United States Patent
villarreal et al.

NEURAL NETWORK FOR PROCESSING BOTH SPATIAL AND TEMPORAL DATA WITH TIME BASED BACK-PROPAGATION

Inventors: James A. Villarreal, Friendswood; Robert O. Shelton, Houston, both of Tex.

Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration, Washington, D.C.
Appl. No.: 813,556
Filed: Dec. 26, 1991
[51]
Int. Cl. ${ }^{5}$...
U.S. Cl. 395/24; 395/23
[58]
Field of Search 395/24, 23

References Cited

U.S. PATENT DOCUMENTS

4,326,259	4/1982	Cooper
4,536,844	8/1985	Lyon 364/487
4,752,906	6/1988	Kleinfield 364/807
4,858,147	8/1989	Conwell 364/513
4,874,963	10/1989	Alspector 395/24
4,906,865	3/1990	Holler 307/353
4,914,708	4/1990	Carpenter et al. 382/14
4,926,180	5/1990	Anastassiou 395/27
4,931,868	6/1990	Kadar 358/105
4,937,872	6/1990	Hopfield et al. 395/24
4,979,124	12/1990	Sachse et al. 364/507
4,979,126	12/1990	Pao et al. 395/24
4,997,249	3/1991	Berry et al. 350/96.15
5,067,095	11/1991	Peterson et al. 395/24

OTHER PUBLICATIONS

Gori et al, "Temporal Pattern Recognition Using EBPS", EURPSIP Workshop 1990-Neural Networks, Feb. 1990, pp. 69-80.
"Why Neural Networks Don't Yet Fly: Inquiry into the Neurodynamics of Biological Intelligence" IEEE Iternational Conference on Neural Networks, San Diego, Calif., 1988, W. J. Freeman.
Nonlinear Dynamics of Pattern Formation and Pattern Recognition in the Rabbit Olfactory Bulb, Elsevier

Science Publishers B. V., North-Holland Physics Publishing Division, 0167-2789, 1986.
"Sunspot Predition Using Neural Networks", SOAR
'89-Third Annual Workshop on Automation and Robotics, 1987, J. A. Villarreal and P. Baffes.
"Learning Internal Representations by Error Propagation", in D. E. Rumelhart \& J. L. McClelland (Eds.), Parallel-Distributed Processing: Explorations in the Microstructure of Cognition (vol. 1) (pp. 318-362) MIT Press, 1986, Cambridge, Mass., D. E. Rumelhart et al. "Serial Order: A Parallel Distributed Processing Approach", ICS Report 8604, Institute for Cognitive Science, Univ. of Calif., San Diego, Calif. 1986, M. L. Jordan.

> (List continued on next page.)

Primary Examiner-Allen R. MacDonald Attorney, Agent, or Firm-Hardie R. Barr; Guy M. Miller; Edward K. Fein

[57] ABSTRACT

Neural network algorithms have impressively demonstrated the capability of modelling spatial information. On the other hand, the application of parallel distributed models to processing of temporal data has been severely restricted. The invention introduces a novel technique which adds the dimension of time to the well known back-propagation neural network algorithm. In the space-time neural network disclosed herein, the synaptic weights between two artificial neurons (processing elements) are replaced with an adaptable-adjustable filter. Instead of a single synaptic weight, the invention provides a plurality of weights representing not only association, but also temporal dependencies. In this case, the synaptic weights are the coefficients to the adaptable digital filters.

42 Claims, 9 Drawing Sheets

OTHER PUBLICATIONS

"Reading the Structure of Brains", Network Computation in Neural Systems, vol. 1, No. 1, Jan. 1980, V. Braitenberg.
"Neural Networks Primer Part VI", AI Expert, pp. 41-46, 1989, Miller Freeman Publications, San Francisco, Calif., Maureen Caudill.
"The Tempo-Algorithm: Learning in a Neural Network with Variable Time-Delays", JJCNN-90-Wash., D.C., Jan. 15-19, 1990, vol. 1, pp. I-597-I-600, Ulrich Bodenhausen.
"Temporal-Spatial Coding Transformation: Conversion of Frequency-Code to Place-Code via a Time-Delayed Neural Network", IJCNN-90 proceedings Jan. 1990, pp. I-130-I-133, David C. Tam.
"A Connectionist Approach to the Processing of Time Dependent Medical Parameters" IJCNN-90 proceedings Jan. 1990, pp. II-575-II-578, Barry Blumeenfeld, MD.
"Spatio-Temporal vs. Spatial Pattern Recognition by the Neocognitron", IJCNN-90 proceedings Jan. 1990, pp. II-279-II-282, Kunihiko Fukushima.
"Self-Organizing Neural Architectures for Motion Perception, Adaptive Sensory-Motor Control, and Associative Mapping", IJCNN-90 proceedings Jan. 1990, pp. II-26-II-29, Stephen Grossberg.
"Adaptive Junction: A Spatio-Temporal Neuron Model", Proceedings, International Joint Conference on Neural Networks, Washington, D.C., Jan. 1990, vol. 1, pp. I-353-I-356, Yoshiaki Ajioka, et al.

FIG.I

FIG. 2

FIG. 3
INPUT LAYER

FIG. 4

FIG.5A

FIG.5B

FIG.6A

FIG.6B

FIG. 9

FIG.IO

FIG.II

FIG.I4

NEURAL NETWORK FOR PROCESSING BOTH SPATIAL AND TEMPORAL DATA WITH TIME BASED BACK-PROPAGATION

ORIGIN OF THE INVENTION

The invention described herein was made by employees of the United States Government and ma be manufactured and used by or for the Government of the United States of America for governmental purposes without payment of any royalties thereon or therefor.

BACKGROUND OF THE INVENTION

The present invention relates to a neural network for processing both spacial and temporal data (hereinafter "space-time neural network") and to an artificial neuron, or so-called "processing element", for use in such a space-time neural network.
More particularly, the invention relates to a spacetime neural network, and a processing element therefor, which receives a temporal sequence of inputs $X(n)$, $X(n-1), X(n-2) \ldots$, where each input $X(n)$ is comprised of N components $x_{1}(n), x_{2}(n), \ldots x_{1}(n), \ldots x_{N}(n)$, and which maps such input representations into a single, plural-component output representation. The network may be a single layer network or it may comprise multiple layers of processing elements.

HISTORICAL PERSPECTIVE

Throughout history, the meaning of time has plagued the minds of mankind. The wise Greek philosophers, Socrates, Plato and Aristotle, pondered deeply about the influence of time had on human knowledge. The English poet, Ben Johnson, wrote "O for an engine to keep back all clocks", giving voice to our ageless lament over the brevity of human life. The great scientist Einstein, who developed the theory of relativity, believed that space and time cannot be considered separately, but that they depend upon one another.
There is an urgent need for systems which will reliably capture space-time knowledge. Human cognitive thought processes involve the use of both space and time. A childhood event is remembered by an occurrence (or space) and its associated place in time. We speak of an event which occurred a specific time ago. Linguistic meanings are expressed in a manner in which proper temporal order plays a crucial role in the conveyance of a concept. Take, for example, the phrases "house cat" and "cat house". Speech production, too, is very order dependent-subtleties in intonations may change the whole meaning of a concept. The more advanced engineering systems have characteristics which vary over time. For instance, complex machines such as the Space Shuttle Main Engine abound with sensors, each having characteristics which vary over the life of the machine's operation. A system which is capable of automatically associating spatial information with its appropriate position in time becomes increasingly significant in our age of automation.

Also, microscopic level investigations reveal a need to incorporate time or sequence discovery and adaptation into the neuron modelling framework. It is clearly evident that information exchange at the neuronal level occurs through a rich interchange of complex signals. Extensive research has been done on the olfactory bulb at anatomical, physiological, and behavioral levels. See W. J. Freeman, "Why Neural Networks Don't Yet Fly: Inquiry into the Neurodynamics of Biological Intelli-
gence" IEEE International Conference on Neural Networks, San Diego, Calif., 1988, and B. Baird, Nonlinear Dynamics of Pattern Formation and Pattern Recognition in the Rabbit Olfactory Bulb, Elsevier Science Publishers B. V., North-Holland Physics Publishing Division, 0167-2789, 1986. These research findings have shown that information in biological networks takes the form of space-time neural activity patterns. The dynamic space-time patterns encode past experience, attempt to predict future actions, and are unique to each biological network.

The Neuron

As seen in FIG. 1, the "classical" biological neuron has several dendrites which receive information from other neurons. The soma or cell body performs a wide range of functions; it processes information from the dendrites in a manner which is not entirely understood and also maintains the cell's health. The information processed by the neuron is distributed by its axon to other interconnected neurons by the propagation of a spike or action potential. Along each dendrite are thousands of protrusions where neurons exchange information through a region known as the "synapse". The synaptic cleft releases chemicals called "neurotransmitters". Even at this microscopic level, the relevance for time-adaptive neural networks becomes clearly evident. Synaptic clefts take on various modifying roles such as neurotransmitter modulators, generators, and filters which cloud the neuron's inner workings and render these ever-changing dynamical properties especially difficult to study.

Connectionist architectures have impressively demonstrated several models of capturing temporal and spatial knowledge. To accomplish this, the most popular solution has been to distribute a temporal sequence by forcing it into a spatial representation. This method has worked well in some instances. See, e.g., J. A. Villarreal and P. Baffes, "Sunspot Prediction Using Neural Networks", SOAR '89—Third Annual Workshop on Automation and Robotics, 1987. But there are insurmountable problems with this approach and it has ultimately proven inadequate as a general technique.

Review of Neural Networks

A neural network is comprised of numerous, independent, highly interconnected artificial neurons, hereinafter called "processing elements", which simulate the functions of biological neurons. For so-called "backpropagation networks", each element can be characterized as having some input connections from other processing elements and some output connections to other elements. The basic operation of a processing element is to compute its activation value based upon its inputs and to send that value to its output. FIG. 2 is a schematic diagram of such a processing element. Note that this element has j input connections coming from j input processing elements. Each connection has an associated value called a "weight". The output of this processing element is a non-linear transform of its summed, con-tinuous-valued inputs by the so-called "sigmoid transformation", as discussed in D. E. Rumelhart et al. "Learning Internal Representations by Error Propagation", in D. E. Rumelhart \& J. L. McClelland (Eds.), Parallel Distributed Processing: Explorations in the Microstructure of Cognition (Vol. 1) (pp. 318-362) MIT Press, 1986, Cambridge, Mass.

When groups of such processing elements are arranged in sequential layers, each layer interconnected with the subsequent layer, the result is a wave of activations propagated from the input processing elements, which have no incoming connections, to the output processing elements. The layers of elements between the inputs and outputs take on intermediate values which perform a mapping from the input representation to the output representation. It is from these intermediate or "hidden" elements that the back-propagation network draws its generalization capability. By forming transformations through such intermediate layers, a backpropagation network can arbitrarily categorize the features of its inputs.

$$
\begin{align*}
& E_{i}=\Sigma w_{i j} p_{j} \tag{1}\\
& p_{i}=\boldsymbol{P}\left(E_{i}\right)=\frac{1}{1+\mathrm{e}^{-E_{i}}} \tag{2}
\end{align*}
$$ updated. Initially, the weights in the network are set to some small random number to represent no association between processing elements. Upon being given a set of patterns representing pairs of input/output associations, the network enters what is called a "training phase". During training, the weights are adjusted according to a learning algorithm, such as that described by Rumelhart et al. The training phase is modelled after a behavioristic approach which operates through reinforcement by negative feedback. That is, the network is given an input from some input/output pattern for which it generates an output by propagation. Any discrepancies found when comparing the network's output to the desired output constitute mistakes which are then used to alter the network characteristics. According to the Rumelhart et al. technique, every weight in the network is adjusted to minimize the total mean square errors between the response of the network, $\mathrm{P}_{p i}$, and the desired outputs, $\mathrm{t}_{p i}$, to a given input pattern. First, the error signal, δ_{i}, is determined for the output layer, \mathbf{N} :

$$
\begin{equation*}
\delta_{i}^{(N)}=\left(t_{i}-p_{t}^{(N)}\right) P\left(E_{i}^{(N)}\right) \tag{3}
\end{equation*}
$$

The indices p and i represent the pattern number and the index to a node respectively. The weights are adjusted according to:

$$
\begin{equation*}
\Delta w_{i j}^{(n+1)}=a \Delta w_{i j}^{(n)}+\eta \delta_{i}^{(n+1)} P_{j}^{(n)} \tag{4}
\end{equation*}
$$

where $\Delta w_{i j}(n)$ is the error gradient of the weight from the j -th processing element in layer n to the i -th unit in the subsequent layer $(\mathrm{n}+1)$. The parameter α performs a damping effect through the multi-dimensional error space by relying on the most recent weight adjustment to determine the present adjustment. The overall effect of this weight adjustment is to perform a gradient descent in the error space; however, note that true gradient descent implies infinitesimally small increments. Since such increments would be impractical, is used to accelerate the learning process. In general, then, the errors are recursively back propagated through the higher layers according to: approach by constructing a separate layer, called the "context layer", which is equal in size to the number of units in the hidden layer. In this network the context units receive their inputs along a one-to-one connection from the hidden units, instead of from the output units as described by Jordan. The network works as follows: Suppose there is a sequential pattern to be processed. Initially, the activation values in the context units are reset to a value midway between the upper and lower
bounds of a processing element's activation value, indicating ambiguous or "don't care" states. A pattern is presented to the network's input, forward propagating the pattern toward the output. At this point, the hidden layer activation levels are transferred one-for-one to elements in the context layer. If desired, error backpropagation learning can now take place by adjusting the weights between output and hidden, hidden and input, and hidden and context layers. The recurrent connections from the hidden to context layers are not allowed to change. At the next time step, the network's previous state is encoded by the activation levels in the context units. Thus, the context layer provides the network with a continuous memory.

SUMMARY OF THE INVENTION

A principal object of the present invention is to provide a processing element for a space-time neural network which is capable of processing temporal as well as spacial data.
A further principal object of the invention is to provide a space-time neural network comprised of a plurality of the aforementioned processing elements, which is capable of processing temporal as well as spacial data.

These objects, as well as other objects which will become apparent from the discussion that follows, are achieved, according to the present invention, by replacing the synaptic weights between two processing elements of the type shown in FIG. 2 with an adaptabledigital filter. Instead of a single synaptic weight (which with the standard back-propagation neural network represents the association between two individual processing elements), the invention provides a plurality of weights representing not only association, but also temporal dependencies. In this case, the synaptic weights are the coefficients to adaptable digital filters.

The biological implication of this representation can be understood by considering that synapses undergo a refractory period-responding less readily to stimulation after a response.
More particularly, the present invention is realized by providing a processing element (i) for use in a spacetime neural network for processing both spacial and temporal data, the processing element being adapted to receive a sequence of inputs $X(n), X(n-1), X(n-2) .$. ., each input $X(n)$ being comprised of K components $x_{1}(n), x_{2}(n), \ldots x_{f}(n), \ldots x_{K}(n) . x_{K}(n)$. The processing element comprises the combination of:
(a) a plurality K of adaptable filters ($\mathrm{F}_{1 i}, \mathrm{~F}_{2 i}, \ldots \mathrm{~F}_{j i}$, $\ldots \mathrm{F}_{K i}$) each filter $\mathrm{F}_{j i}$ having an input for receiving a respective component $x_{j}(n), x_{j}(n-1), x_{f}(n-2), \ldots$, of the sequence of inputs, where $x_{(}(n)$ is the most current input component, and providing a filter output $y_{f}(\mathrm{n})$ in response to the input $x_{j}(n)$ which is given by:

$$
y(n)=f\left(a_{m j} y^{\prime}(n-m), b_{k j} x^{\prime}(n-k)\right),
$$

where $\mathrm{a}_{m j}$ and $\mathrm{b}_{k j}$ are coefficients of the filter $\mathrm{F}_{j i}$ and f denotes the operation of the filter; and
(b) a junction, coupled to each of the adaptive filters, providing a non-linear output $\mathrm{p}_{1}\left(\mathrm{~S}_{1}(\mathrm{n})\right.$) in response to the filter outputs $y_{f}(n)$ which is given by:

$$
p_{i}\left(S_{\{ }(n)\right)=f\left(y_{j}(n)\right) .
$$

In this case the junction presents a sequence of output 6 signals, $\mathrm{p}_{i}\left(\mathrm{~S}_{i}(\mathrm{n})\right), \mathrm{p}_{i}\left(\mathrm{~S}_{i}(\mathrm{n}-1)\right), \mathrm{p}_{i}\left(\mathrm{~S}_{i}(\mathrm{n}-2)\right), \ldots$

At the network level, the invention is realized by providing a neural network for processing both spacial
and temporal data, the network being adapted to receive a sequence of inputs $X(n), X(n-1), X(n-2) \ldots$, each input $X(n)$ being comprised of N components $x_{1}(n), X_{2}(n), \ldots x_{f}(n), \ldots x_{H}(n)$. The network comprises the combination of:
(a) a plurality L of first processing elements, each first processing element (i) comprising a plurality N of adaptable filters ($\mathrm{F}_{1 i}, \mathrm{~F}_{2 i}, \ldots \mathrm{~F}_{j i}, \ldots \mathrm{~F}_{H i}$), each filter $\mathrm{F}_{j i}$ having an input for receiving a respective component $x(n), x(n-1), x(n-2), \ldots$, of the sequence of inputs, where $\mathrm{x}(\mathrm{n})$ is the most current input component, and providing a filter output $y_{f}(n)$ in response to an input $\mathrm{X}_{\mathrm{f}}(\mathrm{n})$ which is given by:

$$
y(n)=f\left(a_{m y} y(n-m), b_{k j} x^{\prime}(n-k)\right)
$$

where $\mathrm{a}_{m j}$ and $\mathrm{b}_{k j}$ are coefficients of the filter $\mathrm{F}_{j i}$ and f denotes the action of the filter.

Each first processing element (i) further comprises a first junction, coupled to each of the adaptive filters, providing a non-linear output $p_{1}\left(S_{i}(n)\right)$ in response to the filter outputs $y_{f}(n)$ which is given by:

$$
p\left(S_{\Omega}(n)\right)=f\left(y_{N}(n)\right) .
$$

In this case each first junction presents a sequence of first output signals,

$$
p_{t}\left(S_{t}(n)\right), p_{t}\left(S_{i}(n-1)\right), p_{t}\left(S_{i}(n-2)\right), \ldots
$$

The preferred embodiments of the present invention will now be described with reference to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a representational diagram of a classical biological neuron.

FIG. 2 is a block diagram of an artificial neuron or "processing element" in a back-propagation network.

FIG. 3 is a block diagram showing the connection scheme for Jordan's network architecture which learns to associate a static input with an output sequence.

FIG. 4 is a block diagram showing the connection scheme for the Elman network wherein a history of the network's most previous state is stored by transferring the activations in the hidden layer to a pseudo input, context layer. Longer term memories are attainable by adding recurrent connections to the context units.

FIG. $5 a$ and FIG. $5 b$ are representational diagrams of an S-plane and a Z-plane, respectively, illustrating the relationship between the continuous domain S-plane and the discrete domain Z -plane.

FIG. $6 a$ is a block diagram of a digital network for a finite impulse response (FIR) filter.

FIG. $6 b$ is a block diagram of a digital network for an infinite impulse response (IIR) filter.

FIG. 7 is a block diagram of a space-time processing element according to the present invention.

FIG. 8 is a block diagram of a fully connected network utilizing space time processing elements according to the present invention. In this network, a set of input waveform sequences are mapped into an entirely different output waveform sequence.
FIG. 9 is a graph of an error curve for the temporal XOR problem trained in a one input element, five hidden element and one output element network with 5 zeros and 0 poles between the input and hidden layers
and 5 zeros and 0 poles between the hidden and output layers.

FIG. 10 is a graph of an error curve for a two input element, eight hidden element and eight output element network with 5 zeros and 0 poles between the input and hidden layers and 5 zeros and 0 poles between the hidden and output layers.
FIG. 11 is a diagram showing the generation of a chaotic sequence by computer.
FIG. 12 is a plot of a chaotic sequence generated by a process described hereinbelow.

FIG. 13 is a diagram showing the space-time neural network's performance on a chaotic problem after 900 training passes. The ordinal numbers 525 through 625 represent the network's prediction.

FIG. 14 is graph showing the testing performance (both maximum and RMS errors) as function of training passes.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

Digital Filter Theory Review

Before proceeding with a detailed description of the Space-Time Neural Network ("STNN") system according to the present invention, it is important to introduce digital filter theory and some nomenclature.

Linear difference equations are the basis for the theory of digital filters. The general difference equation can be expressed as:

$$
\begin{equation*}
y(n)=\sum_{k=0}^{N} b_{k} x(n-k)+\sum_{m=1}^{M} a_{m} \longmapsto(n-m) \tag{6}
\end{equation*}
$$

where the x and y sequences are the input and output of 3 the filter and a_{m} 's and b_{k} 's are the coefficients of the filter. Sometimes referred to as an s-transform, the well known continuous domain Laplace transform is an extremely powerful tool in control system design because of its capability to model any combination of direct current (DC) or static levels, exponential, or sinusoidal signals and to express those functions algebraically. The s-plane is divided into a damping component (σ) and a harmonic component ($\mathrm{j} \omega$) and can mathematically be expressed as

$$
\begin{equation*}
s=e^{-(\sigma+j \omega)} \tag{7}
\end{equation*}
$$

This formulation has a number of interesting characteristics as follows:
(1) The general Laplace transfer function can be thought of as a rubber sheet on the s-plane. A desirable transfer function is molded by strategetically placing a transfer function's roots of the numerator and the denominator in their appropriate positions. In this case, polynomial roots of the numerator are referred to as zeros and "pin" the rubber sheet to the s-plane's ground. On the other hand, polynomial roots of the denominator are referred to as poles and their locations push the rubber sheet upwards-much like the poles which hold up the tarpaulin in a circus tent. Therefore, zeros null out certain undesirable frequencies and poles can either generate harmonic frequencies (if close enough to the $\mathrm{j} \omega$ axis) or allow certain frequencies to pass 6 through the filter.
(2) Setting the damping coefficient, σ, to zero is effectively similar to taking a cross sectional cut
where T is the sampling period. The mapping between the variables can be further illustrated by referring to FIG. 5. First notice that the left half plane of the s-plane
20 maps to the area inside a unit circle on the z-plane. In abiding with the Nyquist criterion, sampling at least t wice the signal bandwidth, f_{s} note that as one traverses from $-\mathrm{f}_{\mathrm{s}} / 2$ to $+\mathrm{f}_{\mathrm{s}} / 2$ on the s -plane, it is equivalent to going from π radians toward 0 radians and back to π radians in a counterclockwise direction on the z -plane. Furthermore, note that lines in the s-plane map to spirals in the z-plane.
By evaluating the z-transform on both sides of the linear difference equation, it can be shown that

$$
\begin{equation*}
F(z)=\frac{Y(z)}{X(z)}=\frac{\sum_{k=0}^{N} b_{k} z^{-k}}{1-\sum_{m=1}^{M} a_{m} z^{-m}} \tag{9}
\end{equation*}
$$

Digital filters are classified into recursive and nonrecursive types. Filters of the nonrecursive type have no feedback or recurrent paths and as such all the a_{m} terms are zero. Furthermore, digital filters are also classified in terms of their impulse responses. Because nonrecursive filters produce a finite number of responses from a single impulse, such filters are referred to as "Finite Impulse Response" ("FIR") filters. On the other 45 hand, the recursive filters produce an infinite number of responses from an impulse and are therefore referred to as "Infinite Impulse Response" ("IIR") filters. For example, if a unit impulse is clocked through the filter shown in FIG. 6(a), the sequence

$$
b_{0}, b_{1}, b_{2}, \ldots b_{H}, o, o, o, o, o, \ldots o, o, o
$$

will be the output. Notice that the filter produces only the coefficients to the filter followed by zeroes. However, if a unit impulse is presented to the filter shown in FIG. $\mathbf{6 (b)}$, because of the recursive structure, the response is infinite in duration.
FIR and IIR filters each possess unique characteristics which make one more desirable than the other depending upon the application. The most notable of these characteristics include:
(1) FIR filters, because of their finite duration are not realizable in the analog domain. IIR filters, on the other hand, have directly corresponding components in the analog world such as resistors, capacitors, and inductive circuits.
(2) IIR filters cannot be designed to have exact linear phase, whereas FIR filters have this property.
(3) Because of their recursive elements, IIR filters are an order of magnitude more efficient in realizing sharp cutoff filters than FIR filters.
(4) Because of their nonrecursiveness, FIR filters are guaranteed to be stable. This property makes FIR filters much easier to design than IIR filters.
These different properties between FIR and IIR filters must be carefully weighed in selecting the appropriate filter for a particular application.

DESCRIPTION OF THE SPACE-TIME NEURAL NETWORK

Having introduced digital filter theory, it is now possible to proceed with the detailed description of the Space-Time Neural Network (STNN) system according to the present invention. What follows is a detailed procedure for constructing and training the STNN. As mentioned earlier, in the STNN system the weights in the standard back-propagation algorithm are replaced with adaptable digital filters. The procedure involves the presentation of a temporal ordered set of pairs of input and output vectors. A network must consist of at least two layers of adaptable digital filters buffered by summing junctions which accumulate the contributions from the subsequent layer.

A pictorial representation of the space-time processing element is illustrated in FIG. 7. In this case, a value, say $X_{f}(n)$, is clocked in to its associated filter, say $F_{j i}(n)$, producing a response $y_{f}(n)$ according to the filter representation

$$
\begin{equation*}
\left.y f_{f}(n)=\sum_{m=1}^{M} a_{m j \nexists} f_{k} n-m\right)+\sum_{k=0}^{N} b_{k j x_{f}(n-k)} \tag{10}
\end{equation*}
$$

All remaining inputs are also clocked in and accumulated by the summing junction i :

$$
\begin{equation*}
S_{r}(n)=\sum_{\text {all } j} y_{j}(n) \tag{11}
\end{equation*}
$$

The contributions from the signals fanning in to the summing junction are then non-linearly transformed by the sigmoid transfer function

$$
\begin{equation*}
p_{t}\left(S_{i}(n)\right)=\frac{1}{1+\mathrm{e}^{-S A_{n}(n)}} \tag{12}
\end{equation*}
$$

This output is then made available to all filter elements connected downstream.
As explained earlier, the space-time neural network is comprised of at least two layers of filter elements fully interconnected and buffered by sigmoid transfer nodes at the intermediate and output layers. A sigmoid transfer function is not used at the input. Forward propagation involves presenting a separate sequence-dependent vector to each input, propagating those signals throughout the intermediate layers as was described earlier until reaching the output processing elements. In adjusting the weighing structure to minimize the error for static networks, such as the standard back-propagation, the solution is straightforward. However, adjusting the weighing structure in a recurrent network is more complex because not only must present contributions be accounted for but contributions from past history must also be considered. Therefore, the problem is that of specifying the appropriate error signal at each time and thereby the appropriate weight adjustment of each co-
i is the index of the hidden neuron
j ranges over the neuron idices for the output layer δ_{j} is described by (13)
$P^{\prime}\left(\mathrm{E}_{i k}\right)$ is the first derivative of the sigmoid function for the kth history of activation levels for the ith neuron in the hidden layer
$\delta, b_{i j k}$ sums the results of injecting the previously computed errors found in equation (13) through the FIR portion of the filter element, $b_{i j k}$, found between the ith neuron in the hidden layer and the jth neuron in the output layer.

Simulations

The space-time neural network according to the present invention was constructed and tested to perform a number of simulations. Source code for a computer program written in "C" language for simulation of the STNN is included in the Appendix below.

The first simulation test was a variation of the classic XOR problem. The XOR is of interest because it cannot be computed by a simple two-layer network. Ordinarily, the XOR problem is presented as a two bit input combination of ($00,01,10,11$) producing the output (0 , 11,0).

This problem was converted into the temporal domain in the following way. The first bit in a sequence was XOR'd with the second bit to produce the second bit in an output sequence; the second bit was XOR'd with the third bit to produce the third bit in an output sequence, and so on, giving the following:

Input	1	0	1	0	1	0	0	0	0	1	1	\ldots
Output	0	1	1	1	1	1	0	0	0	1	0	\ldots

In the simulation, the training data consisted of 100 randomly generated inputs and the outputs were constructed in the manner described above. A network was implemented which had 1 input element, 5 hidden elements and 1 output element and had 5 zero coefficients and 0 pole coefficients between the input and hidden layers and 5 zero coefficients and 0 pole coefficients between the hidden and output layers. The task of the network was to determine the appropriate output based on the input stream. The error curve for the network showing the RMS error in dependence upon the number of training passes is shown in FIG. 9.

For a second simulation, a network was implemented with 2 input elements, 8 hidden elements and 8 output elements having 5 zeros and 0 poles between input and hidden, and 5 zeros and 0 poles between hidden and output layers. A problem, called the Time Dependent Associative Memory Test, was constructed which would test the network's ability to remember the number of events since the last trigger pattern was presented. The data consisted of 1000 input/output pairs where the input bits were randomly constructed and the output appropriately constructed. As an example, consider the first 7 sets of data in the following list. Note that a " 1 " bit sequentially gets added to the output for the input patterns $00,10,10,00,10$, and 01 until the 11 pattern is presented which resets the output back to the 10000000 state.

Input		Output							
0	0	1	1	0	0	0	0	0	0
1	0	1	1	1	0	0	0	0	0
1	0	1	1	1	1	0	0	0	0
0	0	1	1	1	1	0	0	0	0
1	0	1	1	1	1	1	1	0	0
0	1	1	1	1	1	1	1	1	0

Input		Output							
1	1	1	0	0	0	0	0	0	0
1	0	1	1	0	0	0	0	0	0
1	0	1	1	1	0	0	0	0	0
1	1	1	0	0	0	0	0	0	0
1	0	1	1	0	0	0	0	0	0
0	1	1	1	1	0	0	0	0	0
1	1	1	0	0	0	0	0	0	0

The error curve for this Time Dependent Associative Memory Test is shown in FIG. 10. As will be seen from FIGS. 9 and 10, the RMS error converged rapidly toward zero.
The final simulation illustrates that the space-time neural network according to the present invention is able to learn the dynamics and model the behavior of a chaotic system. The graph shown in FIG. 11 is a plot of a sine function extending from 0 to π with amplitude π. A "chaotic sequence" can be generated by randomly selecting a value between 0 and π, say x_{0}, determining the value of $\pi \cdot \operatorname{sine}\left(x_{0}\right)$ to produce x_{1}, and repeating this iterative process into a general form represented by $\mathrm{X}_{n+1}=\pi$.sine (X_{n}). FIG. 12 shows a collection of x 's generated by this process.
The goal of the STNN system in this simulation was to predict a future point, given a history of past points. To keep within the linear bounds of the sigmoid, the sequences collected above were normalized such that the range from 0 to π mapped into the range from 0.2 to 0.8 . An STNN system was constructed with 1 input element, 6 hidden elements and 1 output element, with 10 zeros and 0 poles between the input and hidden layers, and 10 zeros and 0 poles between hidden and output layers. The system was trained with 525 data points. Training was periodically suspended to test the system by stimulating it with the sequence of the last 50 samples of the training set-the ordinal values 475 to 525 . At this point, the system was prepared to make its first prediction. The predicted value could have been fed back into the input to generate a new predicted value. Instead, the system was fed with actual values generated by the chaos algorithm-that is, ordinal numbers 526 through 625. FIG. 13 illustrates the system's performance at various stages during the training process. FIG. 14 shows the average error of the network's performance during the training process.

Output	0.31	0.51	0.80	0.21	0.22	0.25	0.37	\ldots	
Input	0.51	0.80	0.21	0.22	0.25	0.37	0.67	0.59	\ldots

Conclusion

The space time neural network (STNN) is a generalization of the back-error propagation network to the time domain. By adopting concepts from digital filtering theory, the network is afforded a distributed temporal memory which permits modeling complex dy60 namic systems and recognition of temporal sequences as shown in the simulations. The STNN architecture differs from previous work of Jordan and Elman in that the network's memory is distributed over the connections rather than being implemented as a special layer of nodes. This distinction allows the STNN to possess an adaptive temporal memory without introducing additional nonlinearities into the learning law; i.e., the action which occurs on connections between nodes is still
linear, while the nonlinear actions occur within the nodes.

There has thus been shown and described a novel space-time neural network for processing both spacial and temporal data which fulfills all the objects and advantages sought therefor. Many changes, modifications, variations and other uses and applications of the
subject invention will, however, become apparent to those skilled in the art after considering this specification and the accompanying drawings which disclose the preferred embodiments thereof. All such changes, mod5 ifications, variations and other uses and applications which do not depart from the spirit and scope of the invention are deemed to be covered by the invention, which is to be limited only by the claims which follow.

```
f* Flle: stnn_com.how portablilty and common declarationg for the space */
f* time Neural Network eode. */
f* by R. O. Shelcon and s. d. Vlllarzeal */
f A product of the soltware Fechnology Ezanch of NAsh/Jsc */
/* Any duplication or distribucion of thls codn withour the express consent */
f* of NASA ds violation of Fedoral Lew. */
Anclude <sedie.n>
include <stzing.n>
|fneluce <men.m>
ldefine TBC O
Ide{ine true 'log'
Idefine lalse 'vo.
Ideline stabllity_Inreshold 1000.0
Idefine machine_zere 0.00001
fde{1ne min(a,b) (((a)<(b))? (a): (b))
|de{Ine square(x) ((x)* (x))
{de{ine sigmoid(x) (1.0/{1.0+\operatorname{exp}(-(x))))
fdefine d_sigmold(y) ((y)*(1.0-(y)))
11f まBC
Incluce <alioc.h\rangle
Hincluce cadioc
fde{1ne GIGNNIIC huge
telse
lincluce <malloc.h>
cdeilne rb ls
|de{Ine GIGNNIC
fendif
Ide{lne getch() (gets(stzi)(0)]
|deflne frand (x,y) ((x)+((y)-(x))\bullet{(rand ()&((11<<z_b)-1))/N
(floac) (11<<c_b)})
typedel chas st5ing [256];
FIIE -HIdF11e:
```

1nt no - 1, ni - 6, n2-1, nzo - 5.
npo - O. Numsamples, NumTestsamples, Numsats, Numestsets, npl - O, nzi-5;
long coral_cycles - 0:
llear alpha $=0.2$, delea $=0.9$, epsilon:

-.ino, *ono.

*ivi, **ev
*nvo, nvy,
-OusEyror, *HldEzgor, *WaveIn, *WaveOur, *TesthaveIn, *efeschaveout;
st5ing se51. sex2;
tinclude <stdio.n>
Anclude cstringa. h s
sypedeq chaz sering(256):
exeern atring strl. serz;
extern int no, n, n2, \rightarrow
nzo, npo, nz1, npl:
extern lioat *oico, eooco,
**\&el. *-ocl:
/* get coefilelents from ille name *
vold qet_coefficients (s)
char *is:
1
. Int 1. If
FIzE - E!

```
    while ((f-fopen(s, "rba|) -0 mOL~)
        1
        print{ (" {ile is not found\n {llename> ", sl;
        gats(s):
        j/0 end while */
    <0% (1-0;1 < N1; 1++)
        LOE (J = 0; g< no; j++)
            1f (n20 > 0)
            fread ((char*)le0(g)(1).
                (unsigned)sizeof(float), nzO, l):
            12 (npo > O)
            fread ((char*)ocolj)(1).
                (unsigned) sizeo{(&leat), npO, f);
            / /* and forlij*/
    for (1 - 0; 1 < n2: 1+4)
        ser (y = 0; j< nl; j++)
            1
            12 (nz) > 0)
            Iread ((char`)icl(j)(l)
                                    (unslgnec)s(zeo&(&10ac), nxd, &):
            1f (npl > 0)
            fread ((ehar*)oel[jl(1).
                                    (unsigned)size0f(2loat), npl, 2);
            1/* and for 1 g %/
        fclose (f):
        1/" end get_eonfliciunts "/
/* save coefllelents in slle name */
vold save_coefficienss (s)
Char -a;
    int 1, 1, ret;
    FILE - &, $1;
1* 1: (fopen (s, "r*) !- NULL)
print: (" s!le ls existsin nev name or carrlage return co overwrites *, sl;
                        If (strien(gets(str2)))
            sercpy (s, scrz);
            fclose (f):
            | end is:/
    s- Sopan (s, "mol);
    for (1 - 0: 1 < nl: 1*+)
            IOR (g-0; 1< no: j+1
            I
            if (n2O > 01
            furlte ((ehar:)trolg)(1).
                                    (unsigned)sizeof(illoat), nzo, &);
            If (npO > O)
            fvrlte (lchar`)0colg|lll
                                    (unslgned)slzeof(lloal), npo, l);
            //* end for l j"/
        for (1-0; 1< n2; 1++)
            lor (1) - 0; j< nl: j++1
                    is
                    If (ne) > 0)
                    fwrite ((char')fel(j){l).
                (unsigned)sizeof(float), nsi, f):
            1f (npl > 0)
            fwEite ((char*)ocl[9)(1].
                                    (unsigned)sizoo&(f100%), np1, &);
            |/* enc for 1 % %/
        {close ({);
            /" ond save_couffleients "/
    |lnclude "atnn_eom.h"
    /- general memory allocation rouelne %/
    Char "mam_alloc (n)
    int n;
    l
        char * I;
        12(n)
        1
            z - (char*) anlloc (n);
            1f (5 - NULL)
            1
                                    princf ("men_alloc: We are out of memory!\n");
                                    exic (0):
            1/* end if */
            recusn r:
        1/% and if!/
        -1se
```

retura nuld;
| / F and mem_alloc */
/* Deelares a three dimensional azray of shze $\mathcal{L} \times \mathrm{M}$ X N. Recurns the address to the three dimensional array */
float** Declaretriplearray ($(1, K, W)$ Ine L, M, N:
I
1nt 1. 9 ;
floav .arisiple;
Triple - (flost***) men_alloc(L sizoof(float**) ;
for 11 - 0 ; $1<1$: $1++\overline{1}$
1

$\operatorname{sor}\left(g=0 ; j<M_{;} j++1\right.$
IElple(l)[J] - (float*)men_alloc (N• sizeof(float)):
$1 / 4$ and 1%
ceturn(TETple):
// end DechareTripleAzray •/
$1 *$
$1 *$
Declares a two dizensional array of size $\mathcal{L} M$. Recuras ehe
acdress to the two elmansional array
-/
8loar.- DeclareDoublearyay (L, M) Ine L. M:
1
Ine 1:
fleat ••Double;
Double - (float*-)mam_alloci - sizeof(floace)):
802 (1 - 0: $1<2: 1++1$
Double(l) - (Iloat")man_alloc (M - sizeof(Iloat));
racurn (Double):
1/* end DeclareDoublehrray */
vold zesec_network()
1
int 1, g, k;
for (1-0; $1<$ no; $1++1$
1
for ($k=0 ; k<n 20 ; k++$)
Ivoll)(x) - 0.0;
for $19=0 ; 1<n 1 ; j++1$

$1 / 1$ and fork $\%$
for $19=0 ; j<n l ; y+1$
1
tor (k-0; $k<n p 0 ; k++1$
ovo(1)(1) $(k)=\operatorname{doco(1)(1)(k)-moco(1)(g)(k)-0.0:~}$
ovo(1)(f)(npo) =0.0;
1/* end for j \%
1/* and for $1 * 1$
for $11=0 ; 1$ < nl: 1++)
1

```
    102 ( \(k\) - 0; \(k<n \varepsilon 1 ; k+1\)
    1v1 11 ) \((k)=0.0\);
            for \(19=0 ; j\) < \(n 2\) : \(y+1\)
                \(\operatorname{dtcl}(1)(j)(x)-\operatorname{mlc}(1)(j)(k)=0.0 ;\)
    1/* and fork \(k\)
    for (1-0; g < n 2 ; \(\mathrm{j}+\mathrm{t}\) )
    1
            for ( \(k\) - 0; \(k<n p l ; k+1\)
                                    ovill) (1) \((x)=\operatorname{cocl}(1)(1)(x)=\) mocl(1) 19\()(x)=0.0\);
            ov1(1) (1) (npl) - 0.0:
        1/* and forg \(\mathrm{g} /\)
```

 | /* end for 1 -/
 $1 / 1$ end seset_netvork */
vold allocate_network (1)
1
lne 1. j, k;
sloat welmo, wtiml;
printif ("enter sizes of input hidden and output layers <te ta ta> $0, n 0, n 1, n 2$;

princt (" enter numbers of zeros and poles from input to nldden cid ter", nzo, npoli

 n21, apll:
sseanf(gets (stri), "tded", tned, 6npl):
/- increment ne's because must have af least 1 input coeffleiant •/
n80+*;
n21**;
nvo - (floar*) men_allec (nl-sireof (fleat)):
nv1 - (float*)
Klatrier - (floarन)menalloc(nl-sizeof(lloar));

Ivo = DeciareDoublearray (no, nzo):
Ivi - DeclareDoubledriay (ni, nzi):
ovo - DeclazefzipleAzray (no, nl.nnotl):
1eo - Declaretripleacray (no, nl, nzo):
©de0 - Decleratelploartay (no, nt. nzo):
-co - Declaretzipleazzay(no, hl, npo):
coco - Declarefrlplearyay (no, ni, npo):
mico - Decharefriplearray (no, nl, nro):
moco - Declaretriplearray ($n 0, n$ n, npo):
ovl - DeclaretripleArgay(nl, n2,npl+1):
del - DeclaretripleArray (ni, n2, nzi):
alel - DecharatripleArray(ni,n2,nzd);
oct - Decharetziplehrray ($n 2, n 2, n p 1$);
decl - Decharefriplearray (ni, n2, npl);
mel - Declaretriplearray (nl, n2, nel):
mocl Declarefrlplearray (nl, n2, npl);
Itho - (float**)mom_alioc(nzi-sizeof(float*)): oho - (float***)meñalioc (nzi-sizeof(float**)): Sor 11-0; 1 < $n 21$; 1++)
1
ing(1) - DeclaraDoublearray (no, nzo);
ohold) - Declaratriplearray (no, ni, npot1);
1/* ond for 1 -/
prines (" seack "):
if (striongets (stri))
srand (atel (etri)):
else
srand (clock());

welml - anto.3, 2.0/sqre((float)nh)):
for (1-0: $1<n 0 ; 1++$)

1
for ($k=1 ; k<n 30 ; x+1$
ieo(t) (j) (k) - 0.0
1eo(1)|g) 0) = frand (-wtimo, welmo):
for (k - 0; $k<n p 0$; $k++1$
ocoll) (1) (k) - 0.0;
$1 / 1=$ end cor $9 *$
for (1-0; 1 (nl: 1++)
for $19-0 ; y<n 2 ; j++1$
1
for $(k-1 ; k<n z 1 ; k+1$
lel(1) (1) 10) $=$ frand (-welind, welal);
for $(k=0: k \times n p 1 ; k++1$
ocl(1) (ग)(k) - 0.0:
1/* and fos $9 *$
1/* end allocate_netvork $/ 1$
/* This routine gets the $1 / 0$ training data. "Wavein" and WaveOut"
are two dleansional arrays. "Wavein" has the dimensions
no x Numsamples and -WaveOut has the dimensions
$n 2 \times$ Numsamples. no and n2 should already be
declared on inpue.
-1
vold get_lo 11
Ine 1, MI, NO:
float ul;
FILE - ! - \&1:
print f (" Network Gencralization Test flle name) ");

prines (" .est file ts not found 1 flle names ", stril;

1
 oxit (0):
1
printe (" $1 / 0$ flle name) "):

1
prine: (" ne meader line in $1 / 0$ Eile! $\mathrm{nn}^{\prime \prime}$)

```
exis (0):
    1/* and 18 %/
    if ((NI!-nO)|(NOI-n2))
    1
    print& (" 1/0 &ll* does not mateh notwork specisjeation!\n"):
    exle 101:
    1/0 end 1f%
    Waveln - DeclareDoubleAzray (no, (NumSers - NumSamples));
    WaveOut - DeclareDoublearray (n2, (Num5ers - NumSamples)):
    TestWaveIn - DeclareDoublearray (no, (NumTestsets - NunTestSamplesi):
    TestWaveOus - DeelareDoubleArgay (n2, (NumfestSecs - NumfestSamples)i:
    for 11- 0; 1< (NumTestSecs - NumTestSamples); 1++1
        for (NI - O: NI < no; NIt+)
        I
            1f (fscanf(f), -ff*, &ul) - 0 0)
            |
                                    prinet (" Incomplece Test {1le!\n*):
                                    exit (0);
                    1/* end if *
                    TescWaveIn(NI) {1|-ul;
            |/* and NI */
            TOF (NO = O; NO < n2; NO++)
            1
                            if (fscanf(f), -if=. (ul) == 0)
            l
                                    princ: (" incomplete fest {1le!\n"):
                    exit (0):
                    1/* end is %/
                    TestWavaOut [NO] [1] = ul;
        1/* end No %/
    I
    80% (1 - 0: 1 < (Numsamples - NumSats); 1++)
        for (HI - O; NI < nC; NI++)
        1
            if (fscanf(f, -\&", &ul) - 0)
```



```
                                    p:InEI (" lncomplete 1/0 Ille!\ne):
                                    exit (0):
            1/% end 1f:%
            WaveIn(NI) (1) = ul:
        1/" end NI */
        for (NO - O; NO < n2; NO++)
        1
            1f ({scanf({, "{f", 6u{) == 0)
            i
                princ: (" incomplece 1/0 f!le!\n"):
                exit (0):
            1/2 end l:*!
            MaveOut (NO) [1] - ul;
            1/ end NO "/
    |/% and for 1%/
    {close (f);
|/* end ger_10 %
vold print_ery 0
i
    Int 1, esize:
    float *t;
    prinef (* Midden or output ergor <h/o> -);
    if (geren() -a 'n')
    I
    size - 6nl;
    t - HLCEzzor;
    | 1* end 1! %/
    Clse
    l
    size - 6n2;
    e = OutErI05:
    1/ end else %/
    for (1 = 0; 1 < -size; 1++)
    1
        prinef (* 46.2{*, e(1|):
        1f ((1+6)=5)
            putchar ('\n'):
        1/% end for 1 %/
        If (!(186))
            pucehar ('\n');
1/* end princ_err*/
```

vold print_correction 0
1
lint $c=0,1, j, k, \quad$ size_1, *size_g, *sizek:
sloas *-*:
print: (" press return for help\n"):
seart:
princf (" choiees "):
switeh lacol (gess (sezl))
1
case (1):
size_1 = 6no;
sise-g onl:
sire-k = 6nxo;
t-dico;
breax;
| /" end 1 -/
case (2):
s12e_1-6nc:
s12e-g = 6n1:
s120-k tnpo:
$t-\overline{d o c o}$;
break;
ease (3):
1 1" enc 2 -1
-
s12e_1 - 8nl:
s12e_g - 4n2;
si2e-k 8 -nzi;
$t-\bar{d} l c!$;
breax:
$1 / 6$ nd 3%
case (4)
sizel - 6n1:
s12eg - 8 nz :
size_k - 6npl:
$t-\overline{\text { coch }}$;
brak;
1/5 end 4
dafaule:
prinef ("choless:\n");

prints ("2: display input to hidden D-Output_coefsicientin");

geco seart;
1/* end default -/
$1 / 0$ end switch "/
for 11 - 0: 1 < *ase_1; $1++1$
prines (" from node (d\n", 1);
tor $(g=0 ; j<$ - size_j; $j++1$
1
prine: ("to node Idn", j);
for (k - 0 ; k < *size_k; $k++$)
1
printe (" $\$ 6.25 \%$, $(1)(9)(x)$;
$15((c++46)=5)$
putchar (' ${ }^{\prime} n^{\prime}$):
$1 / 4$ end for $k *$
$1 / \%$ and for 1%
$1 / *$ and for 1 "/
11 (! (ct6))
puschar (' $\left.\backslash n^{\prime}\right)$:
1/* and print_correction */
vold print_waights 0
1 int $c=0,1$, J. k, size_l, size_g, size_kl, size_k2;
110at ".-s1. ."'t2;
pelatif (" hidden or output walghes en/o> -):
if (gatch () =e'n')
1
120_1-n0;
112.j-nl:
s1ze_kl - nzo;
112-k2 - npo;
t1-1e0:
$t 2$ - oct
1/* end 18 */
else
1
s12e_1 - nl;
sire_j - n2:
812e_kl - n21;
s1mek2 - npl:
t1-ic!;
t2- oc1;
|/O end else%/
for 11-0; 1 < size_1: 14+1
I
prinE{ (" {rom node td\a", 1):
for (g - 0; g < sl2e_g: j+4)
l
prynt! (" to node \d\n*. j):
print: (" dnput comffledents:\n"):
for (k - 0; k < size_kl: . k+t)
1
print! (" 77.4E", El(I)(g)|k|);
1! ((c++(6)-05)
purehas ('\n'):
1/0 end for k "/
12 (!(eaf))
putehar ('\n'):
prinef (* output coeffletents:\n-1:
805 (k - 0; z< E12e_k2; k++)
1
print! {" 47.4!", E2{d|(j)(k|):
1f ((c++16)--5)
putchar ('(ne);
|/* end for k */
1f (!(e\&6))
purchaz('\n'):
1/* end lor 1%/
1/0 end for 1 %/
|/* and print_welghts %/
/* compute ourput of fliter In response to input x */
/* maintain lnpur value and ouspur_value arcays which contain */
/* respectively nistories of inputz and ourputs */
/* starelng wleh che most recent. */
/* compute and accumulate gradient deseant vectors d_Input_cosffleients "/
/- and d_output_coelilejents for the coliflcient arrays ",
/* the input parameter is the amount of error to te fed back e/
vold gradient dd_lnput_coeffleient, lnput_value,
d_output_ecefficíent, Öuput_value, Numzer̃os, Numpoles, cy)
IToar * d_input_coesilelone, Finput_value,
-d_outpuE_coef\overline{\&}=1ent, eourpur_value, dy;
InE Numzerce, Numfoles:
lne
Int 1:
for (1-0; 1 < Num2eres; 1++)
d_lnpue_cosificienc(1] +=
(dy*Input value(1));
Ior 11 - 0; 1< NumpoIes; 1++1
d_output_coslficient (1) +-
(dy*output_value(1+1)):
|/* end gradiene "/
/* correct coefflecent vectors frem the */
/* descent vector: "/
vold apply_correcrion (InputCoefficient, D InputCosiflefent,
Out pucGoef!icient, D_OutputConfliclent, m_I, m_O, FromNode, IoNode,
Numzeros, NumPOles)
sloar *.*InputCoefsicient, **D_Inputcoeflicient,

```

```

int FromNoce, ToNoce, Numzaros, Numpoles;
l
Int 1;
for 11- 0; 1< Num2aros; 1++1
1
InputCoeffielent [FromNode] {ToNode) [1] +0
(alpha*(epsllon*D_InputCoe!flcient [FromNode] [ToNode) {1]+delta*m_d
[FremNodel(ToNode)[1])];

```

```

 D-InpucCoefficient(ryomNode)[TONode)(1) - 0.0;
 //* and For 1%/
 for (1- 0; 1 ¢ Numpoles; 14+)
 1
 Outpuccoefldcient [fromNode) [ToNode] [1] +=
 (alpha*(apsilon*D_OutpucConflicient (FromNode) {ToNode) (l)+Clelta*m_
 O(FromVode)(TONODE)[1]l):

```

```

 D-OurputGoelilicient (FromNoceT](TONode)[1] - 0.0;
 1/- ene\or 1 %/
    ```

1/" end apply_correction //
vold fropagataforward (Sample, low, hlgh, NetInput)
sloat low, high, - Netinput;
int sample:
1
int 1. in, HLd, out:
lloar E :
8lost *ifpt, *ooptr;
/* clear the hidden layer and output neurona "/

nvo (HId) - 0.0;
for lout - 0; Out < n2; Out + + 1 av1 (Out) - 0.0;
/* propagate input to hidden for input sample "Sample" "/
for (In - O; In < \(n 0\); In++)
1
for (1. - nzo-1; \(1>0\); 1--
Ivo(In)(t) - ivo(In)(t-1):
IvolIn) (O) - XetInput (In)(Sample) + grand (low, high):
for (MId - 0; Mid < nl; HId++)
1

> c-0.0;
\(10 \% 11-0 ; 1<n z 0 ; 1++1\)

sor 11 - npo: \(1 \geqslant 0 ; 1--1\)

1:
nve (HId)+-t ;
ovo (In) (Mid) (O) e
\(1 / *\) end for Hid */
\(1 / 4\) end for in */
for (HIC - 0; MIC < nl: MIC+t)
nvo(Hid) - sigmoid(nvo(HId)):

\section*{\(1 f\) ( MIdFile :- NOLL}



\({ }_{1}^{1 p s}\)
/" propagate hicden to output "/
for (HId - O; Hid < nl; Hidet)
1
for (1-nel-1; \(1>0 ; 1--1\)
ivi(HId)(1) - ivi(HId)(1-1):
Ivi(MId)(0) - nvo(Mid):
for (OuE - 0 ; Out \(<\) n2; Out++)
1
\(t-0 ;\)
for \(11-0 ; 1<n 21: 1++1\)
\(t+=(1 C!\) (KId)(Out) (I)*IV)(HId)(1));
for (1 - npl: \(1>0\); 1--)
1111:
avd (Out) + - ;
ovi(Mid)(OUR)(O) \(\quad t\) :
1/" and for Oue "/
\(1 / 1\) and for HId \(\because /\)
/. compute si qmold toz output layer neurons "/
Soz (Out - 0; Out < n2; Out ++1
nvilout) - algmold (nvil(Out)):
/* Mafneain the last nzl inputs and outpues for input filters "/
1ptr - ino(nzi-1):
oper - oho (nel-1):
for 11 - nel-1; \(1>0 ; 1-\) )
1
1no(1) - ino (1-1); ono(1) - ono(1-1):
1/*end tor 1 - 1
1holol = 1ptr:
oholol - optri
Lor (In - O; In < no: In**)
1
for \(11=0 ; 1<n 20 ; 1+4\)
1holol(In)(1)-1volIn)(1);
for (HId \(=0\); HId < nl; HId+ 1
for (1-0; \(1<-\) np( \(1+1\)
oho(O)[In](Hid)(1) - ovo(In)(Hid)(1):
1/" end for in */
1/: end Propagataforward */
vold ComputeErior (Sample, dymax, esum)
1ne sample;
floar eymax, *esum;
. 1
Ine OUE:
scasic float dyabs:
Lor (Out = 0; Out < n2; Outt+)
1
OutEscor[Out] - TesthaveOut (Out) [Sample] - nvifout);
- esun te (dyabs=fabs (Outzzror (OuE)));
\(1 f\) (dyabs ? dymax)
- dymax - dyabs:
\(1 /\) end out \(/\)
17 and ComputaEzEOF 1
ve1d zropagatelactwaze (sample, dyax, esum;
tne Sample:
\$loas cyanx, etun;
Int i, In, HLd, Out:
atatie lloat dyabs;
f* 615st compute the exzer at the output layer of Los fout \(=0\); Out \(<\mathrm{n2}\); Outt+1
1
OUEEEFOE(OUE) -
Waveout [Out] [sample] - nvi [Oue]:
*esum +" (dyabsclabs (outEryoz(OuE))):
if (dyabs \(>\) dyaax)
-dymax - dyabs;
OuEEfror(OUt) endsigmoid(nvilOutl):
\(1 / 1\) and for out \(/\)
/* now compure valght change 10 neurens in the hidden te output layer
and make the correctionge/
Sor lout 0 ; Out \& nz ; Out + +1
Ler (Mid = 0: Hid < ni: Mid+t)
gradient (dici(nid)[Out), ivi (Hid).
doel (MLd) (Out), oul(kid! (Outl.
nz1. npl. Outercoz(Out));
ser (Out - 0; Out < n2; Out +t)
for (Hid - 0: Hid < nl: Hid+t
apply_correction (lel.
©IE1,oel.
doel, mici, moci, Hid. Out, nz1.
npl:
for (1 - 0 ; \(1<n 21\) 1+4)
1
Tor (Mide Oi Hid < ni; Hid**)
1 HidEzrer(Hid) - 0.0;
Lor TOUE - 0; Ous < n2; Ous + + )

HidEEror (Hid)* sigmoid (ivi (Hid) (1)):
كOF (In - O; In \(<\) no; Int+1
oradient (dico(In)(Hid). Ino(l) (In).
doe0[In][HId!, ohoidl[In]\{HId].
nzo, npo, HIdErfor(HIdI);
\(1 / 1\) and for Hid \(/\)
\(1 / 1\) end sor \(1 \%\)
Eor (In =0; In < no; In+*)
lor (Hid o O: Hid < nl: Hid++)
apply_corsection 11 cO .
dico, oco.
coco, mico, moco, In, Hid,
nzO, npO1:
1/0 and PropagateBackward */
vold iearn ()
Int Out, \(1,3, n=50\), tesenecworx - so, TestrifNerwork - 10 , Savewts = 50;
llost dymax, esum, Testmax, festsum, high o 0.0, lou-0.0;

st天ing Ktsflle;

if (ntrlen(gets (stzi))
OuskTascille lopan(EtE1, "w");
else
QulxTestrile - wutw;

if (stylen(gats (seri)))
Testrile - Sopan(strl, - \(\mathbf{w n}^{n}\) )
else
Tectrile - MOLI;
prines (File to store error functions •);

1f (serlencgets (stzi))
Ezrarfile e fopan(atrl, "w"):
else
Exrerfile - woll;
prinet (" flle to save welghts tos - j;
If (atiden(gets (wtsfile)))
1

sseanf (gets(atsl), "id", cSavewts):
1/" and utsrlle "/
ger_10 11:


get_coefficlents(atrl):
printi l"feziform quick network performance cast every ta pesses> " - Tastercnerwork):
sacanf (gets (stri), "ted", stesterinetwark);
prints ("Perform deralled network performance test overy id passes gust be mulzi
ple of quifk metwork teatl) " , fest Networkl:
saeanf (gets(etri), "ve", atestNetwork):
prinet (F range far dnput nolse 〈\&6.2f if.2i> - low, hlgh);
sseant (gecststrl), "ifif". blow, 6hlgh):
ptinct fecyelet to process, dearning race and momentim constant cid is.if it.2t>
n. alpha, celta):
thile (gateh (l (- ' \(\mathrm{a}^{\prime}\) )
1
sacan! (stes, "fdiftf", sh, Galpha, ctelea): epsilon - 1.0-dalta; for \(11-0 ; 1<n: 1++1\)
1

save_coefileients (utsFije);
esum - dyax =0.0;

1
If ( (1) Nunsamples) -0 0)
reset_network (1)
Propagateroruard ( \(\mathrm{g}, \mathrm{low}\), hlgh, WaveIn):
PropagateBackwara ( 9, çymax, cexua);
Iflush(tiriorfile);
total_cycleat+;
| \% end for y *

I
Tesemax - Testsum - 0.0;
reser_nerwork (1):
11 (何astile :- NuLL) 66 ( 1 : TestMerwork) \(=01\) )
fpanti(fostrile, "id \(\left(n^{*}, 1\right)\);
for \(19-0 ; j<(N u m T e s t s a t s\) - Numiestsamples): \(y++1\)
1
1f ( (1) NurTestsamples) - 0 )
reset network 1 );
Propagã̄formard(g, low, high, festMaveIn):
ComputeError(g, Gfestmx, GTestsun);
if ((Testrile !- MOLL) 4 ( (i TestMetwork) - 011
1
for (Out - 0; Out < n2; Out++)
Eprincestestrile, " \(16.25 \mathrm{lt}=\), nvilouel):
fprint? (festrile, "\n"):
1
\(1 / *\) and \(y\) "
(f loulxtescfile :- NoLL)
 1. Testhax,

TestSun/(float) (n20NumTest Samplesi):
1R1ush (OuLkToserile):
/ / end Jestrile •/
1/* end Test Netvork */
1f (Lrrorfile :e NuLill
fprinef terrorfile, \(=16.21\) it \(16.2 f\) nn" \(^{n}\) dymax, esua/(:10at)(n2*Numsamples * Numsets)):
E!1ush(Erforfile):
1
1/: and for 1 \%/

dymax, esum/(Iloat) (n2*Numsamples*NumSets)):
prints (" cycles to procesa, learning rate and momentum constant cid 16.

n, Alpha, deltal;
\(1 / *\) end שhll. "/
princf (= save coesflelents co slla> -
15 (acrlen(gets (stid))
save_coefficients (stri): */
1! (Ervorfile ! - NuLL)
fclose (Eryorfile):
18 (Tastrile !e null) felose (festflle):
```

vold Proponly ()
I
1at 1, g, k=0, n - 50:
lloat max_error,vadue, ave_errer_valun, d;
Cloat high - 0.0., low - 0.0;
FILE *RASvisfile, "error_recorc_\&lle;
prlnt! (" rdje to meore propagation zesults) ");
if (strlen(gets(styd)))
Resultsfile = Iopen(serl, "w-);
else
RezultsFile - NuLL;
printi (" rlle to racezd hjdden acelvatlons? > - ;
1f (strlen(gars(serd)ll
Hydrile - sopen(stry, "wa);
-1se
HIdFIle - NULL;
print: (" flle to store record of nerwork errorss ");
if (strien(gets(serd)))
error_record_\&ile - fopen(stri, -w-);
else
errer_record_f1Je - MuLL;
get_io ();
priñt! (" get welghts from {lle> ");
if (serlen(ques(atri)ll
get_ecefficients(strl);
princ! (" range for lnput nolse <t6.2f t6.2f> ", low, hlgh);

```

```

 If (Resulesfile)
 I
 Sor (1- 0; 1< no; 1++)
 fprinef(Resultsrile, "\thaveIn(td)", 1);
 {0r (1 - 0; 1< n2; 1++)
 {pFInE&(Resulesfile, "\ewaveout (ld)", j);
 {printf(ResultsFile,"\n\n");
 1/* end 1% 0/
 print: (- eyeles to process <td > ",a);
 whsle (gereh() :- 'G')
 1
 sscant (styi, "td", 6n);
 for (1 - 0: 1 < n; 1+4)
 l
 for (g - 0; g< (NumSamples - NumSets): j+&)
 1
 if (19 NumSamples) - 0)
 1% (Resulesfile)
 pure('\n', Resulesfilo):
 reser_netwoik ():
 1/* and 1:*
 gropagateforvard (g, low, high, WaveIn):
 1f (ResultsFile !-*NLL)
 l
 lor (k - 0; k < nO; k+b)
 fprinef(Recultsfilo,-\t if.4E*, Wavein(k)
 (11):
fo: (k - 0; k< n2: k*+1

```

```

l
putef`\n', Resultarile):
|/" end 14"/
if (error_recerd_file)
l
max_arror_value - ave_error_value - 0.0;
10r-(k - \overline{0}: k< n2; k++)
1
_orzor_value)
if (ld-fabs(WavaOut(k)!{)-nvi(k|))> max
max_ergor_value = d;
ave_arror_value+mad;
}/* end fork*i
ave_urror_value/-n2;
fprint{ (error_record_file,-*fletiln",max_error_
value, ave_error_valuel;
1/4 end 1% %
1/* end for j %/
lf (Resultsfile)
putc('\n', ResultsF1le):

```

1/* and sor 1 */
prinef (" cyclez to process<ta> or 〈q> to quit> \({ }^{\circ}\), n);
1/* anc while "/
15 (hidetie)
felose (MidFile):
If (Resulesfile)
felose (Resultarile);
If (errer_rucord_flie)
Eçose (erzor_zecord_flle);
\(1 / 4\) and 2reponiy */
\(1 *\) vold lepule
1
1at 1 , n:
2loat cremp, ifrikeal, -rftianginary, reault:
TIIE -8;
Indt_tydq (TrTsize):

frimaginary - (floar") manalloc (frtsixeraizeof(fioat));
prinet (-Encer layer destgnazion < O- Hidden Layer, 1 -Output Layer>"):
prints (" value of initial lmpulse) "1:
input_value (0) = atof (gats (et51)):
printí (-spectral Impulse Response ille name> ");
if (acrion(gecs (seril))
3- \{open (styl, "w");
print f (" periods to propagate inpulses 1 :
n-atel (gats (at51)):
Resernetvork (1)

1
if (secilol eo eo.)
1
fprint (18, "Input Fe Kidden Spectral inpulse kesponse");
for (MId - Oi Mid \(\leqslant \mathrm{ml}\); HId+4)
1
eprinef(-spectral Impulse response for hldden noce ide, Mid);
for (1-0; \(1<\) Frrssis: \(1++\) )
frtagal(1) - Irtimginagy(d) - 0.0:
Sor (In - O; In < no: In++)
zor (pulse - 0; pulse < \(n\); pulse++
frieal((FFTsIze/2)+pulse) te
new_output (1e0, ivo.
-0e,evo,
Ia, MId, nso, npo,
Input value (pulse)):

TrTReal(n) - Fritedi(l):
ffti(rftieal, frimaginary, frtsize, 7):
tor (1-0; 1 c rrisdze: 1++)
fpeinefli, *10.2! \(\ln\) ",

1
-1se

MIdTooutImp 0:
else
12 (serl(0) \(\left.0 . \cos ^{\prime}\right)\)
AllNetiap (1):
Majmanuli;
teap - (flcat") men_alloc ( \((\) num_inp_coeffonum_polesti)*sizeof(float)):
Lor 11-0; \(1<\) EETSIIE: \(1++1\)
FTTAnal(1) - Frismacinary(1)-0.0i
lor 11 - 0 ; 1 < num_inp_coeff: \(1++1\)
1
temp(1) - Input value (1);
input_value(1) \(=0.0\) :
1
for \(11-0 ; 1 \ll\) num_poles; \(j++\) )
1
\(\tan (1+\) num Inp_coefl) output.raluefli;
output value! 1 - 0.0 :
1
print ("Spectral Impulse Response file namè ")
if (strlen(gers(stri)))
1
f- lopen(stzl. we):

FTTReal[n] Frikeal[1];

Eprints ( 1, Fourdez Transform of Impulse Responseln"):
lor 11 - \(0 ; 1\) < TITSize: \(1+4\) )


```

Cor (1 - 0; { < nuT_{np_coeff: i++1
Input value{d} = cenpld];
Cor {I - 0; \& <0 num poles: t*+1
outpue_velue{il cempld*num_1np_coesfl;
free (Eemp):
{ree (FETRead);

```

18ee (FFTIMAOLnary):
Eelose (8):
printe ("options el:
1 /
vold Mainhent (I)
- 1
printe ("\nuENU"):
printe f"\nlearn from craining flle <l>");

/* printif ("\nspectral itpulse zesponse<l>"): /
printi ("Nndo nothing - quit<q>"):
print! ("\naction! >");
1
\(\operatorname{maln}\) ()
1
alloeate_network 0;
MalnMenu ():
vhile (getch() ! - q'
1
\(11(5551[0]=1 \cdot 1\)
daern U:
1: (SEII(O) = ' \(P\) ')
Proponly (1):
e180

1mpulse (1: *
Mainkenull:
1/* end while /
J \(1 \cdot\) end min 1

What is claimed is:
1. A processing element (i) for use in a space-time neural network for processing both spacial and temporal data, wherein the neural network comprises a plurality of layers of said processing elements, the plurality of layers comprising a first layer and at least one additional layer, the network further comprising connections between processing elements of the first layer

60
and processing elements of an additional layer: each said processing element adapted to receive a sequence of signal inputs \(X(n), X(n-1), X(n-2) \ldots\), each input \(X(n)\) comprising \(K\) signal components \(x_{1}(n), x_{2}(n), \ldots\)
\(65 x_{f}(\mathrm{n}), \ldots \mathrm{x}_{k}(\mathrm{n})\), each said processing element comprising, in combination:
(a) a plurality K of adaptable filters \(\left(\mathrm{F}_{1 i}, \mathrm{~F}_{2 i}, \ldots \mathrm{~F}_{j i}\right.\), \(\ldots \mathrm{F}_{k i}\) ) each filter \(\mathrm{F}_{j i}\) having an input for receiving
a respective component \(x_{f}(n), x_{f}(n-1), x_{f}(n-2), \ldots\) ., of said sequence of inputs, where \(x(n)\) is the most current input component, and providing a filter output \(y(n)\) in response to the input \(x_{f}(n)\) which is given by:
\[
y(n)=\left\{a_{m j} Y(n-m), b_{k j} Y(n-k)\right),
\]
where \(a_{m j}\) and \(b_{k j}\) are coefficients of the filter \(F_{j i}\) and \(f\) denotes the operation of the filter;
(b) a junction, coupled to each of said adaptive filters, providing a non-linear output \(p_{i}\left(\mathbf{S}_{( }(\mathrm{n})\right.\) ) in response to the filter outputs \(\mathrm{y}(\mathrm{n})\) which is given by:
\[
p\left(S_{S}(n)\right)=f(n(n)),
\]
where \(S_{( }(n)\) is the sum of the filter outputs, whereby said junction presents a sequence of output signals, \(p_{i}\left(S_{i}(n)\right), p_{i}\left(S_{i}(n-1)\right), p_{i}\left(S_{i}(n-2)\right)\).
2. The processing element defined in claim 1 , wherein said non-linear output provided by said junction is the sum \(\mathbf{S}_{f}(\mathrm{n})\) of the filter outputs modified by a non-linear transformation \(p_{i}\left(S_{i}(n)\right)\) to the sum \(S_{i}(n)\), where \(S_{i}(n)\) is given by:
\[
S_{i}(n)=\Sigma_{j} y_{j}(n) .
\]
3. The processing element defined in claim 2 , wherein the non-linear transformation is a sigmoid transfer function given by:
\[
p_{R}\left(S_{R}(n)\right)=1 /\left(1+e-S_{R}(n)\right) .
\]
4. The processing element defined in claim 1 , wherein said filters are non-linear filters.
5. The processing element defined in claim 4 , wherein said non-linear filters are exponential auto-regressive filters.
6. The processing element defined in claim 1 , wherein the coefficients \(\mathrm{a}_{m j}\) and \(\mathrm{b}_{k j}\) of each filter \(\mathrm{F}_{j i}\) are adjustable.
7. The processing element defined in claim 1 , wherein said adaptable filters are digital filters.
8. The processing element defined in claim 7, wherein said filters are linear filters.
9. The processing element defined in claim 8 , wherein 4 said filters are recursive, infinite impulse response filters and wherein the response of each filter is given by:
\[
\left.y(n)=\sum_{m=1}^{M} a_{m y} y_{f(n}-m\right) .
\]
10. The processing element defined in claim 8, wherein said filters are nonrecursive finite impulse response filters and wherein the response of each filter is given by:
\[
y(n)=\sum_{k=0}^{N} b_{k j} x_{j}(n-k)
\]
11. The processing element defined in claim 8 , wherein the response of each filter is given by:
\[
y_{\lambda}(n)=\sum_{m=1}^{M} a_{m j \neq}(n-m)+\sum_{k=0}^{N} b_{k} \gamma_{j}(n-k) .
\]
12. The processing element defined in claim 11, further comprising means for adjusting the coefficients \(\mathrm{a}_{m j}\)
and \(b_{k j}\) of each filter \(F_{j i}\) in dependence upon the junction output \(\mathrm{p}_{t}\left(\mathrm{~S}_{i}(\mathrm{n})\right)\).
13. The processing element defined in claim 12, wherein said adjusting means includes means for determining an error in the output \(p_{( }\left(S_{(n)}(\mathrm{n})\right.\) between the actual and desired response of the processing element (i) and adjusting the filter coefficients \(\mathrm{a}_{m j}\) and \(\mathrm{b}_{k j}\) of each filter \(F_{j i}\) in dependence upon said error.
14. The processing element defined in claim 13, wherein the non-linear transformation is a sigmoid transfer function with output \(p_{( }\left(S_{( }(n)\right)\) given by: \(p_{1}\left(S_{( }(n)\right)=1 /\left(1+e-S_{(n)}\right)\).
15. The processing element defined in claim 14, wherein said error \(\Delta_{R}(n)\) is given by:
\[
\Delta_{A}(n)=\left(D_{(n)}-A_{(n)}\right) p^{\prime}\left(S_{(n)}\right)
\]
where:
\(D_{( }(\mathrm{n})\) is the nth desired response from a given sequence for neuron \(i\) at the output layer
\(A_{i}(n)\) is the network's output response \(i\) for the nth input sequence pattern
\(\mathrm{p}^{\prime}\left(\mathrm{S}_{\mathrm{S}}(\mathrm{n})\right)\) is the first derivative of \(\mathrm{p}_{( }\left(\mathrm{S}_{\mathrm{A}}(\mathrm{n})\right)\), the non-linear transfer function for the ith output's activation value or in the case of said sigmoid non-linear transfer function, \(\mathrm{p}^{\prime}\left(\mathrm{S}_{\mathrm{S}}(\mathrm{n})\right)\) is given by:
\[
p^{\prime}\left(S_{( }(n)\right)=p_{( }\left(S_{( }(n)\right)(1-p(S(n)))
\]
16. The processing element defined in claim 15, wherein said filter coefficient \(b_{i j k}\) is adjusted in accordance with the formula:
\[
\Delta b_{i j k}=\alpha\left[\eta \Delta b_{i j k}{ }^{o l d}+(1-\eta) \Delta \lambda(n) x_{j}(n-k)\right]
\]
where:
\(\Delta \mathrm{b}_{i j k}\) is the update for a zero coefficient, \(\mathrm{b}_{i j k}\), lying between processing elements \(i\) and \(j\)
\(\alpha\) is the learning rate of the neural network
\(\Delta b_{i j k}{ }^{\text {old }}\) is the most recent update for the kth zero
element between processing elements \(i\) and \(j\)
\(\eta\) damps the most recent update
\(\mathrm{X}_{f}(\mathrm{n}-\mathrm{k})\) is the output of the jth neuron in the hidden layer.
17. The processing element defined in claim 15, wherein said filter coefficient \(\mathrm{a}_{i j k}\) is adjusted in accordance with the formula:
\[
\left.\Delta a_{i j k}=\alpha\left[\eta \Delta a_{i j k}{ }^{o l d}+1-\eta\right) \Delta \lambda(n) y_{i j}(n-k)\right]
\]
where:
\(\Delta \mathrm{a}_{i j k}\) is the update for a pole coefficient, \(\mathrm{a}_{i j k}\), lying between processing elements \(i\) and \(j\)
\(\alpha\) is the learning rate of the neural network
\(\Delta \mathrm{a}_{i j k}{ }^{\text {old }}\) is the most recent update for the kth pole coefficient between processing elements i and j
\(\eta\) damps the most recent update
\(y_{i j}(\mathrm{n}-\mathrm{k})\) is the activation value for the filter elements between neurons \(i\) and \(j, k\) time steps ago.
18. The processing element defined in claim 15, wherein said filter coefficients \(a_{i j k}\) and \(b_{i j k}\) are adjusted in accordance with the formula:
\[
\begin{aligned}
& \Delta b_{i j k}=a\left[\eta \Delta b_{i j k} o l d+(1-\eta) \Delta \in(n) x_{j}(n-k)\right] \\
& \Delta a_{i j k}=a\left[\eta \Delta a_{i j k} o l d+(1-\eta) \Delta \in(n) y_{i j}(n-k)\right]
\end{aligned}
\]
where:
\(\Delta \mathrm{a}_{i j k}\) is the update for a pole coefficient \(\mathrm{a}_{i j k}\) lying between processing elements \(i\) and \(j\)
\(\Delta b_{i j k}\) is the update for a zero coefficient \(b_{i j k}\) lying between processing elements i and j
\(\alpha\) is the learning rate of the neural network
\(\Delta b_{i j k}{ }^{o l d}\) is the most recent update for the kth zero element between processing elements \(i\) and \(j\)
\(\eta\) damps the most recent update
\(\Delta \mathrm{a}_{i j k}{ }^{o l d}\) is the most recent update for the kth pole element between processing elements \(i\) and \(j\)
\(x_{f}(n-k)\) is the output of the jth neuron \(k\) time steps ago
\(y_{i j}(\mathrm{n}-\mathrm{k})\) is the activation value for the filter element between neurons \(i\) and \(j, k\) time steps ago.
19. A neural network for processing both spacial and temporal data, wherein said neural network comprises a plurality of layers of processing elements, the plurality of layers comprising a first layer and a second layer, the network further comprising connections between processing elements of the first layer and processing elements of the second layer; said first layer of said network adapted to receive a sequence of signal inputs \(X(n), X(n-1), X(n-2) \ldots\), each input \(X(n)\) comprising N signal components \(x_{1}(n), x_{2}(n), \ldots x_{( }(n), \ldots x_{N}(n)\), said first layer of said network comprising, in combination:
(a) a plurality \(L\) of first processing elements, each first processing element (i) comprising a plurality N of adaptable filters ( \(\mathrm{F}_{1 i}, \mathrm{~F}_{2 i}, \ldots\). \(\mathrm{F}_{j i}, \ldots . \mathrm{F}_{N i}\) ), each filter \(\mathrm{F}_{j i}\) having an input for receiving a respective component \(x_{f}(n), x_{f}(n-1), x_{f}(n-2), \ldots\), of said sequence of inputs, where \(x_{f}(n)\) is the current input component, and providing a filter output \(y_{f}(\mathrm{n})\) in response to an input \(x_{f}(n)\) which is given by:
\[
y(n)=f\left(a_{m j} y_{\mathcal{\prime}}(n-m), b_{k j} x_{f}(n-k)\right),
\]
where \(\mathrm{a}_{m j}\) and \(\mathrm{b}_{k j}\) are coefficients of the filter \(\mathrm{F}_{j i}\) and f denotes the action of the filter;
each first processing element (i) further comprising a first junction, coupled to each of said adaptive filters, providing a non-linear output \(\mathrm{p}_{1}\left(\mathrm{~S}_{i}(\mathrm{n})\right)\) in response to the filter outputs \(y_{f}(n)\) which is given by:
\[
p_{i}\left(S_{i}(n)\right)=f\left(y_{f}(n)\right),
\]
where \(S_{i}(n)\) is the sum of the filter outputs,
each first junction presenting a sequence of first output signals, \(\left.\mathrm{p}_{i}\left(\mathrm{~S}_{1}(\mathrm{n})\right), \mathrm{p}_{i}(\mathrm{n}-1)\right), \mathrm{p}_{1}\left(\mathrm{~S}_{1}(\mathrm{n}-2)\right)\),
20. The neural network defined in claim 19, wherein said second layer comprises:
a plurality of M of second processing elements (k) each coupled to a plurality of said first junctions, each second processing element comprising a plurality O of adaptable filters ( \(\mathrm{F}_{1 k}, \mathrm{~F}_{2 k}, \ldots \mathrm{~F}_{h k}, \ldots\) \(F_{O K}\) ), each connected to one of said first junctions, each filter \(\mathrm{F}_{h k}\) having an input for receiving a respective first junction output signal \(\mathbf{S}_{k}(\mathrm{n}), \mathbf{S}_{k}(\mathrm{n}-1)\), \(S_{k}(n-2), \ldots\), of said sequence of first junction output signals, where \(S_{k}(\mathrm{n})\) is the most current output signal, and providing a filter output, \(\mathrm{y}_{h}(\mathrm{n})\), in response to an input \(\mathrm{S}_{k}(\mathrm{n})\) which is given by:
\[
y_{i}(n)=f\left(C_{q k} Y_{h}(n-\eta)\right), d_{r k p k}\left(S_{k}(n-r)\right),
\]
where \(\mathrm{C}_{g k}\) and \(\mathrm{d}_{r k}\) are coefficients of the filter \(\mathrm{F}_{h k}\) and f denotes the action of the filter;
each second processing element ( \(k\) ) further comprising a second junction, coupled to each of said second adaptive filters of the respective second processing element and providing a non-linear output \(\mathrm{p}_{8}\left(\mathrm{~S}_{8}(\mathrm{n})\right.\) ) in response to the filter outputs \(\mathrm{y}_{h}(\mathrm{n})\) which is given by:
\(p_{g}\left(S_{g}(n)\right)=f\left(y_{h}(n)\right)\),
where \(S_{g}(n)\) is the sum of said second filter outputs, each second junction presenting a sequence of second output signals \(\mathrm{p}_{g}\left(\mathrm{~S}_{g}(\mathrm{n})\right), \mathrm{p}_{g}\left(\mathrm{~S}_{g}(\mathrm{n}-1), \mathrm{p}_{8}\left(\mathrm{~S}_{g}(\mathrm{n}-2)\right)\right.\),
21. The network defined in claim 20 , wherein said non-linear outputs provided by said junctions are a sum \(S_{g}(n)\) of the filter outputs modified by an arbitrary nonlinear transformation \(\mathrm{p}_{g}\left(\mathrm{~S}_{g}(\mathrm{n})\right.\) ) to the sum \(\mathbf{S}_{g}(\mathrm{n})\), where \(\mathbf{S}_{g}(\mathrm{n})\) is given by:
\[
S_{g}(n)=\sum_{h} y_{h}(n) .
\]
22. The network defined in claim 21, wherein the non-linear transformation is a sigmoid transfer function given by:
\[
\left.p_{1} S_{A}(n)\right)=1 /\left(1+e-S_{(n)}\right) .
\]
23. The network defined in claim 20 , wherein said filters are non-linear filters.
24. The network defined in claim 23, wherein said non-linear filters are exponential auto-regressive filters.
25. The network defined in claim 20 , wherein said adaptable filters are digital filters.
26. The network defined in claim 25, wherein said filters are linear filters.
27. The network defined in claim 26, wherein said filters are recursive, infinite impulse response filters and wherein the response of each filter is given by:
\[
y_{j}(n)=\sum_{m=1}^{M} c_{m i} y(n-m) .
\]
28. The network defined in claim 26 , wherein said filters are non-recursive finite impulse response filters and wherein the response of each filter is given by:
\[
y_{f}(n)=\sum_{k=0}^{N} d_{k j} x_{f}(n-k) .
\]
29. The network defined in claim 26, wherein the response of each filter is given by:
\[
\left.y \mathcal{N}(n)=\sum_{m=1}^{M} c_{m p} \beta / n-m\right)+\sum_{k=0}^{N} d_{k j} x_{j}(n-k) .
\]
30. The network defined in claim 29, wherein the coefficients \(\mathrm{c}_{m j}\) and \(\mathrm{d}_{k j}\) of each filter \(\mathrm{F}_{j i}\) are adjustable.
31. The network defined in claim 29 , further comprising means for adjusting the coefficients \(\mathrm{c}_{m j}\) and \(\mathrm{d}_{k j}\) of each filter \(\mathrm{F}_{j i}\) in dependence upon the plurality N of junction outputs \(\mathrm{p}_{8}\left(\mathrm{~S}_{g}(\mathrm{n})\right.\) ).
32. The network defined in claim 31, wherein said adjusting means includes means for determining and error in said outputs \(\mathrm{p}_{g}\left(\mathrm{~S}_{g}(\mathrm{n})\right)\) between the actual and desired response of the network and adjusting the filter coefficients \(\mathrm{c}_{m j}\) and \(\mathrm{d}_{k j}\) of each filter \(\mathrm{F}_{j i}\) in dependence upon said error.
33. The network defined in claim 32, wherein the non-linear transformation is a sigmoid transfer function given by:
\[
P_{g}\left(S_{8}(n)\right)=1 /\left(1+e-S_{g}(n)\right) .
\]
34. The network defined in claim 33, wherein said error is given by:
\[
\begin{equation*}
\delta_{g}=\left(D_{f}(n)-A_{g}(n)\right) p^{\prime}\left(S_{g}(n)\right) \tag{10}
\end{equation*}
\]
where:
\(\mathrm{D}_{\mathrm{g}}(\mathrm{n})\) is the nth desired response from a given sequence for neuron \(g\) at the output layer
\(\mathbf{A}_{\boldsymbol{g}}(\mathrm{n})\) is the network's output response at neuron g for the nth input sequence pattern
\(p^{\prime}\left(\mathrm{S}_{g}(\mathrm{n})\right)\) is the first derivative of the non-linear transfer function for the gth output's activation value or in the case of said sigmoid non-linear transfer function, \(\mathrm{p}^{\prime}\left(\mathrm{S}_{g}(\mathrm{n})\right.\) ) is given by
\[
\left.\left.p^{\prime}\left(S_{g}(n)\right)=p\left(S_{g}(n)\right)(1-p) S_{g}(n)\right)\right)
\]
35. The network defined in claim 34, wherein the kth zero coefficient \(\mathrm{d}_{i j k}\) of the filter between first processing element \(j\) and second processing element \(i\) is adjusted in accordance with the formula:
\[
\Delta d_{i j k}=\alpha\left[\eta \Delta d_{i j k}{ }^{o l d}+(1-\eta) \Delta_{i x j}(n-k)\right]
\]
where:
\(\Delta \mathrm{d}_{i j k}\) is the update for a zero coefficient, \(\mathrm{d}_{i j k}\), lying between first processing element \(j\) and second processing element i
\(\alpha\) is the learning rate of the neural network \(\Delta \mathrm{d}_{i j k^{\text {old }}}\) is the most recent update for the kth zero coefficient between first processing element j and second processing element i
\(\eta\) damps the most recent update
\(\mathrm{x}_{( }(\mathrm{n}-\mathrm{k})\) is the output of the jth first processing element k time steps in the past.
36. The network defined in claim 34 , wherein the kth pole coefficient for said filter between first processing element \(j\) and second processing element \(\mathfrak{i}, c_{i j k}\), is adjusted in accordance with the formula:
\[
\Delta c_{i j k}=\alpha\left[\eta \Delta c_{i j k}{ }^{o l d}+(1-\eta) \Delta_{i y j}(n-k)\right]
\]
where
\(\Delta c_{i j k}\) is the update for the \(k\) th pole coefficient, \(c_{i j k}\), lying between first processing element \(j\) and second processing element i
\(\alpha\) is the learning rate of the neural network
\(\Delta \mathrm{c}_{i j k}\) old is the most recent update for the kth pole coefficient between first processing element j and second processing element i
\(\eta\) damps the most recent update
\(\mathrm{y}_{i}(\mathrm{n}-\mathrm{k})\) is the activation value for the filter element between first processing element j and second processing element \(\mathrm{i}, \mathrm{k}\) time steps in the past.
37. The network defined in claim 34 wherein said filter coefficients \(c_{i j k}\) and \(d_{i j k}\) are adjusted in accordance with the formulae:
\[
\begin{aligned}
& \Delta d_{i j k}=\alpha\left[\eta \Delta d_{i j k}{ }^{\text {old }}+(1-\eta) \Delta_{i x\rangle}(n-k)\right] \\
& \Delta c_{i j k}=\alpha\left[\eta \Delta c_{i j k} \text { old }+(1-\eta) \Delta_{i j i j}(n-k)\right]
\end{aligned}
\]
\(\Delta \mathrm{c}_{i j k}\) is the update for the kth pole coefficient \(\mathrm{c}_{i j k}\) lying between first processing element \(j\) and second processing element i
\(\Delta \mathrm{d}_{i j k}\) is the update for the kth pole coefficient \(\mathrm{d}_{i j k}\) lying between first processing element \(j\) and second processing element i
\(\alpha\) is the learning rate of the neural network
\(\Delta \mathrm{d}_{i j \mathrm{j}}{ }^{o l d}\) is the most recent update for the kth zero element between first processing element \(j\) and second processing element i
\(\eta\) damps the most recent update
\(\Delta c_{i j k}{ }^{\text {old }}\) is the most recent update for the kth zero element between first processing element j and second processing element i
\(\mathrm{x}_{\mathrm{\prime}}(\mathrm{n}-\mathrm{k})\) is the output of the jth first processing element \(k\) time steps in the past
\(y_{i}(n-k)\) is the activation value for the filter element between first processing element j and second processing element \(i, k\) time steps in the past.
38. The network defined in claim 34, wherein the kth pole coefficient for said filter between network input element \(j\) and first processing element \(i, a_{i j k}\), is adjusted in accordance with the formula:
\[
\Delta a_{i j k}=\alpha\left[\eta \Delta a_{i j k} o l d+(1-\eta) \epsilon_{i} \vartheta_{i}(n-k)\right]
\]
where
\(\Delta \mathrm{a}_{i j k}\) is the update for the \(k\) th pole coefficient, \(\mathrm{a}_{i j k}\), lying between network input element j and first processing element i
\(\alpha\) is the learning rate of the neural network
\(\Delta \mathrm{a}_{i j k}{ }^{\text {old }}\) is the most recent update for the kth pole coefficient between network input element \(j\) and first processing element i
\(\epsilon_{i}\) is the backpropagated network error at the ith first processing element
\(\eta\) damps the most recent update
\(\mathrm{y}_{i}(\mathrm{n}-\mathrm{k})\) is the activation value for the filter element between network input element \(j\) and first processing element \(\mathrm{i}, \mathrm{k}\) time steps in the past.
39. The network defined in claim 34 wherein said filter coefficients \(\mathrm{a}_{i j k}\) and \(\mathrm{b}_{i j k}\) are adjusted in accordance with the formulae:
\(\Delta b_{i j k}=\alpha\left[\eta \Delta b_{i j k}{ }^{l d}+(1-\eta) \epsilon i x(n-k)\right]\)
\(\Delta a_{i j k}=\alpha\left[\eta \Delta a_{i j k}{ }^{o l d}+(1-\eta) \epsilon \epsilon_{j} j_{j}(n-k)\right]\)
where:
\(\Delta \mathrm{a}_{i j k}\) is the update for the k th pole coefficient \(\mathbf{a}_{i j k}\) lying between network input element j and first processing element \(i\)
\(\Delta b_{i j k}\) is the update for the \(k\) th zero coefficient \(b_{i j k}\) lying between network input element j and first processing element \(i\)
\(\epsilon_{i}\) is the backpropagated network error at the ith first processing element
\(\alpha\) is the learning rate of the neural network
\(\Delta \mathrm{b}_{i j k}{ }^{\text {old }}\) is the most recent update for the kth zero element between network input element j and first processing element i
\(\eta\) damps the most recent update
\(\Delta \mathbf{a}_{i j k}{ }^{o l d}\) is the most recent update for the kth pole coefficient of the filter between network input element j and first processing element i
\(\mathrm{x}_{\mathrm{f}}(\mathrm{n}-\mathrm{k})\) is the jth network input \(k\) time steps in the past
where:
\(\mathrm{y}_{i j}(\mathrm{n}-\mathrm{k})\) is the activation value for the filter element between network input element \(j\) and first processing element \(i, k\) time steps in the past.
40. The network defined in claim 34, wherein the kth zero coefficient \(b_{i j k}\) of the filter between network input element \(j\) and first processing element \(i\) is adjusted in accordance with the formula:
\[
\Delta b_{i j k}=\alpha\left[\eta \Delta b_{i j k} o l d+(1-\eta) \epsilon_{\epsilon j} x_{j}(n-k)\right]
\]
where:
\(\Delta b_{i j k}\) is the update for a zero coefficient, \(b_{i j k}\), lying between network input element \(j\) and first processing element \(i\)
\(\epsilon_{i}\) is the backpropagated network error at the ith first 15 processing element
\(\alpha\) is the learning rate of the neural network
\(\Delta b_{i j k}{ }^{o l d}\) is the most recent update for the kth zero coefficient between network input element \(j\) and first processing element \(\mathbf{i}\)
\(\eta\) damps the most recent update
\(x_{f}(n-k)\) is the jth network input \(k\) time steps in the past.
41. The network described in claim 33, further comprising a means for propagating the error \(\Delta_{g}(n)\) measured at the outputs of the gth second processing element backward through the intervening filter connections between first and second processing elements thereby to provide a means for adjusting the coefficients of the filters which connect the inputs of the net- 30 work to the first processing elements.
42. The network defined in claim 38, wherein said means for backward propagation of error is described by the formula:
\[
\epsilon_{\{ }(n)=p^{\prime}\left\{S_{i}(n)\right)\left[\sum_{j} \sum_{k=0}^{T} d_{j i k} \Delta_{A}(n+k)+\sum_{j} \sum_{k=1}^{U} c_{j i k} \gamma_{j}(n-k)\right]
\]

10 where
\(\epsilon_{i}(n)\) is the result of backward propagation of network error from the outputs of all second processing element through the filters between first processing element \(i\) and the plurality N of second processing elements
\(c_{j i k}\) is the kth pole coefficient of the filter between first processing element \(i\) and second processing element \(\mathbf{j}\)
\(\mathrm{d}_{i j k}\) is the kth zero coefficient of the filter between first processing element i and second processing element j
\(T\) and \(U\) are respectively the non-recursive and recursive orders of the filter through which back-propagation occurs
\(\Delta f(n+k)\) is the error computed at the output of the jth second processing element \(k\) time steps in the future
\(\gamma_{i j}(\mathrm{n}-\mathrm{k})\) is the output from k time steps in the past of the filter operating on the inverted sequence of network errors.
```

