems We ‘‘intelligent tutoring or

teaching systems*” The teaching/tutoring task is
p. 215, (1973) are of specifrc interest. Hartley and Slee- guished from the training task. The training environ-
man proposed an architecture for an intelligent tutoring ment differs in many ways from an academic teaching
system. However, since such proposal, no agreement environment* The differences are &POrtant in the de-
has been reached among researchers on a general archi- 40 sign of an architecture for an intelligent training system.
tecture for intelligent tutoring systems. For example, assigned tasks are often mission-critical,

Examples of intelligent tutoring systems are SOPHIE i.e.2 the responsibility for lives and property depends on
(Brown, Burton & de Kleer, 1972, “Pedagogical, Natu- well a person is trained to Perfom a task. TYPi-
ral Language and Knowledge Engineering Techniques calb’, people who are being trained already have signifi-
in SOPHIE I, 11, and 111”; D. Sleeman & J. s. Brown 45 Cant academic and practical experience which is utilized
(Eds.), InteNigent Turon’ng Systems (p. 227). London: in the task they are being trained to do- Also, trainees
Academic Press), PROUST (Johnson & Soloway, April make use of a wide variety of training techniques. Dif-
1985, PROUST, Byte, Vol. 10, No. 4, p. 179) and LISP ferent training techniques Can range frOm the study of
Tutor (Anderson & Rejser, April 1985, “The LISP comprehensive training manuals, to ShdatiOns, to ac-
Tutor,” Byte, Vol. 10, No. 4, p. 159). SOPHIE was one 50 tual on-the-job training under the supervision of more
of the first artificial intelligence (“AI”) systems that was experienced, trained personnel. Few tasks which re-
developed. SOPHIE was developed in response to a quire training must be accomplished by one method or
U.S. Air Force interest in a computer-based training style as exists in typical tutoring. Training a person to
course in electronic trouble shooting. SOPHIE contains perform a task may require that considerable freedom
three major components: an electronics expert with a 55 be given the trainee in the exact manner in which the
general knowledge of electronic circuits, together with task may be accomplished.
detailed knowledge about a particular type of circuit; a People being trained for complex, mksion-cntical
coach which examines student inputs and decides if it is tasks are usually already highly motivated. Training for
appropriate to stop the student and offer advice; and a such complex tasks imposes on the trainer the responsi-
trouble shooting expert that uses the electronics expert 60 bility for the accuracy of the training content and the
to determine which possible measurements are most ability of the trainer to correctly evaluate trainee ac-
useful in a particular context. Although three versions tions. Typical tutoring systems do not provide such
of SOPHIE were produced, SOPHIE was never flexibility. A training system is intended to aid the
viewed as a finished product. One of the major prob- trainee in developing skills for which he already has the
lems associated with the SOPHIE systems was the lack 65 basic or “theoretical” knowledge. A training system is
of a user model. not intended to impart basic knowledge such as mathe-

PROUST and the LISP Tutor are two well-known, matics or physics. Simply stated, a true training system
intelligent teaching systems that have left the laboratory is designed to help a trainee put into practice that which

- 5,311,422
3

he already intellectually understands. Most importantly,
a trainee must be allowed to perform an assigned task by
any valid means. To achieve meaningful training, the
flexibility to carry out any assigned task by any valid
means is essential. Trainees must be able to retain and
even hone an independence of thought and develop
codidence in their ability to respond to problems, in-
cluding problems which the trainee has never encoun-
tered and which the trainer may have never anticipated.

All phases of industry and government must maintain
a large effort in training personnel. New personnel must
be trained to perform the task which they are hired to
perform, continuing personnel must be trained to up-
grade or update their ability to perform assigned tasks
and continuing personnel must be trained to perform
new tasks. Often a great number of training methodolo-
gies are employed, singly or in concert. These methods
include training manuals, formal classes, procedural
computer programs, simulations, and on-the-job train-
ing. The latter method is particularly effective in com-
plex tasks where a great deal of independence is granted
to the task performer. Of course, on-the-job training is
typically the most expensive and may be the most im-
practical training method, especially where there are
many trainees and few experienced personnel to con-
duct such training.

Programming Languages for Artificial Intelligence
Applications

All programming languages can be thought of as
being divided into two primary functioning units: data
and process. Data involves whatever means the lan-
guage provides for representing objects which the pro-
grammer uses to manipulate. Typical data items might
be variables used in formulas, matrices of numbers used
for representing dimensionality, or lists of data groups
such as patient records or student grades. Most conven-
tional programming languages have evolved rather
elaborate schemes for representing data, for example,
integer and floating point representations. Process in-
volves the programmer’s directions for manipulation of
the data structures. By analogy, if a computer program
were like a recipe, data would be the ingredients and
process would be the step-by-step cooking instructions.

Historically, computers have been typically utilized
exclusively for mathematical calculation. However,
more recently computers have begun to do reasoning,
sometimes called “symbolic reasoning” in the computer
science community. The standard upon which artificial
intelligence systems are based is that intelligent systems
reason about objects in the world, and do so in a rational
way. Thus, the data in the artificial intelligence commu-
nity was the representation of objects in the real world
which were sometimes labeled as facts. Process became
an inferencing scheme which could be used to manipu-
late the facts in a formal way. Artificial intelligence
developed somewhat like first order logic which has a
very precise means for defining axioms (facts or data)
and a very orderly way of performing deduction and
induction (inference or process).

The resulting languages which are used to implement
most expert systems are termed “rule-based” languages.
A programmer writes instructions for inferencing in the
form called rules. Each rule has a “left-hand-side” used
to match facts in the current database of facts and a
“right-hand-side” used to perform actions on the facts
in the database. Each rule is basically of the form “if you
see such-and-such among the facts currently known,

5

10

15

20

25

30

35

40

45

50

55

60

65

4
then do so-and-so.” Sometimes rules are generally
called ‘When” rules because of this analogy.

The application of any single rule is very simple. The
underlying language checks to see if the description of
the facts cited on the left-hand-side of the rule match
any of the facts currently in the system. If so, then the
actions described on the right-hand-side of the rule are
carried out. This process continues until no more rules
can be matched to the facts in the database. When no
rules can be matched, the program ends.

Generally, facts are described as representations of
data objects about which the system is going to reason.
Facts are typically described in terms of a “relation”
which is meant to describe a relationship between some
object and one or more of its attributes. In general, facts
are an assertion of a more general relation form. Rules
can be used to retract or delete facts from the database.
Further, rules can be used to assert new facts to the
database. Thus, whenever a rule is executed or “fued,”
it may change the contents of the facts in the database.
Any rule which has all of the patterns of its lefi-hand-
side matched is placed on an agenda of rules which can
potentially be fired. However, since the execution of
any single rule may change the database, only one of the
rules on the agenda is fired at once. When the particular
rule is fired, the database of facts must be updated and
the matching process is restarted. The cycle is repeated
until the process of matching all of the rules does not
produce any rule which has a fully satisfied left-hand-
side.

Features of the Invention
Of primary concern in the present invention is to

provide a general purpose architecture suitable for in-
telligent computer-aided training which can be readily
adapted for use in numerous training disciplines.

It is, therefore, a feature of the present invention to
provide an intelligent computer-aided training system
which utilizes a general purpose architecture for adap-
tation to training in different fields.

A feature of the present invention is to provide an
intelligent computer-aided training system which uti-
lizes a plurality of expert systems which communicate
via a common “blackboard” arrangement.

Another feature of the present invention is to provide
an intelligent computer-aided training system having a
general purpose architecture which provides a user
interface which is sufficiently similar to the actual task
performed so that training skills are easily transferred
from the training environment to the task environment.

Another feature of the present invention is to provide
an intelligent computer-aided training system having a
general architecture which provides a domain expert
system which is capable of performing the task to be
trained by using rules describing the correct methods of
performing the task and rules identifying typical errors.

Another feature of the present invention is to provide
an intelligent computer-aided training system having a
general architecture adaptable to teach different tasks
having an expert training scenario generator for design-
ing increasingly complex training exercises based upon
the current skill level of the trainee.

Another feature of the present invention is to provide
an intelligent computer-aided training system having a
general architecture which has an expert training ses-
sion manager for comparing the assertions made by the
domain expert and by the trainee for identifying both

5,3 1 1,422
5 6

correct and incorrect trainee assertions and for deter- training scenarios are designed uniquely for each trainee
mining how to respond to incorrect trainee actions. every time the specific trainee interacts with the system.

Another feature of the present invention is to provide Yet another feature of the present invention is to
an intelligent computer-aided training system having a utilize time constraints and distractions when the
general architecture including a trainee model which 5 trainee has demonstrated a specific level of proficiency.
contains a history of the individual trainee’s interactions Yet another feature of the present invention is to
with the system together with summary evaluative data provide an intelligent computer-aided training system
which can be accessed by both the trainee and an evalu- having a general modular architecture whereby training
ator. scenarios incorporate specific problems or requested

Yet another feature of the present invention is to 10 assistance associated with interactions the trainee had in
provide an intelligent computer-aided training system previous training such that new scenarios are created
having a general architecture whereby trainees can which require that the trainee demonstrate mastery of
carry out an assigned task by any valid means. the task.

Yet another feature of the present invention is to Yet still another feature of the present invention is to
provide an intelligent computer-aided training system Is provide a control structure used in intelligent comput-
having a general modular architecture for use in a wide er-aided systems which utilizes rule-based program-
variety of training tasks and environments which re- ming for inferencing by matching facts in a current
quire modification of only one, or possibly two, of the database and performing actions on the facts whereby
components when changing tasks. multiple sets of rules act in concert.

Another feature of the present invention is to provide
provide an intelligent computer-aided training system a message passing protocol whereby multiple sets of
having a general modular architecture whereby each rules can act in concert.
altered component is designed to make the modifica- Another feature of the present invention is to utilize a
tions necessary to produce an intelligent computer- message protocol whereby the message format com-
aided training system for a specific task rapid and capa- *’ prises information regarding which rule group has sent

Still another feature of the present invention is to 2o

ble of being accomplished by persons skilled in the ar t
of computer programming.

Another feature of the present invention is to provide
an intelligent computer-aided training system having a
general modular architecture for use by trainees already
possessing the necessary educational background for
the task for which the training is initiated.

Yet another feature of the present invention is to
provide an intelligent computer-aided training system
having a general modular architecture whereby trainees
are permitted great latitude in how they achieve a par-
ticular task such that trainees are permitted to follow
any valid path to achieve the task, and further optional
actions need not be taken, but the omission of optional
actions is noted in the system and can be used in the
generation of future training scenarios.

Still another feature of the present invention is to
provide an intelligent computer-aided training system
having a general modular architecture whereby the
modules communicate by means of a common fact base
which fact base is termed a blackboard.

Another feature of the present invention is to provide
an intelligent computer-aided training system having a
general modular architecture for segregating portions
of the system that can be applied to other training envi-
ronments and tasks.

Yet another feature of the present invention is to
provide an intelligent computer-aided training system
having a general modular architecture whereby one
module is a user interface designed for a specific envi-
ronment and which can be used for training in other
tasks that are performed in the same environment.

Still another feature of the present invention is to
provide an intelligent computer-aided training system
having a general modular architecture whereby all task-
specific items are confined to a single module for incor-
porating domain knowledge of the specific task as well
as explanations, error messages and database informa-
tion from which new training scenarios can be derived.

Yet another feature of the present invention is to
provide an intelligent computer-aided training system
having a general modular architecture whereby new

- -
the message, which rule group should use the message,
the context or step of the process to which the given
message applies, and the contents of the message.

Yet another feature of the present invention is to
provide control rules for use with intelligent computer-
aided systems for implementing multiple sets of rules in
concert.

Additional features and advantages of the invention
35 will be set forth in part in the description which follows,

and in part will become apparent from the description,
or may be learned by practice of the invention. The
features and advantages of the invention may be real-
ized by means of the combinations and steps particu-

SUMMARY OF THE INVENTION
To achieve the foregoing objects, features, and ad-

vantages and in accordance with the purpose of the
45 invention as embodied and broadly described herein, an

intelligent computer-aided training system having a
general modular architecture is provided for use in a
wide variety of training tasks and environments com-
prising a user interface which permits the trainee to

50 access the same information available to him in the task
environment and serves as a means for the trainee to
assert actions to the system; a domain expert which is
sufficiently intelligent to use the same information avail-
able to the trainee and carry out the task assigned to the

55 trainee; a training session manager for examining the
assertions made by the domain expert and by the trainee
for evaluating such trainee assertions and providing
guidance to the trainee which are appropriate to his
acquired skill level; a trainee model which contains a

60 history of the trainee interactions with the system to-
gether with summary evaluative data; an intelligent
training scenario generator for designing increasingly
complex training exercises based on the current skill
level contained in the trainee model and on any weak-

65 nesses or deficiencies that the trainee has exhibited in
previous interactions; and a blackboard means for pro-
viding a fact base for communication between the other
components of the system.

3o

40 larly pointed out in the appended claims.

FIG. 1A is a schematic diagram of the general archi-
tecture of a preferred embodiment of the intelligent
computer-aided training system of the present inven-
tion;

FIG. 1B is a schematic diagram of the general archi-
tecture as illustrated in FIG. 1A further illustrating the
generic aspects of the data transfer associated with a
preferred embodiment of the intelligent computer-aided
training system of the present invention;

FIGS. 2A-2F illustrate typical screens as viewed by
a trainee utilizing the preferred embodiment of the intel-
ligent computer-aided training system of the present
invention;

FIG. 3 is a schematic diagram illustrating the opera-
tion of the domain expert associated with the preferred
embodiment of the intelligent computer-aided training
system of the present invention;

FIG. 4 is a general representation illustrating the
manner in which the training session manager examines
trainee actions for errors;

FIG. 4A is an illustration of the error control for
actions taken by a trainee during a basic trainee session
for the preferred embodiment of the intelligent comput-
er-aided training system of the present invention;

FIG. 5A and FIG. 5B illustrate how trainee actions
(correct and incorrect) are classified and stored in the
trainee model;

FIG. 6 is a flow chart of the operation of the trainee
model of the preferred embodiment of the intelligent
computer-aided training system of the present inven-
tion;

FIG. 7 (including 7 and 7A) is a flow chart illustrat-
ing the reading and partitioning component parts of the
trainee model as illustrated in FIG. 6;

FIG. 8 is a flow chart of the updating procedure of
the trainee model as illustrated in FIG. 6;

FIG. 9 is a schematic illustration of the resource
object used by the training scenario generator compo-
nent of the intelligent computer-aided training system
of the present invention;

FIG. 10 is a schematic illustration of the use of the
resource object illustrated in FIG. 9 in conjunction with
the mixing and task objects as used by the training sce-
nario generator component of the intelligent computer-
aided training system of the present invention;

FIG. 11 (11A through 11H) is a flow chart of a basic
trainee session for the preferred embodiment of the

5,3 1 1,422
7 8

Preferably, the domain expert contains a list of “mal-
rules” which typifies errors that are usually made by
novice trainees. Also preferably, the training session
manager comprises an “intdligent” error detection
means and an “intelligent” error handling means.

The present invention utilizes a rule-based language
having a control structure whereby a specific message
passing protocol is utilized with respect to which
are procedural or step-by-step in structure. The rules
can be activated by the trainee in any order to reach 10 intelligent ComPuter-ddd
“the solution” by any valid or “correct” path.

intelligent computer-aided training system of the pres-
ent invention;

FIG. 12 is a schematic diagram illustrating the train-
ing session manager associated with the preferred em-

5 bodiment of the intelligent computer-aided training
system of the present invention;

FIG. 13 is a flow chart illustrating the Rete algorithm
associated with the control structure Of the preferred
embodiment of the general purpose architecture for

FIG. 14 is a flow chart illustrating rules associated
with the domain expert of the preferred embodiment of
the general purpose architecture for intelligent comput-
er-aided training system;

FIG. 15 is a flow diagram illuslrating the check-input
rules associated with the preferred embodiment of the
general Purpose architecture for intelligent computer-
aided training Of the present invention;

FIG. 16 is a flow chart of the error-detect rules asso-
20 ciated with the preferred embodiment of the general

purpose architecture for intelligent computer-aided

BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings which are incorporated

in and constitute a part of the specification, illustrate a 15
preferred embodiment of the invention and together
with the general description of the invention given
above and the detailed description of the preferred
embodiment given below, serve to explain the princi-
ples of the invention.

training of the present invention;
FIG. 17 is a flow chart illustrating the error-select

rules associated with the preferred embodiment of the
25 general purpose architecture for intelligent computer-

aided training using the present invention;
FIG. 18 is a flow chart illustrating the error-report

rules associated with the preferred embodiment of the
general purpose architecture for intelligent computer-

FIG. 19 is a schematic flow chart illustrating the
switching rules associated with the preferred embodi-
ment of the general purpose architecture for intelligent
computer-aided training of the present invention;

FIG. 20 is a schematic flow chart illustrating the
next-prompt rules associated with the preferred em-
bodiment of the general purpose architecture for intelli-
gent computer-aided training of the present invention;
and

FIG. 21 is a schematic flow chart illustrating the side
effect rules associated with the preferred embodiment
of the general purpose architecture for intelligent com-
puter-aided training of the present invention.

The above general description and the following
45 detailed description are merely illustrative of the ge-

neric invention, and additional modes, advantages and
particulars of this invention will be readily suggested to
those skilled in the art without departing from the spirit
and scope of the invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Reference will now be made in detail to the present
preferred embodiments of the invention as described in

FIG. 1A and FIG. 1B are schematic representations
illustrating the general modular architecture for intelli-
gent computer-aided training. The primary components
are the domain expert or Deplex 10, the training sce-

60 nario generator 20, the training session manager 30, the
user interface 40 and the trainee model 50. Generally,
the training session manager 30 comprises two expert
systems: the error detector expert 32 and the error han-
dler expert 34. The user interacts with the intelligent

65 computer-aided training system via the user interface
40. Alternately, the user can access information con-
cerning his level of skill and performance during a given
training session via the report generation feature of the

30 aided training using the present invention;

35

40

50

55 the accompanying drawings.

9
5,3 1 1,422

trainee model 50. Also, an evaluator can access the
trainee model 50 to acquire information about a specific
trainee’s performance.

The general modular architecture consists of the five
modular components communicating by means of a
common “fact base,” termed a “blackboard.” The
blackboard 60 acts as a vehicle through which each of
the other components communicate.

Generally, the components of the intelligent comput-
er-aided training system are generic, environment spe-
cific or task specific. In an effort to readily build new
systems, it is required that as many components as possi-
ble be generic. However, the task environment must be
as compatible as possible with the environment in
which the trainee will ultimately perform. Obviously, it
is extremely important that the actual task environment
be duplicated as accurately as possible. In the present
preferred embodiment, the generic components are the
training scenario generator u) (except the contents of its
object-oriented database), the training session manager
30 and the trainee model 50. The environment specific
module (Le., the interface between the trainee and the
task to be performed) is the user interface 40. The task
specific module is the domain expert or Deplex 10.
Since there may be many tasks which share a common
environment, the development of a user interface is
important. The user interface 40 serves to make the
production of training systems for that particular envi-
ronment more efficient. Obviously, it is extremely im-
portant that a trainee be trained in an environment
which represents, as clearly as possible, that in which he
will ultimately have to perform the task.

Ordinarily, the general architecture for the present
invention is comprised of the four expert systems which
cooperate through, and communicate by, the black-
board 60. The four expert systems which interact
through the blackboard 60 are the domain expert or
Deplex 10, the training scenario generator 20, the error
detector expert 32 and the error handler expert 34. The
modular expert system approach was used to permit
segregation of domain-independent knowledge from
domain-dependant knowledge so that the system archi-
tecture can be easily adapted to different training tasks.
Unlike most intelligent training systems, the present
invention does not required the trainee to follow a sin-
gle correct path to the solution of a problem. Rather, a
trainee is permitted to select any correct path, as deter-
mined by the training context. The method used to
accomplish this fidelity and flexibility prevents a combi-
national explosion of solution paths.

Error detection via the error detection expert 32 is
extremely important. The error detector expert 32 com-
pares the trainee’s actions with the knowledge in the
domain expert 10. In the case of complex actions, the
error detection is made at the “highest” level to avoid
confusing the trainee by detecting all errors which
propagated from that error which is deemed most sig-
nificant.

10
ance to give to the trainee. Explanations or hints may be
detailed for novices and quite terse for more experi-
enced trainees. In some cases, the training session man-
ager 30 may decide not to call attention to the error if

5 there is a reasonable probability that the trainee will
catch his or her own mistake.

Generally, the training scenario generator 20 exam-
ines the trainee model 50 and creates a unique scenario
for each trainee whenever a new session begins. This

10 new scenario is built from an object-oriented database
containing a range of typical parameters describing the
training context as well as problems of graded diffi-
culty. Scenarios evolve to greater difficulty as the
trainee demonstrates the acquisition of greater skills in

At the conclusion of each session, the trainee is pro-
vided with a formatted trace of the session which high-
lights the correct and the incorrect actions, the time
taken to complete the session and the type of assistance

20 provided by the intelligent computer-aided training
system. In addition, the trainee’s supervisor may view a
global history of each trainee’s interaction with the
system and even generate graphs of trainee perfor-
mance measured against a number of variables.

The task which was selected to implement the gen-
eral architecture for intelligent computer-aided training
systems was the deployment of a satellite from a space
shuttle. The preferred embodiment of the intelligent
computer-aided training system, as illustrated in FIG. 1,

30 was developed for use by NASA/Johnson Space Cen-
ter flight controllers in learning to perform satellite
deployment from the space shuttle. The general pur-
pose architecture used as previously described includes
four cooperating expert systems (the domain expert or

35 Deplex 10, the training scenario generator 20, the error
detector expert 32 and the error handler expert 34),
communication via the blackboard 60, support for mul-
tiple solution paths, error handling appropriate to the
trainee’s demonstrated level of skill, and automatic gen-

40 eration of unique training scenarios based on training
objectives and a trainee’s history of interaction with the
system.

By way of example, a brief discussion is presented on
the implementation of the general purpose architecture

45 for the specific problem of satellite deployment from a
space shuttle. Flight controllers at NASMJohnson
Space Center (JSC) are responsible for the ground con-
trol of all space shuttle operations. Those operations
which involve alterations on the characteristics of the

50 space shuttles’s orbit are under the direction of a Flight
Dynamics Oficer (FDO) who sits at a console in the
“front room” of the Mission Control Center MCC).
Most FDO’s have backgrounds in engineering, physics,
and/or mathematics. They acquire the skills needed to

55 perform their job through the study of flight rules,
training manuals, and on-the-job training (OJT) in inte-
grated simulations. Two to four years is normally re-
quired for a trainee FDO to be certified for many of the

15 solving the training problem.

25

In the same general context, error handling is also &ks for which he or she is responsible during space
important with respect to the present invention. Error 60 shuttle missions. On-the-job training is highly labor
handling may be accomplished through the matching of intensive and presupposes the availability of experi-
trainee actions with “mal-rules” in the domain expert or enced personnel with both the time and the ability to
Deplex 10. The mal-rules contain errors which are com- train novice FDOs. As the number of experienced
monly made by novice trainees. In addition, the error FDO’s has been reduced through retirement, transfer,
handler expert 34 in the training session manager 30 65 and promotion and as the preparation for and actual
decides what type of feedback or guidance to give the control of missions occupies most of the Mission Con-
trainee. The error handler expert 34 uses the trainee trol Center’s available schedule, on-the-job training has
model 50 to determine the type of feedback and guid- become increasingly difficult to deliver to novice

5,3 1 1,422
11 12

F D O s . As a supplement to the existing modes of train- Control Center. Lastly, the FDO can seek advice from
ing, the general purpose architecture for intelligent experienced FDOs.
computer-aided training has been implemented to aid in FIGS. 2A-2G contains several views of a typical
the training of FDOs. The system trains inexperienced display screen seen by a trainee FDO on a Symbolics @
flight controllers in the deployment of a payload-assist 5 3600 Series LISP computer. With respect to voice loop
module (PAM) satellite from the space shuttle. This interactions, the upper right-hand corner of the display
procedural task is complex and requires many of the (FIGS. 2C-2F) contains menus that allow the FDO
skills used by the experienced FDO in performing many trainee to communicate with other simulated fight
other on-orbit operations. The presently preferred em- controllers, to obtain needed displays of data, to obtain
bodiment of the present invention comprising the gen- 10 information about the current or previous step in the
eral purpose architecture has been created to assist in satellite deployment process, to request help from the
the training of FDOs in the deployment of a satellite training system, and to return to a previous step in the
from the space shuttle. process. The upper right-hand comer menu may lead

The payload-assist module deployshtelligent com- the trainee through BS many as three levels, depending
puter-aided training (PDACAT) system is an autono- I5 on the nature of the action taken. Some actions are
mous intelligent training system which integrates expert completely accomplished through menu interaction,
system technology with training methodology. The while other require the input of one or more parameters
present preferred embodiment of the system was de- using the computer’s keyboard.
signed for novice FDOs who have completed a study All actions taken by the trainee through these menus,
of satellite deployment procedures as described in avail- 20 and the parameters that they may require, become as-
able training documents. The training system is de- sertions to or facts in the blackboard 60. All requests
signed to aid these trainees in acquiring the experience directed to the trainee and all messages sent to the
necessary to carry out a deployment in an integrated trainee in response to his or her requests or actions
simulation. appear in a window in the upper left comer of the

The preferred embodiment of the present system is 25 screen (FIGS. 2-C to 2-E and 2-G). These two portions
used to permit extensive practice with both nominal of the screen serve to functionally represent the “voice
deploy exercises and other exercises containing typical loop interaction” that characterizes the current FDO
problems. After successfully completing training exer- task environment in the “front room” of the Mission
cises that contain the most difficult problems together Control Center.
with realistic time constraints and distractions (as would 30 With respect to console messages, any displays re-
be expected in the real world), the trainee should be quested by the trainee FDO appear in the lower portion
able to successfully complete an integrated simulation of the screen. The displays replicate those seen by a
of a satellite deployment without the aid of an experi- FDO on a typical console in the Mission Control Cen-
enced FDO. The philosophy of the system is to emu- ter. Data is supplied to these displays from a dedicated
late, as closely as possible, the behavior of an experi- 35 ephemeris-generating program so that what is seen by
enced FDO devoting his or her full time and attention the trainee FDO is consistent and reasonable and nega-
to the training of a novice FDO. Typically, an experi- tive training does not occur.
enced FDO will propose challenging training scenarios, With respect to help from the system, a pop-up win-
monitor and evaluate the actions of the trainee, provide dow (called the tutor message window) appears approx-
meaningful comments in response to trainee errors, 40 imately in the center of the screen to provide error
respond to trainee requests for information and hints (if messages, context information, and help.
appropriate), and remember the strengths and weak- The domain expertmeplex 10 is a traditional expert
nesses displayed by a trainee so that appropriate future system in that it contains production or if-then rules
exercises can be designed. which access data describing the task environment and

FIGS. 1A and lB, which schematically describe the 45 is capable of executing the task and arriving at the cor-
general purpose architecture of the present invention rect solution or solutions, or performing the correct
for the PDACAT system, were developed as the pre- actions. For example in the present case, the domain
ferred embodiment. The blackboard 60 serves as a com- expertmeplex 10 has the “knowledge” necessary to
mon “fact base” and communicates information to and deploy a payload-assist module satellite from the space
from all five system components. With the exception of 50 shuttle. In addition to “knowing” the right way to carry
the trainee model 50, each component makes assertions out the task (the deployment of the payload-assist satel-
to the blackboard 60, and the rule-based components lite), the domain expertmeplex 10 contains knowledge
look to the blackboard 60 for facts which can “fire” of the typical errors that are made by novices. Such
their rules. typical errors are termed “mal-rules.” Thus, a feature of

The user interface 40 allows trainee FDOs to access 55 the general architecture of the present system is to pro-
the same information available to them in the Mission vide mal-rules.
Control Center. Also, the user interface 40 serves as a The present system can detect any erroneous action
means for trainees to take actions and communicate made by a trainee, and in addition thereto, through the
with the training session manager 30. use of the mal-rules, diagnose the nature of the error and

The user interface 40 was designed primarily to re- 60 provide an error message to the trainee specifically
produce the task environment with a high degree of designed to inform the trainee about the exact error
fidelity. To avoid negative training, it is essential that made. Also, the mal-rule aids in correcting the miscon-
the functionality and the actual appearance of the train- ception or lack of knowledge that led to the commission
ing environment duplicate that in which the task is of any particular error. Thus, the mal-rules aid in diag
performed. Generally, there are several levels of inter- 65 nosing the nature of an error. Further through interac-
action for a FDO. First, the FDO reviews the screen tion with the trainee model 50, the domain expertme-
information at his particular station. Second, the FDO plex 10 can readily alter the nature of a message to be
has voice interaction with other people in the Mission adapted to the demonstrated skill of the trainee. The

5,3 1 1,422
13 14

domain expertmeplex 10 may have numerous messages domain expert 10 provides the text that allows the error
and the error handler expert 34 decides which error handler expert 34 in the training session manager 30 to
type to pick for a specific trainee. write appropriate error messages to the trainee through

A unique feature of the present invention is its contin- the user interface 40.
ual awareness of the environment and the context of the 5 In addition (referring again to FIG. l), the training
exercise. The environment can be generally described session manager 30 is sensitive to the skill level of the
as the external constraints dictated by the training exer- trainee as represented by the trainee model 50. As a
cise. This feature provides the basis for “user-directed” result, the detail and tone of error messages are chosen
behavior on the part of the domain expert/Deplex 10. to match the current trainee. For example, an error
The domain expertDeplex 10 does not generate a com- 10 made by a trainee who is using the system for the first
plete and correct set of actions to accomplish a task. time may require a verbose explanation to make certain
Rather, the domain expert/Deplex 10 only generates that the new trainee will have all of the knowledge and
those actions which are germane to the current context. concepts needed to proceed with the training session.
Thus, the domain expertmeplex 10 readily adapts to On the other hand, a trainee who has considerable expe-
any correct path that the trainee might choose to fol- 15 rience on the system may have momentarily forgotten a
low. The strategy of allowing the domain expertme- particular procedure or may have lost his or her place.
plex 10 to follow any correct path elected by the trainee In the latter case, a terse error message would be ade-
was adopted because the human experts that perform quate to allow the trainee to resume the exercise. The
the task (deployment of the satellite from the space error handler expert system 34 in the training session
shuttle) recognize that many steps in the process may be 20 manager 30 and the domain expert 10 mal-rules encode
accomplished by two or more equally valid sequences all trainee actions, both correct and incorrect, and pass
of actions. To grant freedom of choice to the trainee them to the trainee model 50.
and to encourage independence, the ability to adapt to FIG. 4 illustrates schematically how the training
alternate correct paths was deemed essential. session manager 30 and trainee model 50 are used in

FIG. 3 illustrates schematically how the domain ex- 25 concert to handle errors made by the trainee. For exam-
pert 10 operates. The rectangles illustrate the assertions ple, the blackboard 60 has asserted thereto EVENTS 1,
(or facts) presented to the blackboard 60. In step (A), 2 and 3. The options 1,2,3 and 4 have been asserted to
previous events which have been asserted to the black- the blackboard 60 and the trainee incorrectly elects
board 60 trigger rules in the domain expert 10. Thus, as option 2 which is not acceptable based upon EVENTS
illustrated in FIG. 3, EVENT 1 and EVENT 3 trigger 30 1,2 and 3 being asserted to the blackboard 60. Option 2
STEP N. STEP N causes the domain expert 10 to assert is referred to the domain expert/deplex 10 which asserts
options 1 through 4 to the blackboard 60. In step @), to the blackboard 60 the current error and an error
the trainee action matches option 2 which was asserted message. The previous errors made during the current
by the domain expert 10 to the blackboard 60. The session are consulted as well as the history of all trainee
matched option 2 is reasserted in the blackboard as new 35 errors stored in the trainee model 50. Based upon the
EVENT 4. So that the blackboard 60 does not accumu- past history of all trainee errors and the previous errors
late a fact base of unmanageable size, the unused options made during the current session, a response is submitted
are deleted before the next step. The events currently to the trainee via the user interface 40.
asserted to the blackboard are accessed by the produc- Assertions are facts in the fact base or “on the black-
tion rules to trigger STEP 5. The sequence is repeated. 40 board.” All the associated expert systems can “see” the

An important feature of the general architecture of facts all the time. The mal-rules in the domain expert-
the present invention is the ease with which it can be /deplex 10 operate in parallel to the rules in the error
adapted to training individuals to perform different detector expert 32. The mal-rules are domain-specific
tasks in the same environment or in different environ- elements of error detection. Assertions made by the
ments. In the present invention, those elements of the 45 domain expert 10 mal-rules are used by the error han-
training system unique to the task for which the system dler expert 34, just as are assertions made by the error
is designed are confined to the domain expert 10 and the detector expert 32.
object-oriented database of the TSG 20. These task The trainee model 50 acts to record trainee actions,
specific elements include the rules for performing the update trainee summaries, provide reports and provide
task, the mal-rules, the text from which error and help 50 information to the training scenario generator 20 to
messages are generated, and the elements necessary to produce new scenarios. The trainee model 50 of the
define a training scenario. present invention accepts from the training session man-

The training session manager 30 is dedicated to error ager 30 assertions made as a result of trainee actions.
detection and error handling. The training session man- These actions include any attempt by the trainee to (1)
ager 30 comprises an error detector expert system 32 55 perform a domain-specific task, (2) request help regard-
and an error handler expert system 34. Error detection ing how to perform the task or what syntax to use in
is made in a hierarchical manner by defining trainee performing a specific action, and (3) back up to a previ-
actions as action/parameter pairs. Even though four or ous step in the procedure being trained. Thus, at its most
more levels of such pairs may comprise a single trainee fundamental level, the trainee model 50 contains (for
action, the error detection halts at the highest level. 60 the current training session) a complete record of the
High level detection is accomplished so that only one correct and incorrect actions taken by the trainee. At
error is actually diagnosed and remedied for each the conclusion of each training session, the model up-
trainee action. Thus, the error detection provides an dates a training summary containing information about
indication of the most serious, or the highest level, error the trainee’s progress, such as a skill-level designator,
made by the trainee in the completion of the action. The 65 the number of sessions completed, the number of errors
rules associated with the error detector expert system made by error type and session, and the time taken to
32 compare the assertions of the domain expert 10 with complete the session. After completing a session, the
those of the trainee to detect errors. Subsequently, the trainee can obtain a session report containing a compre-

16
5,311,422

15
hensive list of correct and incorrect actions together that are not taken by the trainee are also represented as
with an evaluative commentary. A supervisor can ac- descriptive lists. Requests for help and back ups to pre-
cess the same commentary or obtain summary data, at a vious steps are recorded by the number of times they
higher level, on a trainee’s progress. The trainee model occur. Step 237 returns the template with the updated
50 provides information to the training scenario genera- 5 value to complete the placement of the new value in the
tor 20 to produce new training exercises. appropriate slot as indicated in step 230 of FIG. 6.

FIG. 4A illustrates a general representation of the Once a generic trainee model is defined, the domain
function of the training session manager 30 for a partic- specific information is stored in the database. Thereaf-
ular trainee action which is erroneous. The trainee ter, a set of functions is determined that operates on the
model 50 contains local history and global history. 10 database associated with the trainee model 50. The
Local history comprises the type of action, the type of functions which operate on the database associated with
help, the optional action, the type of error and the error the trainee model 50 are the retrieve function and the
explanation. The global history comprises the training storage function. The retrieve function reads the speci-
session number, the time, the number of helps re- fication list and parses the keyboard. The trainee model
quested, the number of errors and the level of skill. Both 15 can be traversed by parsing the specification list. The
the local and global histories are stored in the trainee storage function reads the specification list and parses
model 50 in the template forms shown in FIGS. SA and the keyboard and, finally, puts the value to the database.
SB. FIGS. SA and 5B depict one embodiment of these Further, the storage function serves as a locator for
templates for the associated descriptions and definitions putting the new value into the database associated with
used in the presently preferred embodiment of the in- 20 the trainee model 50.
vention for the Payload-Assist Module DeployAntelli- The training scenario generator 20 is comprised of
gent Computer-Aided Training System (PDACAT). the training scenario generator expert 22 and a database
The step template list (FIG. SA) is context-oriented. 24. The training scenario generator 20 designs increas-
Each trainee action and its local history are stored in a ingly complex training exercises based on the current
step template. Each trainee action, request for help, and 25 skill level contained in the trainee model SO and on any
trainee error is also associated with a back up level that weaknesses or deficiencies that the specific trainee has
is initialized at the beginning of a training session. The exhibited in previous interactions. The TSG database 24
back up level is incremented each time the trainee backs serves as a repository for all parameters needed to de-
up to a previous context (or step). All subsequent fine a training scenario and includes problems or abnor-
trainee actions, requests for help, and errors are identi- 30 malities of graded difficulty.
fied with this new back up level. All trainee actions, The training scenario generator relies upon a data-
optional actions, requests for help, and errors in the base of task “problems” to structure unique exercises
same context at all back up levels are stored in the same for a particular trainee each time the trainee interacts
step template. The step sequence (FIG. SA) in the with the system. Typically, the initial exercises pro-
trainee model, on the other hand, contains all trainee 35 vided to a new trainee are based on variants of a purely
actions in their temporal order of occurrence. nominal satellite deployment. Thus, the nominal de-

FIGS. 6, 7, 7A and 8 illustrate the operation of the ployment does not increase the difficulty for the new
trainee model 50. FIG. 6 is a flow diagram of the trainee trainee by including time constraints, distractions or
model SO. The trainee model storage function is repre- related problems. Once the trainee has demonstrated an
sented by box 200. Box 210 indicates that the inputs for 40 acceptable level of competence with the nominal satel-
the storage function are the specification list, the value lite deployment, the training scenario generator 20
to be stored 0, and the trainee template. The specifica- draws upon its database 24 to insert selected problems
tion list identifies the “slot” in which the value 0 is to into the training environment. For example, a propel-
be stored. This list is composed of the step number lant leak which renders the thrusters used for the nomi-
associated with the current context, an identifier for 45 nal separation maneuver inoperable requiring the FDO
either the required or optional action, and the name of to utilize a more complicated process for computing the
the action. If the action contains an error, the specifica- maneuver may be initiated. In addition, time constraints
tion list also identifies the type of error. The specifica- are imposed as the trainee gains more experience. Also,
tion list is also used to identify trainee requests for help distractions are presented to the more experienced
or a back up to a previous step. Box 220 indicates that 50 trainee. Distractions may come in the form of requests
the specification list is read and the specification list is for information from other Mission Control Center
broken into its component parts. Box 230 indicates that firsonnel. As in real life experience, typically, distrac-
the new value to be stored is placed into the appropriate tions are presented at inconvenient times during the task
slot. assignment. The training scenario generator 20 also

FIGS. 7 and 7A illustrate in flow diagram form a 55 examines the trainee model 50 for particular types of
more detailed view of step 220 in FIG. 6. FIG. 8 is a errors committed by the trainee in the current, as well
break down of step 230 in FIG. 6. Step 231 acquires the as previous, sessions. The trainee is given the opportu-
previous value in the template. Step 232 determines nity to demonstrate his newly gained competence by
whether the slot has a previous value. With no previous not making repeated errors. As the training progresses,
value, step 233 sets the value to zero or null depending 60 the objective is to present the trainee with exercises
on the slot type. If the slot has a previous value, step 234 which embody the most difficult problems together
determines whether the slot is numeric. If the slot is with time constraints and distractions comparable to
numeric, step 235 increments the slot value. If the slot is those encountered during integrated simulations and
not numeric, step 236 appends a new value to the list of actual missions.
previous values. Note that action names have descrip- 65 The Training Scenario Generator (TSG) 20 has two
tive values. Specific errors are represented by descrip- basic components: a knowledge base and an object-ori-
tive values whereas general errors are simply recorded ented database from which the parameters needed to
by the number of times they occur. All optional actions define a simulation scenario can be assembled. The

5,3 1 1,422
17

knowledge base is in the form of production rules that
incorporates the knowledge of experienced trainers in
determining the skill level of trainees. The Training
Scenario Generator 20 knowledge base contains pro-
duction rules that create a simulation scenario in much
the same manner as an expert trainer. These production
rules use a knowledge of training strategy and extract
infomation from a database of nominal scenario param-
eters, problems, constraints, and distractions. The sce-
nario is defined by an object that consists of the ele-
ments that each scenario must contain. Training strat-
egy rules examine the trainee model and decide on the
appropriate range of nominal parameters, the need for
and appropriate range of non-nominal parameters, the
appropriate set of potential problems, and the nature of
time constraints and distractions. Nominal and non-
nominal parameters are generated “randomly” within
predefined constraints while problems are directly
taken from a set of problems, keyed to the trainee skill
level, identified by the training strategy rules.

In order to provide the parameters required to define
a simulation scenario, a general-purpose object-oriented
database is provided to work with the TSG knowledge
base. At its most basic level this database contains nu-
merical and textual information that, taken together,
can define the fundamental nature and context of a
simulation. In addition to this collection of data, proce-
dures are provided to combine the basic data to create
the TSG database.

The TSG database is composed of Resources, the
Basic Competency Mixin, the Basic Task Mixin, Ge-
neric Tasks, Specific Tasks, and Complex Tasks. A
detailed description of each class of object and its rela-
tionship to other classes of objects is given below.

Instances of class store the basic data elements that
are required to define a scenario. Each Resource Object
class has the following attributes and associated func-
tion:

5

10

15

20

25

30

35

40
Name

Type

the name of the specific scenario data element.
each element is assigned to type numeric,
range, or list. Type numeric refers to an
element with a single specified value. Type
range refers to an element that can be
randomly generated but whose value must fall
within a specific range. Type list includes
strings of alphanumerics or collections of
numeric values.

Upper bound the upper limit that can be taken by an
clement OF type range.

Lower bound the lower limit that can be takm by an element
of type range.

Select Function a procedural function that takes as an input
argument the level of the trainee, then
computes (if neccssBTy) a value for this
clement bared on the type specified.

45

50

55

FIG. 9 is a schematic illustration of the Resource
Object structure. In the case of the PD/ICAT system,
resource objects were created that stored such data
items as the name of a satellite and value ranges for such 60
items as satellite mass, cross-sectional area, and drag
coefficient.

A “mixin“ is a class of objects that cannot stand alone
but has to be combined with other classes of object. In
the TSG object database, the purpose of the mixin class 65
is to collect instances of Resource Objects into one or
more of three levels of competency (as defined by the
TSG knowledge base):

18
Beginner: a set of Resource Objects that can define

scenarios appropriate for the task novice;
Intermediate: a set of Resource Objects that serve as

the basis for scenarios appropriate for a trainee
who has demonstrated mastery of beginner scenar-
ios;

Expert: a set of Resource Objects that combine ele-
ments from beginner and intermediate resource
objects.

The use of the term expert above requires explana-
tion. In the present embodiment of the invention, two
basic levels of competency were deemed adequate from
the perspective of creating simulation scenarios. The
expert category mentioned above actually represents a
“mixture” of both beginner and intermediate scenario
elements that would be typical of the real-world task
environment. The structure of the TSG object database
permits the assignment of expert to a unique set of Re-
source Objects. Alternatively, this level could be elimi-
nated or additional levels of competency could be
added.

The purpose of the Basic Competency Mixin is to
group all instances of Resource Objects needed to de-
fine the context of a specific task into the competency
categories that have been created. The Expert Function
procedure has the necessary knowledge to perform the
actual grouping of Resource Objects into appropriate
competency levels.

This mixin class is also dependent on other classes of
objects. As the trainee initiates and then proceeds
through the training scenario, the environment facts
found in the blackboard inform the TSG 20 of the next
step and the associated task(s). The Basic Task Mixin
uses this information to relate the task object with the
step number and task name and to define a procedure,
called “put-to-environment.” This function accom-
plishes the “posting” of the parameters contained in the
instances of task objects to the blackboard in the form of
new environment facts that drive the simulation and
establish the context for domain expert and system man-
ager components of the intelligent training system.

The Generic Task Object class of objects inherits the
Basic Competency Mixin and the Basic Task Mixin.
Thus, this class has all the characteristics of both of
those classes of objects. Its purpose is to provide and
integrate all elements needed to define into an instantia-
ble task object the context associated with a specific
task in the training session. The production rule compo-
nent of the TSG need only determine the trainee’s com-
petency level in order for an appropriate scenario defi-
nition to be posted to the blackboard 60. This latter
operation is accomplished by the setup procedure. The
Generic Task Object is created whenever the elements
which define the scenario context have no interdepen-
dency.

The basic structure and relationships of the mixin,
task, and resource objects are illustrated in FIG. 10.

The Specific Task Object class of object serves much
the same function as the Generic Task Object class but
performs local computations to satisfy specific task
requirements. A class of Specific Task Objects is cre-
ated whenever one or more of the elements required to
define the scenario context are interdependent. The
setup function is also used to transfer the elements of
this object to the blackboard 60.

The class of Complex Task Objects contains multiple
task goals. The slots labeled dependent tasks contain
these multiple goals. In this case the setup procedure

5,311,422
19 20

acts on each dependent task to place its elements into
the blackboard. It is this object class that can insert
problems of the appropriate difficulty for a specific
trainee. This type of task object is instantiated when the
context for an entire set of tasks (specific or generic, as
defined above) must be created at one time.

The TSG object database is a general-purpose mech-
anism for constructing the context needed to define a
simulation scenario. The database may be used to pro-
vide initial data to a simulation and to dynamically
determine additional input parameters during the
course of a training exercise. The structure of the TSG
object database is completely independent of the train-
ing task. The developer of a specific intelligent comput-
er-aided training system must provide the requisite Re-
source Objects and define the Expert Function that is
needed to distinguish the competency level@) to be
associated with each Resource Object. The other func-
tions are domain independent.

The ability to automate the development of the input
parameters required to produce a challenging simula-
tion scenario targeted at a specific trainee can greatly
enhance the efficiency and efficacy of intelligent train-
ing systems. The approach described here can be ap-
plied to additional ICAT applications for very different
training tasks. Ultimately, the system of the present
invention will be integrated with a software develop-
ment environment that will aid trainers in adapting the
general-purpose ICAT architecture to their particular
training domain and in providing the data and knowl-
edge required by the object database to create simula-
tion scenarios.

FIG. 11 (including FIGS. 11A through 11H) is a flow
chart illustrating a typical trainee session. Step 302 indi-
cates the initialization of the intelligent computer-aided
training system. Step 304 provides that the system
prompts for the name and password of the trainee. Step
306 requires that the trainee, or alternately the supervi-
sor, enters a name and password. Step 308 evaluates
whether the user is a trainee or a supervisor. The pres-
ent flow diagram only considers a trainee session, but a
supervisor session would be equally appropriate where
applicable. Step 312 indicates whether a trainee model
has been developed by the trainee model 50. Assuming
the trainee model exists, step 316 provides that the train-

the new information which has been asserted to the
blackboard. The remaining steps are expressly defined
in FIG. 11. The cycle continues until all rules which can
fire are fired.

OPERATION
The general purpose architecture utilized for devel-

oping the preferred embodiment of the intelligent com-

5

10

I5

20

25

30

35

40

45
ing scenario generator 20 Ales are examined. Step 318
provides that a training scenario is created. Step 320
asserts the initial scenario to the blackboard. Step 326
provides that the system clock is initialized. Step 328
writes the main menu to the screen for view by the 50
trainee. Step 330 indicates that the domain expert 10
asserts expected trainee actions to the blackboard. The
system waits for the trainee to input his information
(step 332) based upon the menu which was written to
the screen (step 328). The trainee inputs his action (step 55
334). The blackboard is evaluated to determine whether
all rules have fired (step 336), if help is needed (step
340), if information is needed (step 344), if the trainee
responds (step 348), or if a display or process request is
outstanding (step 352). A request to another flight con- 60
troller is given (step 356). The training scenario genera-
tor 20 compares the trainee’s action/parameter pair
with the expected action/parameter pair (step 358). The
action/parameter pair is written to the system window
(step 368). The previous domain expert assertions are 65
retracted from the blackboard (step 370). The scenario
context is updated (step 372). The domain expert asserts
expected trainee actions to the blackboard based upon

pute;-aided training system focused on the deployment
of a satellite from a space shuttle. Although specific
hardware was used in the development, it can be appre-
ciated by anyone skilled in the art that various and
sundry types of hardware currently available or which
may ultimately become available could be readily sub-
stituted for those used to practice the present invention.
The system was developed on a SymbolicsQ 3600
Series LISP computer. The SymboIicsQ 3600 com-
puter utilizes software comprising ART@ and LISP.
The presently preferred embodiment of the present
invention has also been implemented on a Unix-based
work station. In the Unix work station environment, the
procedures written in LISP software have been rewrit-
ten in C. Further, production rules have been converted
from ART @ to “CLIPS” software. CLIPS is an acro-
nym for “C-Language Integrated Production System”
that was developed by the Software Technology
Branch, Mail Code FM 51, NASA/Johnson Space Cen-
ter, Houston, Tex. 77058. The present activities of uti-
lizing a Symbolics @ and a Unix work station environ-
ment are part of a larger project directed at continuing
research in general-purpose development environments
for simulation-based intelligent training systems. In
each machine’s environment, the general purpose archi-
tecture has been fashioned around a modular expert
system approach in an effort to isolate its domain-
dependent elements from those that apply to any simu-
lation-based training system.

SYSTEM CONTROL CHARACTERISTICS
The general purpose architecture of the present in-

vention is based upon a production rule software imple-
mentation. The general purpose architecture provides
that groups of rules can be active in what appears to be
“simultaneous” fashion. The control structure imple-
mented provides for the optimal relationship between
the modules of the intelligent computer-aided training
system such that the domain dependent knowledge can
be sufficiently isolated from the domain independent
knowledge. The control structure of the present inven-
tion enhances the isolation of domain dependent from
domain independent knowledge.

The basis for the organization of the present inven-
tion is the use of the Rete algorithm. The Rete algo-
rithm is explained more fully in the article by C. Forgy,
:Rete: “A Fast Algorithm for the Many Pattern/Many
Object Pattern Match Problem,’’ in Artificial Intelli-
gence, Vol. 19, No. 1, Pages 17-32 (1982). FIG. 13 is a
flow chart of the operation of the Rete algorithm. It
should be noted that the present system is based upon
“rule-based programming” whereby a “left-hand side”
provides pattern matching and the “right-hand side of
rules” provides actions. In its most simple form, the
utilization of FIG. 13 represents the necessary ingredi-
ents for any programming language used to implement
the present invention. Thus, similar systems can be
implemented utilizing the general purpose architecture
of the present invention with software which has not
yet been developed, but whose principles are based

5.3 1 1.422
21

upon the Rete algorithm or other schemes for rapid
pattern matching. Thus, a programmer could write his
or her own language or routines to implement the fea-
tures which describe the present invention, but the con-
trol structure for implementing the general purpose
architecture would be similar. Thus, any general pur-
pose architecture which utilizes intelligent computer-
aided training based upon the present control structure
would be within the scope of the present invention.

The control structure of the present invention is im-
plemented with a rule-based language having the famil-
iar parts: data and process. The data is represented as
facts and the process as inference rules. The operation
of a rule-based language is two-fold: (1) match all fact
combinations against rule patterns to determine which
rules may fire, then (2) pick one rule for execution and
update the fact base. The process is repeated until no
rule can fire.

Not every rule-based system will look the same or
have the same syntax for facts and rules. The language
ART@ for example, requires that relation names be
satisfied first in a template description of a relation
whereas CLIPS has no relation syntax at all. However,
all rule-based systems will share the common feature of
having rules which match facts (in some format)
through some pattern matching scheme as does the
present invention. The control structure of the present
invention is based on two primary observations. First, it
is important to point out that the present invention has
multiple sets of rules which act in concert to implement
the system. This is done so that each set of rules can be
considered a module which can be “adapted” to pro-
duce new and/or different systems. Consequently, if it
is desirous to make changes to the domain expert 10 set

22
or step-by-step structure of the tasks imposes restric-
tions on the format of the messages which are passed
between the various rule groups of the system. First,
some part of each message must contain information

5 regarding both which rule group has sent the message
and which rule group or groups should use the message.
Although the details of this part of the message will
change from system to system and may be readily modi-
fied by those skilled in the art, their presence is required.

10 Next a portion of the message must contain the context
or “step” of the process to which the given message
applies since it is assumed that the message will imple-
ment a procedural task. Again, the portion of the mes-
sage containing the step or context can vary in form. as

l5 is readily apparent to those skilled in the art, but must be
present to operate within the scope of inventive con-
cept. Finally, the contents of the message itself must be
passed from rule group to rule group.

In practicing the present invention a message taks

(message-source message-targets step messagecon-

The fields shown in the above message can be in any
order or can even be combined into single fields. For

25 example, the first two fields above could be combined
to form a single field with an encoding of “from” and
“to” rule sets. In the intelligent computer-aided training
system implemented with the general purpose architec-
ture of the present invention, the messages utilized were

2o the following form:

tents).

30 in the following form:

(message-D-to4 <step> <type> <components>)
SOUICe/target step contents

of rules, the other sets ofrules may be changed little, if 35
at all. ms is true even if the entire domain expert 10 is The portion “message-D-to-I” is the relation name indi-
replaced with a new domain expert. cating both the sender and receiver of the message. In

The present invention utilizes multiple sets of rules so the Present example this format is a message between D
that they communicate. Communication is provided for the domain expert 10 and 1 for the training session
based upon a message passing protocol. The message. 40 manager 30. Further, the term “<step>” holds the step
passing protocol is provided for all the rule sets which number at Which the message is applicable. Finally, the
are being used. n u s , one ofthe last two fields hold the Contents Of the message. It can
for the control structure of the present invention is to be readily appreciated by those skilled in the art that
have a common interface through which the various any Particular ordering O r combination of the above
and different rule sets communicate. 45 components can be used as long as the message contains

The control structure of the present invention re- sour=/target, Step and context information.
quires the use ofa message-passing protocol by indepen- The present invention UtilkeS eight different kinds of
dent rule sets for communication between different rule control rules which are all based upon the message
sets. format as above described. As previously discussed, the

of the rules mY change from one imPle-
present invention is based upon building an intelligent mentation Of control structure to another, but the need
training system for procedural tasks is important. The for the various kinds of attributes shown in these rules
control structure utilized in the present invention is will not change. Examples of attributes are: step attri-
readily adaptable to training systems having definite bute, from attribute to attribute, etc.
‘‘steps” which can be characterized as having a particu- 55 Given the message format described above, several
lar context. These steps may repeat or the steps may be types of control rules can be defined which guide the
skipped over as different individuals interact with the execution of the program. First, some rule must exist
system. Nonetheless, the tasks adaptable for use by the which changes the context or “step” of the process.
present invention can be decomposed into a finite num- Without such a rule, the system would never get any-
ber of definite steps. The finite number of definite steps 60 where. This rule is referred to as a standard matching
can be specifically enumerated. The assumption of pro- rule which matches the user’s (or other outside) input
d u r a l tasks is the second design choice utilized to with what the system is expecting. The standard match-
implement the present invention. ing rule is, in general, what increments the system to the

Tasks which are implemented utilizing the present next step of the process. However, it may be the case
invention are assumed to be or can be described as 65 that some matches, such as optional actions, merely
procedural or step-by-step in structure. Thus, the re- update the fact database and are not required. Standard
quirement of a message passing protocol used by inde- matching rules can be written for as many different
pendent rule sets for communication and the procedural types of context changes as are needed by the system.

design

The fact that the general purpose architecture of the 50 details of

23
5,311,422

All such matching rules will check for similarities be-
tween two or more messages, whose format will dictate
the pattern matching specification (or left-hand-side) of
the rule.

5
EXAMPLE

Standard matching rule:

10 IF
(DomainEx-to-TSM step5 required-act action-a)
(Interface-to-TSM step5 action-a)

THEN
...

15 scnd message to student model for action-a
increment the step to stepd

Note that in the example of a standard matching rule,
the left-hand-side matches messages from two different
rule sets (here, the domain expert and the user inter- 20
face). What matches between these two messages is the
step number and the message contents (shown above as
“actiona”). All standard match rules will have these
same characteristics on the left-hand-side of the rule.

When the user types an input, it is converted to mes-
sage format by the interface using input conversion
rules which are then checked against the expected ac-
tions generated by the domain expert set of rules. Be-
cause of the message format, the input conversion rules
are also of a standard form. All inputs to the system
must be translated to the message passing format, thus
the right-hand-side of all such rules (where facts are
asserted) will be identical.

25

30

EXAMPLE 35

Input Conversion Rule:

IF
... 40
match on trainee input from interface;
input will be some pattern asserted by
trainee interface
(step stepnum)
...

45 THEN
assert: (Interface-to-TSM stepnum action-a)

Note that the right-hand-side of this conversion rule
asserts a message that matches the left-hand-side of the 5o
standard matching rule. The result is the conversion of
a trainee input (which may be in some special form
unique to the interface) to a message that is understand-
able by the other rule sets of the system.

step number which is no longer applicable and throw
such facts away. The clean-up control rules are ex-
tremely important because they keep the size of the
blackboard or fact database small, which allows the
program to run quickly. This clean-up facility also al- 60
lows the system to make massive, blind assertions at
each step of the process, thereby generating a variety of
possible paths for the user to engage. Whatever paths
are not taken will simply result in old facts (i.e., facts
identified with a previous context) being cleaned up or 65
retracted automatically. All clean up rules will have
similar formats on both the left-hand and right-hand
sides. The left-hand side will match for facts with steps

Clean-up rules check for facts that are identified by a 55

24
which are “behind” or in some way out of context, and
the right-hand side will retract those facts.

EXAMPLE
Clean-up Rule:

IF
F = (Domain Ex-to-TSM stepX <anytype> <any-message>)
(current-step step-
condition: Cy > X)

THEN

(retract fact F)
...

An important assumption which can be derived from
the clean up rules is the idea of “environment.” A clean
up rule operates on the assumption that there will come
a time when a message asserted at step X will no longer
be needed in some way (alternatively, it may be saved in
a location different from the working database of mes-
sage facts, such as a student model). In short, the cur-
rent “environment” in which the rules operates no
longer requires the message to be present in its current
form.

Many procedural tasks have this property; namely,
the current context of the problem changes from step to
step. In the present software, once an action is taken by
the trainee it is reasserted as a more permanent “envi-
ronment” fact which can be referenced by subsequent
rules for information on what has already occurred.
Any action which is not taken by the trainee is thrown
away when cleaned up. The point is, by labelling mes-
sages or other step related facts with a step number, one
can easily define rules which can do away with facts or
otherwise alter the fact base as new steps are taken in
the process. This keeps the fact base representing the
current context small which allows the rule sets to oper-
ate more quickly since there are fewer facts to examine
during the matching stage.

Backup control rules can also be written based on the
elements of the message protocol. Assuming that the
steps of the task get larger as the task is successively
completed, the system can be reversed to any particular
poht of its execution by forcing a cleanup of all facts
which have been stamped with a step after the desired
step. This is the reverse of the cleanup rules, where facts
with old (lower numbered) steps are deleted. Cleanup
extends to any previous step, and can be made to effect
whatever information is stored in the more permanent
environment if the environment fact is so labelled with
a step.

EXAMPLE

’

Backup Rule:

IF
F = (<any message type> stepX <any message contents>)

condition: Cy < X)
(backupstep *pY)

THEN
(retract fact F)

Backup control rules are almost identical to clean up
rules. The only difference is the condition placed upon
the relationship between the step of the message and the
target step (Le., current-step or backup-step). Clean up

5,311,422
25 26

operates on messages which are behind in time; backup
operates on messages which are ahead in time. Backing
UP can be controlled Very Precisely- For example, the
system ofthe Present invention has rules for the
Program
trainee. Specifically, when the trainee makes an error

This “fine tuning” allows us to reinforce various steps allows, thus they are the very last candidate rule to be of the process based on the trainee’s needs and is a very 10
powerful paradigm. run. This means that a context switching rule will fire

the message format described here), it is possible to ion, a context switching rule can be used to switch the
generate a control structure which can place the proce- system between rule Which are Currently executing.
dure at any arbitrary point. This allows for iteration of This feature is essential whenever one has multiple sets
the process, backing up of the process, or even random of rules interacting at the same time.
jumping ahead. For training purposes, arbitrary posi- Whenever multiple sets of rules are interacting, one
tioning means that the system can be used in a variety of must have some means for differentiating between the
ways. It can be used as a repetition device for memori- sets of rules. Preferably, each of the sets of rules should
at ion Or dmml. Alternatively, it can be used to help 20 fire independently, yet not step over one another. As a
more experienced t n t k e s review Problem areas by result, the idea of context was developed. A context is
arbitrarily point in the Process or simply a fact, like any other fact, which is present in

as a general tactic, the backup facility allows the system 6LconteXtSIy as there are different rule sets. Thus all the

arbitrary configuration. Thus the backup facility could fact, namely be used to “search” for possible answers by starting the
procedure at various points with different environment
facts to see which alternative bears more fruit.

rule which either backs the system up to a previous 30
stage or allows it to move ahead. Iteration rules can be

tion-a, another to go ahead on condition-b, etc.) or as a
single rule with the conditions on the right-hand-side.

by a specific context. Special match rules are currently
needed to override the standard match rule to “jump”

from system to system. However, all special match rules
match on particular messages and, consequently, have
similar left-hand-side formats.

EXAMPLE

training is implemented and thus falls into the category
of outside request. Each outside-request rule has a dif-
ferent format, depending upon what features the system
provides for the trainee, for example, step explanation,

one step on Particular errors made by the 5 action explanation, and current status (i.e., which ac-
tions have been successful~y completed). which he/she made in the past, the system Can back Context switching rules are set at the lowest possible

One and ask the user to perform the action Over* salience (default value) the rule language

In general, by having a task (along with Ody if no other rules can fire. COnStruCted in this fash-

them at
by skipping over those

to restart the Procedure at

which are ‘‘easy.” Finally, every rule of the system. There are exactly as many

arbitrary point with any 25 Domain Expert rules have the domain context

IF
An iteration rule is simply a special case of a backup

implemented as rule pairs (one rule to back up on condi-

...
(context domanexpert)

THEN
...

which separates them from other rules. Now, when the
only the

domain expert rules will be able to fire. ms provides
the on and or. different rule sets

domain and are not portable 40 placed as the last pattern of the left-hand-side of a rule.
This is an extremely important, if somewhat technical,

When matching a rule to determine if all its patterns
are present in the fact base (and it is, thus, a candidate

45 for firing) the left-hand-side patterns are matched in a
particular order. Usually, this order is first-to-last. Con-
sequently, whatever pattern is first must be matched
successfully before any other matches are event at-

(Interface-to-TSM step5 action-a) tempted. By putting the context fact last it allows all
50 rules to match at the same time; then when the context

fact is asserted the rules are ready to fire immediately.
This saves a great deal of time since the rules of differ-
ent rule sets can be matching against the patterns in the

A context switching rule, then, is simply a rule which
another. an

Special match rules perform a Specific task triggered 35 fact ‘‘(context domain-expefi)” is

of
the ahead to an such as they are needed. Note that the context fact is always are tied to a

point.

Special Match Rule:

IF
@omainEx-to=TSM step5 required-act action-a)

THEN
...
send mesvgc to student model for action-a
perfom actions SPECmC TO THIS ACTION
..- fact base in parallel.

55
The structure of special match rules is identical to that
of standard match rules. The two are distinguished by a
default mechanism: if no special match rule can fire then
the standard match rule is used instead. Many rule-
based languages have such a defaulting feature (nor- 60
mally it is called salience) whereby rules may be la-
belled as more or less important than other rules. This
ranking is used when deciding which rule to select for
firing. F = (context domainexpert)

fall outside of any action recognized as part of the ac-
tual task being trained. For example, a request for expla- (assert (context training-session-manager))
nation or help is not part of the specific task for which

retrac. one context fact and
example, the follo-g rule:

EXAMPLE
Switching Rule:

IF

Outside-request rules match trainee requests which 65 THEN
(retract fact F)

5.31 1.422 2 -

27
changes contexts from the domain-expert set of rules to
the training session manager set of rules (these context
facts are called checkpoints in the PDACAT system).

Also of importance in the present invention is the rule
set that deals with error detection. Typically, messages
are passed between the various rule groups of the sys-
tem. Although, the message format does not matter
with respect to the organization of the control struc-
ture, the message format greatly affects the way in
which errors are detected. The present invention has a
general error detection scheme based upon a particular
kind of message format.

Recall that the messages passed among rule sets took
the following form:

(message-source message-targets step message-con-

Unlike the fmt three fields of the pattern (which are
used by the control structure), the last field(s) of the
pattern indicate the actual message communicated be-
tween rule sets. When a trainee takes an action, the
results are encoded in the message-contents portion of a
message which is sent from the input conversion rules
to the training session manager 30, which attempts to
match the trainee action to one of the actions predicted
by the domain expert 10. If no successful match is made,
the system calls the error handler rule set to which it
passes the same message contents.

The contents of a message are assumed to be hierar-
chical in structure. Furthermore, this hierarchy is as-
sumed to be of the form (action parameters) where each
parameter may itself be an action. As an example, say
the trainee made the following action:

call support personnel
request a vector from navigation
place the vector in slot V39

tents).

This action can be viewed as a hierarchy of two actions,
each expressed as actiodargument pairs:

(call-support place-vector request-navigation)
(place-vector slot-V39)

(call-support (place-vector slot-V39) request-naviga-
which, altogether, might be translated to

tion).

28
It would be relatively simple to break the action into the
following components:

(ace bar demo fix)
(bar cache)

5 (demoeduce)
or, perhaps more clearly, “(ace (bar cache) (demo
educe) fix).” Furthermore, if given a different action/#-
arguments lisk

10
action x.arRllments

ace 2
bar 3

CdUCe 1

then the message would be divided as
15

(ace bar educe)
(bar cache demo)
(educe fn)

(ace (bar cache demo) (educe fix))
20 or

So, it is possible to write one set of universal routines for
breaking a flat message format into its component parts
using a table (specific to a particular system) of ac-

Once done, the actions are checked by the error han-
dler expert starting with the topmost action (“ace” in
the above example). This is done based on the theory
that if a trainee makes a mistake at a high level, the

30 lower level details are probably not important. Said
another way, to report that the details of some lower
level action were wrong when the lower level action
should never have been taken in the first place seems
rather pointless. The error handler expert thus finds the

35 highest-level error made by the trainee, which it re-
cords in the trainee model before printing a response to
the trainee.

As stated earlier, the programming language used for
writing rule-based programs require an underlying con-

40 trol structure for pattern matching. Many of these pro-
gramming languages use the well-known Rete algo-
rithm. The Rete algorithm allows the code to be written
in terms of rules and facts. Rules are eauivalent to con-

25 tion/#-argument@) values as a guide.

All actions in the present system are assumed to be of ditional sentences and consist of two <-: an anteced-
this type. Thus, the message format would be stored in 45 ent and a consequent. The antecedent matches facts
fact format as a straight list of items: which have been asserted to a database of facts. The

(. . . call-support place-vector slot-V39 request-navi- matched facts represent the conditions under which the
rule is said to be activated. If the rule is activated, the

where a message can be any number of fields long. The rule may fire. A rule firing means that its consequent is
error handling rules break this format into the logical 50 executed. A rule’s consequent may perform any number
actiodargument pairs described above. Notice that the of actions such as updating windows on the screen,
flat message format does not provide any information performing calculations on data matched in the ante-
about which arguments belong with which action. This cedent, or assertinghetracting facts to the database.
will be different for each action of each system, but the The facts in the database are expressed in a relational
method of splitting messages into action/argument(s) 55 format. The relational format reflects a relationship
pairs can be identical from system to system. All that is between objects which have meaning to the program.
needed is a list of the actions and how many arguments For example, a fact related to the present preferred
each takes and the Same recursive routine can do the embodiment of the invention is “the satellite weight is
rest. For example, given the list: 10,OOO pounds.” The fact might be expressed in the form

60 (weight satellite lO,OOO), where “weight” is the relation-
and the following action/#-arguments list: ship, “satellite” is the object, and “10,oOO” is the value.

No constraints exist on the number of fields in a fact or
the ordering of those fields. However, any rules which

action #-arguments use a fact must exactly match the format of the facts.
ace 3 65 The usefulness of the Rete algorithm is its built-in
bar 1 ability to keep track of all facts asserted in a database

and the rules which are currently activated by those demo 1

facts. The tracking ability of the Rete algorithm allows

gation . . .)

(ace bar cache demo educe fix)

30
5,3 1 1,422

29
for groups of rules to be encoded by giving each rule a first. Box 405 indicates the selection of one rule for
particular controlling fact. The controlling fact in a rule execution based on priority or random selection. When
must match in order for that rule to be activated. The multiple rules exist on the agenda, one rule must be
rules in the same group have the same controlling fact. selected from the group of rules for execution. The Rete
The particular feature of using groups of rules is central 5 algorithm only executes one rule firing between each
to the blackboard implementation of the present inven- update of the database. Only one rule is fired because a
tion. Each group of rules is characterized by a “check- rule execution may result in the addition or deletion of
pint’’ in the software program. A checkpoint is a fact facts from the database which could change which rules
component in a rule. Thus a checkpoint fact has two are active. Normally, the rules are given a priority
elements: the word “checkpoint” followed by one of 10 called “salience” which is assigned according to the
the following: deplex, next-prompt, check-input, error, needs of the program. If the salience priority is not
error-select or error-report. The software incorporated sufficient to determine which rule should be executed, a
in the general architecture of the present invention rule is selected at random from the highest priority rules
cycles through the six Checkpoints during its execution on the agenda. Box 406 represents the execution of the
for turning on and off the various rule groups. 15 top rule. Once a single rule is eiecuted the fact base is

FIG. 12 illustrates a typical checkpoint scenario. In updated as represented by box 407.
general, the deplex checkpoint is used by the domain In the following discussion of the deplex rules the
expert rules. The domain expert rules determine the checkpoint rules will be addressed by their abbreviated
correct, optional, or wrong actions that are “expected” names, i.e., deplex, next-prompt, check-input, error,
of a trainee at a given point in the process. The next- 20 error-select and error-report rules.
prompt checkpoint is used when waiting for a trainee FIG. 14 represents a flow chart of the deplex rules. If
input. Once an input is made by the trainee, the input is no deplex rules can fire, the low-salience switching
translated into an internal format for the check input rules take over to assert another checkpoint. Normally
rules. The check input rules match the trainee’s action such a switch occurs after all of the rules pertinent to
against the predictions of the domain expert and cycle 25 the given step of the process have been executed. Thus,
back to deplex checkpoints if the trainee’s action is when a rule is uncovered having “checkpoint deplex,”
correct. If the trainee’s action is incorrect, the error that rule causes a checkpoint fact to be asserted to the
checkpoint is assert to determine the nature of the error. fact base or blackboard. Thus, all of the domain depen-
Finally, the error-select and error-report checkpoints dent rules which make predictions about the trainee’s
are asserted for selecting among the errors found and 30 next action are activated. When those rules stop execut-
for reporting a diagnostic message to the trainee. ing, the next checkpoint fact is asserted. The deplex

The checkpoints represent only the control flow of rules come entirely from the domain expert 10. This
the program. The rules associated with the present step is represented by box 408.
system are also divided conceptually. For example, the Any rules matching the current fact base which make
domain expert rules operate at three checkpoints. Rules 35 predictions of correct trainee actions are executed.
for predicting trainee actions are activated at check- These rules are triggered not only by the checkpoint
point deplex. Rules for catching specific trainee errors fact but also by the facts containing the current step of
(which are domain dependent) are activated at check- the process and any pertinent facts derived from previ-
point error. Finally, rules for particular deplex-trainee ous trainee actions. The training scenario generator 20
matching (which are also domain dependent) are acti- 40 may use data in the trainee model 50 to assert facts
vated at checkpoint next-prompt. Thus, while the do- which can alter the course of the rule activations during
main expert rules cover three checkpoints, all the rules the sequence represented by FIG. 14. Consequently, a
refer to domain dependent actions and are considered trainee can be given a variety of experiences with the
part of the domain expert. system through the assertion of different combinations

FIG. 13 is a flow chart illustrating the procedure of 45 of facts to the database which affect the predictions
the Rete algorithm. Box 401 illustrates the matching of made by the deplex rules. In fact, because the system is
all combinations of facts in the database against the capable of producing multiple predictions at each step
left-hand-side of the rules. The Rete algorithm contains of the lesson, the trainee’s actions guide the direction
code for matching the facts of the database against the taken by the system. (Also, see the prior discussion of
rules antecedent sections. At start up, or anytime there- 50 the domain expert 10 and the blackboard 60.) This step
after when a new fact is added or removed from the is represented by box 409.
database, the process of matching the fact base against The matching of rules for optional actions is repre-
the rule base is repeated. Box 402 represents an agenda sented by box 410. Actions taken by the trainee may
of rules which are activated from the matching proce- take several forms. Some of the actions expected by the
dure. Once all the matching is done, an agenda of rules 55 system are deemed “optional.” Optional actions address
is determined. The agenda is simply a list of the set of whether a trainee may or may not perform the given
rules which are activated by the current set of facts in action and still complete the training session. Typical
the database. Any rule which has all of its antecedent optional actions in the present system involve the
patterns successfully matched against facts in the data- trainee double checking his or her previous actions.
base is added to the agenda. Box 403 determines 60 Such optional actions may sti l l be limited to a particular
whether the agenda is empty or not. If the agenda is phase of the training lesson, and can be modified by the
empty, no rules fire, the Rete algorithm has completed, trainee model 50.
and the program is terminated. If the agenda is not The deplex rules requiring flexible actions are consid-
empty, at least one rule has been activated and can be ered as illustrated in box 411. Flexible actions are re-
executed. Box 404 illustrates whether the agenda has 65 quired of the trainee. However, flexible actions can be
more than one rule. If the agenda has only one rule, that correctly accomplished over a range of time in any
rule will be fired. Otherwise a choice must be made as particular training session. In other words, flexible ac-
to which of the various activated rules should be fired tions are required, but at no specific time. Usually a

31
5,3 1 1,422

32
flexible action will have a deadline before which it must tem records the action taken and increments the step
be performed. At such time the flexible action changes before passing control back to the domain expert 10 via
from being flexible to being required. the deplex rules.

In FIG. 14, Box 412 indicates the program increment- Boxes 419 and 420 represent the matching of an op-
ing to the next step for completed flexible actions. At 5 tional action or a flexible action taken by the trainee,
the point where a flexible action becomes required, a respectively. These two groups of rules are similar to
check must be made to determine whether or not the the rules of box 417. The rules differ from the d e s that
action has been taken. If it has, the current step is com- match a required action (box 417) in that they match
plete and the domain expert 10 need not wait for the optional or flexible trainee actions as represented in
trainee before incrementing the next step of the process. 10 boxes 410 and 411, respectively. When optional or flexi-
The rules incremented by Box 412 check the status of a ble actions are matched, the trainee has not actually
flexible action at the time it becomes required, and in- completed the step. The training session manager 30
crement the system to the next step of the process if the simply records the action taken and passes control back
action has been completed. to the input rules to get another trainee action. The step

There are a number of rules which “clean up” the I5 number in the control structure‘is not incremented by
side effects of other rules which are operating within the application of the rules associated with boxes 419
the system. In general such rules are called “bookkeep- and 420. The rules matched pursuant to boxes 419 and
ing rules.” For example, the domain expert 10 makes 420 are from the training session manager 30 if they
many predictions about the actions of the trainee at each represent generic matches and are derived from the
step. Those predictions which are not pursued by the 20 domain expert 10 if they are from specific matches.
trainee are left as useless facts on the blackboard 60 if Box 421 of FIG. 15 illustrates the process of matching
they are not explicitly removed. Any such leftover a special request action taken by the trainee. The trainee
predictions are removed by rule as indicated by Box may make special requests of the system at any point in
413. the training session. Such requests include asking for

The training session manager 30 has rules which reset 25 help, looking at the current status of the lesson, or re-
the automatic timing of each step, for example, the time questing any specific data which accompanies the les,
taken by the trainee to complete each step is recorded. son, for example, the characteristics on the satellite
Also the error handler expert 34 part of the training being deployed in the preferred embodiment of the
session manager 30 keeps track of the number of errors general purpose architecture of the present invention.
made for a given step in the process. The count is reset 30 The rules associated with the box 421 match the special
by the bookkeeping rules when a new step is initiated. request and either perform the requested action or

In FIG. 14, the rules associated with boxes 408,409, spawn a side effect fact to perform the requested action.
410,411, and 412 come from the domain expert 10. The (See below, discussion of side effect rules and boxes
rules associated with boxes 413 and 414 come from both 451-457). The rules utilized by box 421 come from the
the domain expert 10 and the training session manager 35 training session manager 30. Box 422 receives matched
30. information with respect to optional actions, flexible

FIG. 15 is a flow chart illustrating the use of check- actions or special requests and switch checkpoints to
input rules. Diamond 415 acts to determine if any addi- the next-prompt rule. After matching an optional action
tional rules can be matched. If no training session man- 19, a flexible action 20, or a special request 21, control is
ager rules are activated, the system automatically de- 40 transferred back to the input rules by changing check-
faults to the context switching rules which move to the points to “next-prompt.” The rules associated with box
next checkpoint. Normally this will not happen and the 422 are derived from the training session manager 30.
procedure is provided only for the default case. Typi- FIG. 16 is a flow chart illustrating the error rules.
cally the training session manager 30 switches back to The error rules begin by resetting the text buffers for
another checkpoint (see boxes 18 and 22). The object is 45 reporting errors to the trainee as reflected in box 423.
to match the trainee’s action against a prediction from The error handler expert 34 of the training session man-
the domain expert 10 if at all possible. If such a match- ager 30 begins by first clearing out any buffers used to
ing is not possible, the trainee must have made an error hold the text printed to the trainee. The rules associated
and the system will switch to error rules by default. with box 423 come from the training session manager

match. If diamond 415 indicates there are more rules to Thereafter, specific trainee errors and general trainee
match, then they will be of the type specified in boxes errors are matched as indicated in boxes 424 and 425,
416 through 420. If not, then the context switching rule respectively. Two different types of rules can match a
(Le., “Go to S”) gets called. If the trainee has made trainee’s erroneous input. The first of these types come
spurious inputs, usually by mistake, that have no mean- 55 from the domain expert 10 and detect specific errors
ing to the system of the present invention, such inputs which are typically made by trainees at a given step of
must be removed from the blackboard 60. Box 416 the training session as indicated in box 424. If the train-
represents a set of rules which identify such spurious ee’s input does not match a specific error, the training
inputs which are unrecognized by the system. Box 416 session manager 30 will match the input as a general
provides that such inputs are removed from the system 60 error. The general errors are categorized as having
and control returned to the diamond 415 to determine if either a bad action or a bad parameter.
additional rules can be matched. After a specific or general trainee error has been

Boxes 417 and 418 illustrate a match of a trainee matched, it is determined whether any errors have been
assertion and the switch to the deplex rules, respec- found and a change is implemented in the error check-
tively. Box 417 matches correct trainee actions. The 65 ing as reflected in boxes 426 and 427, respectively. If no
training session manager 30 has generic correct-action errors are found, the system changes error levels and
matching rules and the domain expert 10 has specific repeats the checking process. Every action in the sys-
matching rules. If a trainee’s action is correct, the sys- tem is viewed in the general form (action: parameter 1:

The diamond 415 detects if any more rules will 50 30.

5,3 1 1,422
33

parameter 2: . . . parameter N). In the general case, each
parameter may consist of its own parameter@). The
error level measures how deeply into the action the
error-handler rules are checked for errors. The system
starts at the top level, and continues downward by
expanding parameters until an error is found. The result
is that the most general error in the action is detected
first. The system is guaranteed to find at least one error
since it will report an unknown action error at the bot-
tom-most level.

Once an error is found, the training session manager

34
provided so that the trainee can get an example of the
action which was expected of him or her at the current
step. The number of errors which cause such example
actions to be taken can be set either by the authors of

5 the system or by the training scenario generator 20. In
general, the error reporting defaults back to the check-
point next-prompt to get the next trainee input as indi-
cated in box 439. However if an action is taken for the
trainee by the system, it is asserted as a normal trainee

10 action. The system is then switched to checkpoint
check-input where the action will be matched in the

30 stops checking for errors and swikhes to the err&-
section phase of the program as indicated in box 428.
Several errors could be simultaneously found at a given
level before switching to error-select.

FIG. 17 illustrates the use of error-select rules. If
there are no rules left to match for error selection, the
system defaults to the context switcher section of the
code which changes the checkpoint as indicated in box
429. If more than one error has been found by the sys- 20
tem, the errors are reduced to one as indicated by box
430. Multiple errors occur when one general and one
specific error are found at the same level of checking. In
such an event the general error is removed from the fact
database. All errors made by the trainee are reported to 25
the trainee model 50. The error reporting is done by
matching on an error and altering its format for submis-
sion to the trainee model 50 as indicated box 431. The
training session manager 30 keeps track of how many
errors are made for each step of the training session so 30
that each error is counted separately. The errors re-
corded are kept in the blackboard 60 or fact database
during error detection for use in generating an appropri-
ate response to the trainee. When the step is incre-
mented by a correct trainee action, the counts are all 35
deleted as reflected by boxes 413 and 414. Once an error
has been detected and the count incremented, the
checkpoint is changed to “error-report” for reporting
the error to the trainee as indicated in box 433.

the error-report rules. Box 434 indicates that, if no more
rules can be matched, transfer is made to the switching
rules, otherwise, if additional rules can be matched, the
error-report rules continue. When the error is found,
the action taken which caused the error is remated for 45

15

FIG. 18 is a flow chart illustrating the procedure of 40

the trainee. Box 435 represents the match dles which
provide context for the textual messages which will be
displayed to the trainee. Based upon the information in
the trainee model 50, the contents of the error made,
and the status of the count variable (per box 432), the
system prints a diagnostic message to the trainee. The
diagnostic message printed to the trainee is formatted
text supplied to a print-out buffer which is then dumped
to the screen (see box 423). At various points in the
training session, the training session manager 30 may
print extra diagnostic messages suggesting actions
which the trainee might take as represented by box 437.
The suggesting messages might imply that the auto-
matic help feature be turned on or off, depending on the
number of errors made by the trainee. The current total
number of errors made by the trainee will include those
made in the current session and may be dependent on
errors from past sessions as well. The trainee may fol-
low these suggestions or not without any penalty or
ramifications with respect to the task being performed.
When the trainee makes a predetermined number of
errors, the system automatically initiates the proper
action for the trainee. The initiated proper action is

50

55

60

65

usual way (see FIG. 15).
FIG. 19 is a flow chart illustrating the application of

the switching rules. All of the rules associated with
switching and represented by &xes 440,441,442,443,
and 444 are similar in nature. Each is given the task of
detecting a particular fact, which it removes from the
blackboard 60 and produces a new fact. There is no
switching rule for error-select rules. The error checking
process is guaranteed to find at least one error, at which
point error-select is asserted. Thus, no switcher is
needed to go from error to error-select since an error
can always be found by default and the switch from
error to error-select can, consequently, always be gen-
erated by default. Furthermore, the error checking rule
must be turned off as soon as one error is found, since
there is no point in finding errors at lower levels once an
error is detected.

FIG. 20 is a flow diagram illustrating the next-prompt
rules. In order to keep the system running, rules must be
kept on the agenda. The system cannot be allowed to
stop fUing rules while it waits for the trainee to make an
input. Thus a wait rule is defined which does nothing
but loop itself while the trainee makes his or her input.
The wait rule if reflected by box 445. Each time a new
action is sought from the trainee, the error level (see box
427) is reset. The utilization of the reset mechanism
represented in box 446 insures that each new action is
checked for errors starting with the top most level.

While checking for errors, the system produces many
side effects in the form of facts. The system chops each
trainee action and each domain expert prediction into
pieces. One piece is for each possible level of error
checking (see box 427). These facts are only useful
during one error check, and must be thrown away to
keep the blackboard 60 clean. When the trainee is
prompted for a new action, the side effects from the last
action are deleted as represented by box 447. Any ac-
tion taken by the trainee is asserted to the fact base from
the user interface. The form presented by the interface
must be converted into the proper fact format to be
recognized by the rest of the rules in the system. Once
the conversion is done, the trainee is considered to have
performed an action and the system is switched to
check-input rules.

FIG. 21 is a flow chart illustrating the utilization of
the side effect rules. FIG. 21 represents the groups of
rules which can be activated at any time during the
program. The side effect rules do not depend upon any
checkpoint. Instead, they are spawned as side effects of
other rules which are triggered during the normal
course of the training session. Box 450 contains rules to
backup the system when the user requests a backup.
These rules momentarily take over control of the sys-
tem, erase all facts in the blackboard 60 back to the
desired step, and, then, restart the system. When the
trainee asks for hints about which action to take, the
side effect rules fire as indicated in box 451. The rules

5.3 1 1.422 . ,
35

provide that the blackboard 60 is scanned by matching
on the current predictions made by the domain expert
10. Such predictions are collected and printed out to the
trainee. Many of the trainee’s actions will involve the
user interface 40. The user interface 40 has, among 5
other things, graphical representations of the types of
monitors, gauges, windows, etc. used in performing a
particular task. Actions taken by the trainee may lead to
updates of the representations which are accomplished
by side effect rules as represented by box 452. When a 10
side effect is asserted, the appropriate rules match the
side effect and call the supporting code for updating the
user interface 40. The given rule may also match on
other facts on the blackboard 60 for information needed
by the support code, i.e., the routines that drive the l5
window displays and calculate data to be inserted into
the window displays. When the trainee requests an
explanation of the current step, the rules for the expla-
nation are activated as indicated by box 453. The expla-
nation rules match on the current context of the lesson 2o
and supporting code to access the appropriate textual
explanation. In the present preferred embodiment of the
present invention, the supporting code means a list of
pairs (e.g., step and explanation) plus a routine for re-
trieving the explanation text given the step number.
These rules are part of the training session manager 30,
though the text printed out by the supporting code is
part of the domain expert 10. The side effect rules col-
lect all information particular to the current lesson (see 3o
box 421) and display the results to the trainee as indi-
cated in box 454. The side effect rules for syntax expla-
nation are identical to those used for explaining the
current step except that syntax is described instead,
where syntax refers to the manner in which an action is 35
entered into the system. Some actions take several argu-
ments, thus there is “explain syntax” help facility to
indicate the details of parameters. The syntax explana-
tion rules match on the current context and call the
appropriate supporting code to print out textual infor- 40
mation on the syntax of a given action. The syntax
explanation rules, as represented by box 455, are part of
the training session manager 30 and the supporting code
which is invoked part of the domain expert 10. The
current status rules are matched as indicated in box 456. 45
The current status rules give the trainee access to a
short summary of the current state of the training ses-
sion. This short summary provides an overall look at the
tasks accomplished so far, and the current time elapsed.

1. A computerized intelligent training system adapt-
able for use in the training of a trainee having a current
skill level in the performance of at least one of a plural-
ity of training tasks within a specific task environment,
where the performance of each task comprises perfor- 55
mance of certain procedural steps called actions such
that each task has at least one desired action called a
correct action and training is accomplished using the
system by having the trainee perform simulated task by
performing simulated actions on a computer, the com- 60
puter system comprising:

(a) user interface means for simulating the task envi-
ronment for which the trainee is being trained and
for enabling interaction between the trainee and
the system; 65

(b) domain expert means for performing a simulated
task and achieving the correct actions for the task;

(c) training session manager means comprising,

25

What is claimed is: 50

36
(1) error detection means for error detection, an

error being a failure of match between an action
taken by a trainee, called a trainee action, with a
correct action, whereby error detection is made
in a hierarchical manner with relatively higher
level errors, including a highest level error, dis-
tinguished from relatively lower level errors,
and p2 (2) error handling means for providing
information concerning actions and errors, said
information concerning errors being based on
the highest 1evel.error detected;

(d) training scenario generator means for designing
increasingly complex training tasks based on the
current skill level of the trainee and on any weak-
nesses or deficiencies that the trainee has exhibited
in previous trainee actions, where such weaknesses
or deficiencies are based on comparing the trainee
actions with the correct actions from said domain
expert,

(e) trainee model means for accepting from said train-
ing session manager information concerning cor-
rect actions and errors made as a result of trainee
actions and compiling a complete record of the
correct actions taken and errors by the trainee and,
at the conclusion of each training session, creating
a training summary of such correct actions and
errors as well as the time taken to complete the
session and the type of assistance provided by the
system to the trainee; and

(f) blackboard means providing an intermodule inter-
face for communicating between said user interface
means, said domain expert means, said training
session manager means, said training scenario gen-
erator means, and said trainee model means; said
blackboard means also providing an intermodule
interface for transferring control of the training
system from one to another of said domain expert
means, said training scenario generator means, said
error detection means and said error handling
means by use of rules contained within each of said
domain expert means, said training scenario gener-
ator means, said error detection means and said
error handling means.

2. The system as defined in claim 1 wherein said
domain expert is capable of performing the task to be
trained by using rules effecting correct actions and
includes rules identifying typical errors.

3. The system as defined in claim 2 wherein said
domain expert comprises production rules.

4. The training system as defined in claim 1 wherein
said domain expert generates a plurality of correct ac-
tions any of which could lead to accomplishment of a
particular training task so that any trainee action which
could lead to accomplishment of the particular training
task is a correct trainee action.

5. The system as defined in claim 4 wherein said
blackboard means accepts facts from said training sce-
nario generator to establish the context of a training
scenario.
6. The system as defined in claim 4 further comprising

a database containing a range of typical procedural
steps describing the training context and problems of
graded difficulty from which new training scenarios are
built.

7. The training system as defined in claim 1 wherein
said training session manager compares the actions by
said domain expert and by the trainee for evaluating
such trainee actions and provides guidance to the

5.311.422
37

trainee which is appropriate to acquired skill level of
the trainee.

8. The system as defined in claim 1 wherein said
training scenario generator uses information concerning
correct actions and CKOIS made as a result of trainee
actions in said trainee model for creating a unique sce-
nario for the trainee whenever a new session begins.

9. The system as defined in claim 1 wherein said
training scenario generator examines said trainee model
and said database in order to create a unique scenario
for the trainee whenever a new training session begins.
10. The system as defined in claim 1 wherein said

training scenario generator builds training scenarios of
greater difficulty as the trainee demonstrates the acqui-
sition of greater skills.
11. The system as defined in claim 1 wherein said

domain expert provides a plurality of error texts that
allows said error detection means in said training session
manager to write appropriate error messages to the
trainee through said user interface.
12. The system as defined in claim 1 wherein said

trainee model accepts from said training session man-
ager information comprising trainee history including

38
verts the trainee’s action into a format required by the
system.
20. The system of claim 14 wherein said control rules

include at least one clean-up rule which deletes facts
5 from the blackboard that are no longer needed by the

system.
21. The system of claim 14 wherein said control rules

include at least one backup control rule which recon-
structs a previous context.

10

15

20

25 previous correct actions and errors made as a result of
trainee actions, where such history may comprise sum-
maries of such information, records the trainee actions,
updates trainee history, and provides such information
to said training scenario generator to produce new
training scenarios.
13. The system as defined in claim 1 wherein said

domain expert includes rules identifying typical errors
made by a trainee and trainee error messages relating to
said typical errors, whereby, upon performance of a
trainee action which includes an error, said training 35
session manager selects from said hierarchy of errors
said highest level error and provides an error message
for the trainee which is appropriate for the trainee’s
current skill level.

means, said domain expert means, said training session
manager means, said training scenario generator means,
and said trainee model means all contain control rules in
the form of production rules; whereby, control of the
system may be transferred from one to another of said 45
user interface means, said domain expert means, said
training session manager means, and said training sce-
nario generator means.
15. The system of claim 14, wherein said control rules

may cause facts to be posted to the blackboard means by 50
any of said user interface means, domain expert means,
training session manager means, training scenario gen-
erator means, and said trainee model means.
16. The system of claim 15 wherein said facts may be

read by any of said user interface means, domain expert 55
means, training session manager means, training sce-
nario generator means, and trainee model means.
17. The system of claim 16, whereby control of the

system is transferred to the one of said user interface
means, domain expert means, training session manager 60
means, training scenario generator means, and trainee
model means which can fire one of its said control rules
from said facts posted to said blackboard means.
18. The svstem of claim 14 wherein said control rules

30

14. The system of claim 1 wherein said user interface 40

22. The system of claim 14 wherein said control rules
include at least one iteration rule which reconstructs a
previous sequence of action contexts.

23. The system of claim 14 wherein said control rules
include at least one special-match rule which under
appropriate conditions omits certain steps in a training
task.

24. The system of claim 14 wherein said control rules
include at least one outside-request rule which responds
to trainee’s request for help or information.
25. The system of claim 14 wherein said control rules

include at least one context-switching rule which
changes control of the system from one of said user
interface means, domain expert means, training session
manager means, training scenario generator means, and
trainee model means to a different one of said user inter-
face means, domain expert means, training session man-
ager means, training scenario generator means, and
trainee model means.

26. A computerized intelligent training system adapt-
able for use in training persons, called trainees, in the
performance of training tasks in a specific task environ-
ment, the computer system comprising a plurality of
modules, each module comprising a set of production
rules, said rules of the various modules acting in concert
to implement the system, wherein said modules commu-
nicate with each other via an intermodule interface by
means of messages sent in accordance with a message
passing protocol, wherein all of said modules may write
facts to said intermodule interface and all of said mod-
ules may read facts from said intermodule interface, and
wherein each said message, to comply with said mes-
sage passing protocol, contains facts indicating which
of did modules sent the message and which of said
modules is to receive the message.
27. The system of claim 26 wherein control of said

system at any given time is performed by control rules
contained within a fvst of said modules and whereby
said control rules transfer control of the system to any
second of said modules by writing messages to said
intermodule interface in accordance with said message
passing protocol.

28. The system of claim 27 wherein control of said
system is transferred from said fmt to said second mod-
ule, said second module being the module having a rule
which can be fired by facts written to said intermodule
interface by said fust module.
29. The computer implemented method of training a

trainee having a skill level to perform actions necessazy
to accomplish the training steps of a training task in a
specific task environment, the trainee performing
trainee actions at various times in the training, the vari-
ous actions being represented by rules, the method
using a computer having modules comprising sets of
rules and includinn an intermodule interface to which

include at l&t one standard match rule which changes 65 facts may be w&n by modules and from which facts
the step, called the context, of the training task.
19. The system of claim 14 wherein said control rules (a) writing to the intermodule interface predeter-

include at least one input conversion rule which con- mined correct, optional, and typical error actions;

may be read by other modules, comprising the steps;

39
5,3 11,422

(b) waiting for a trainee action;
(c) comparing the trainee action with the predeter-

mined correct, optional and typical error actions;
(d) continuing to the next training step if the trainee

action matches the predetermined correct action or
a predetermined optional action;

(e) determining a specific error if trainee action
matches a predetermined typical error action;

(f) reporting an error message to trainee appropriate io
for the trainee’s skill level;

5

40
(g) recording the specific error for use in both trainee

and system evaluation;
(h) performing each step by use of one or more of said

modules; and
(i) transferring control of the process from a first to a

second of said modules by use of rules contained in
any said fust module, whereby said transferring of
control is accomplished by writing facts to said
intermodule interface by said first module and
reading therefrom by any said second module.

I * * * *

15

20

25

30

35

45

50

55

65

