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NATIONAL ADVI SORY COMMITTEE FOR AERONAUTI CS 

RESEARCH MEMORANDUM 

WIND- TUNNEL TESTS OF THE STATI C LONGI TUDINAL 
CHARACTERI STI CS AT LOW SPEED OF A SWEPT­

WING AI RPlANE WITH SLOTTED FLAPS, 
AREA-SUCTION FLAPS , AND WING 

LEADI NG-EDGE DEVI CES 

By Ralph L. Maki and Harry A. James 

SUMMARY 

A low- speed wind- tunnel investigation of a high-wing a irplane with 
an aspect ratio of 6 .75 and 360 

sweepback of the quarter-chord line was 
conducted to determine the lift increments obtainable with area- suction 
flaps. Comparisons were made with the characteristics of the airplane 
with the slotted flaps normally used . The flaps were tested in conjunc­
tion with various combinations of leading- edge devices to increase maximum 
lift and to maintain longitudinal stability throughout the lift range . 

Flap lift increments were approximately equal to ' those predicted by 
theory in the low lift- coefficient range . Lift at high angles of attack 
was limited by flow separation at the wing leading edge . Inboard high­
lift devices at the wing leading edge were effective in increasing maxi ­
mum lift . The relative lift effectiveness of inboard and outboard leading­
edge devices determined the lon§itudinal stability characteristics. With 
area- suction flaps deflected 55 , installation of a simulated inboard 
nose flap and an increase in deflection of the outboard slat (from 170 to 
240

) increased the maximum lift coefficient from about 1.6 without the 
devices to about 2 . 2, and delayed the onset of noticeable airplane buffet­
ing from an angle of attack of about 50 to about 120 . 

Critical flow coefficients of about 0 . 0006 with 550 deflection and 
0.0004 with 450 deflection were measured for the area -suction flaps with 
a porous surface having constant porosity . 

No significant changes in the low- speed characteristics resulted 
when the sweep of the inboard portion of the flap hinge line was reduced 
by increasing the wing root chord length. 
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I NTRODUCTION 

The general boundary- layer -contr ol r esearch program at the Ames 
Aeronautical Laboratory has included investigations of the effectiveness 
of area- suction flaps on wings with a wide r ange of plan forms. Common 
to all these studies is the attainment of sizable incremental lift coef­
ficients at low angles of attack due to area-suction applied to defle cted 
trailing- edge flaps . For wings with angles of sweepback of about 350 and 
larger) t hese gains in lift coefficient a r e often reduced and even lost 
at moderate angles of attack due to flow separation initiating at the 
wing leading edge (e .g . ) ref. 1) . When this flow separation originates 
over the outboard portions of the swept wing panels) serious losses in 
longitudinal stability accompany the decreases in flap lift increment . 
It has been shown that the leading- edge flow separation can be del ayed by 
suitabl e high- lift devices at the wing leading edge, and that the changes 
in longitudinal stability can be controlled by proper spanwise extents of 
these leading- edge devices. 

As part of the general boundary- layer- control program) a study has 
been made in the Ames 40- by 80- foot wind tunnel of the application of 
area- suction trailing- edge flaps to an airplane with a high aspect r atio 
( 6 . 75) wing plan form and moderate sweepback (35 . 90 )) complicated by out­
boar d engine nacelles subtended on pylons at the 39- percent semispan 
stations . The wing plan form was a ltered for parts of the program by 
increasing the root chord length and unsweeping the inboard portion of 
the trailing- edge flaps . Bes ides the assessment of flap lift effective­
ness) it was desired to attain increases in maximum lift while preserving 
satisfactory static longitudina l stability by controlling the spanwise 
stall progression by means of wing leading- edge high- lift devices) as 
discussed above . 

Tests were made of the basic a irplane equipped with slotted flaps 
to provide directly compa rable data for evaluation of the area suction 
plain flap results . The discussion is limited to an analysis of results 
which relate to the problems sta ted above . The balance of the test data 
is presented without discussion . Results of tests with wing fences and 
of control effectiveness are included . 

NOTATION 

All force and moment coefficients are based on the original wing 
area of the test airplane . Pitching moments are r eferred to an axis 
joining the quarter - chord points of the mean aerodynamic chords of the 
wing panels . 
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aspe ct r atio 

span 

wing chor d, measured s treamwise 

f
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mean aer odynami c chor d , 

drag coeffi cient 

lift coefficient 
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J
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c dy 
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rolling-moment coefficient 

pitching-moment coeffi c ient 

yawing- moment coefficient 

PI - Poo 
pr essur e coefficient, ----­

<loo 

Q suction- air flow coeffiCient , VS 

side- force coefficient 

suction- duct static pressure 

local static pressure 

free - stream static pressure 

suction- air volume rate of flow, corrected to sea- level standard 
conditions 

free - stream dynamic pressure 

Vc Reynolds number, --
v 

or iginal wing area of test airplane 

free - stream velocity 

streamwise distance from unmodified wing leading edge with slat 
closed 

distance from unmodified wing leading edge with slat closed 
measured normal to leading edge 
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y spanwise distance, measured normal to fuselage center line 

Ys spanwise distance, mea sured a long 0 . 15 chord line 

Yf spanwise distance, measured along 0 .77 chord line 

z height above wing chord plane 

Q airplane angle of attack, measured with respect to the fuselage 
center line 

flap lift - effectiveness parameter) 

6CL flap lift increment) measured at constant angle of attack 

Df t railing- edge - flap deflection) measured normal to hinge line 

Tl fraction of semispan) b~2 

v kinematic viscosity 

Subscripts 

crit criti cal 

L left 

max maximum 

R right 

T due to wind- tunnel-wall interference 

w wing 

MODEL AND APPARATUS 

General Model Information 

The test airplane had a high wing of aspect r atio 6 . 75 and 35 . 90 

sweepback of the quarter- chord line in the wing r eference plane . This 
wing will be r eferred to as plan form 1 . Note that model angl e of attack 
is referred to the fuselage reference line) and the wing is attached at 
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NACA RM A57A24 CONFI DENTIAL 5 

an incidence of 40 . Engine nacelles are subtended below and forward of 
the wing panels on pylons at 0 . 39 semispan . Pertinent geometric details 
are listed in table I and a sketch is presented as figure 1 . 

Figure 2 is a photograph of the model mounted in the test section 
of the wind tunnel . The strut support mounts were attached at the main 
wheel axles and arrestor- hook pivot point . The bomb-bay doors, nose­
wheel door, speed brakes, and t ail bumper wheel remained closed for all 
tests . The vertical fin wa s removed at the fold line . The engines were 
removed, and air was allowed to flow freely through the nacelles. The 
wing slats were locked in either the closed or open positions . 

Alternate Plan Form 

The wing plan form was modified over the inboard region near the 
t railing edge for some of the tests . This a lternate wing plan form is 
designated herein as plan form 2 . The principal change is an increase in 
root chord reducing the sweep of a portion of the flap hinge line. The 
location of t his root fillet, triangular in shape, is described in fig­
ure 1 and shown in the photogr aph of fi gure 3. The root section incor­
porated camber near the trailing edge (see fig. 4) . The camber was 
diminished by straight- line - element fairing t o meet the uncambered section 
of plan form 1 at the flap juncture line . No attempt was made to form 
any prescribed airfoil thickness distribution in the fillet region, since 
this would have re~uired wing thickness changes extending well forward of 
the suction- flap hinge line on plan form 1 . The upper surface was faired 
smoothly , and unavoidable surface slope discontinuities were restricted 
to the lower surface . 

Wing Trailing-Edge Flaps 

The basic airplane was e~uipped with 0 . 25 c slotted flaps. Maximum 
flap deflection was 360

• 

The boundar y- layer control flaps wer e 0 . 23 c plain flaps with pro­
visions for applying boundary- l ayer cont r ol by suction at the knee of the 
flaps as shown in figure 4 . Deflections of 450 and 550 were provided on 
plan form 1, and deflections of 00 and 550 on plan form 2 . Because of 
the difference in hinge - line sweep angl e on the inboard and outboard 
sections of the flap on plan form 2 , the t r ailing edge at the juncture 
line was discontinuous with flaps deflected . This gap was unsealed for 
most tests . The porous area for the suction- flap installations was formed 
with a metal-mesh surface sheet (4225 holes per s~uare inch) backed by 
felt cloth . The extent of the porous surface is described in figure 4 . 
The porosity was constant in both chordwise and spanwise directions. The 

CONFIDENTIAL 



l~ 

6 CONFIDENTIAL NACA RM A57A24 

flow characteristics a r e given in figure 5 . The wing region between the 
rear spar and the flap was sealed to serve as a duct for the boundary­
layer air . 

Boundary- Layer Control System 

An aircraf t - type supercharger compressor driven by two 300- horsepower 
e l ectric motors was installed in the bomb bay of the test airplane as a 
power unit for boundary- l ayer air r emoval . Collectors at the fuselage 
walls at the r oot of the wing ducts delivered the boundary- layer air from 
the flap duc t r egion into flexible lines which led to a plenum chamber 
attached to a supercharger . The flow was measured with a thin- plate or i ­
fice in a pipe attached to the blower exit . Boundar y- l ayer a ir was dis ­
cha rged through the partiall y open cockpit es cape hatch which was located 
on the lower sur face of the fuselage forward of the bomb bay . Maximum 
flow quantity of the system wa s about 130 cubic feet per second a t the 
duct pressures enc ounter ed during the tests . 

Wing Leading- Edge Devices 

Two full - span leading- edge gloves incorporating forward camber and 
enlar ged leading- edge r adii wer e tested . Coordinates for these gloves 
are given in table II . Camber and leadi ng- edge r adii for glove 2 a re 
l ar ger than for gl ove 1 . Glove 2 also was installed as a partial- span 
device for some tests, extending only f r om the wing root to the na celle 
pylons, i n which cases it i s called gl ove 2i . Glove 3i which was similar 
to glove 2i was used on tests of plan form 1 with s lotted flaps . 

The gl ove 2 profiles were adapted to the normal slats in their 
extended position for some t ests . These modified contours wer e positioned 
such that the resulting deflection was 240 as compared to 170 deflection 
of the norma l s l at . Example profiles a re shown in figure 6 . The span­
wise extent of the modificati on was varied, allowing the effect of extents 
of this modification designated as M1 ) M2 ) Ms) and M4 to be measured 
(see fi g . 1 ) : in all cases the entire span of the normal slat was extended . 

Glove 4i was highly cambered t o simulate a defl ec ted nose f lap . It 
extended from the wing root to the nacelle pylons . A typical profile of 
this device is shown in figure 7 ; coordinates are included in table II. 

CONFIDENTI AL 
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Other Test Devices 

Full-chord upper- surface wing fences were installed on plan form 1 
at 0 . 39 ) 0 . 62) and 0 .85 b/2 . The fences at 0 . 62 and 0 . 85 b/2 were 
5- percent chord high with a leading- edge wrap- around to 5- percent chord 
on the lower surface (see fig . 7) . The fence at 0 . 39 b/2 terminated 
flush with the pylon leading edge . 

7 

A revised pylon leading edge was installed for most of the tests 
which extended the pylon leading edge forward and faired into the wing 
upper surface at 5-percent chord . The cross - section contour near the 
leadi ng edge was kept approximately the same as the original pylon . The 
modified pyl on is sketched in figure 7 . 

TESTS AND CORRECTIONS 

The majority of the tests were made at a dynamic pressure of about 
15 pounds per square foot . This corresponds to a Reynolds number of 
about 8 . 2xl06 based on the wing mean aerodynamic chord . A f ew configu­
r ations were also t ested at Reynolds numbers of about 10. 5 and l 3 . 4xl06 
to s pan the current approach- speed range for this type of airplane . 
Because of excessive airplane buffeting at high angles of attack) only 
a brief study was made at these higher tunnel speeds . 

The test airplane was unusually large relative to the tunnel test­
secti on dimensions . The wing- span to tunnel-width ratio was 0 . 91 . Theo­
retically determined interference effects of the wind- tunnel walls are 
therefore of doubtful accuracy) but were nevertheless applied to the data . 
The wall- interference corrections added were as follows: 

o.r 1.40 CL 

CDT 0 . 024 CL2 

CmT 0 . 039 (tail- on data only) 

The data have been corrected for stream- angle inclinations . The effects 
of the tunnel support struts ) of removing the vertical fin above the fold 
line) of the strut mounting blocks on the main wheel axles) and of the 
partially open cockpit access door (boundary- layer configurations only) 
are unknown . 
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RESULTS 

In the discuss ion to follow, selected test results which relate to 
evaluation of flap lift effect i veness, improvements in CImax' maintenance 
of l ongitudinal stabilit~ and suction requirements are treated . These 
results ar e presented in figures 8 to 14. The complete force data recorded 
in the investigation, together with suction air-flow data and limited flap 
pressure data , are presented in figures 15 to 32 . 

Unless otherwise designated on a figure , it shall be assumed that 
the test configuration includes the following : 

1. Slats locked closed . 

2 . Horizontal- tail incidence setting of _40
• 

3. Elevators locked at 00 and ailerons a t 1-1/20 trim setting 
(tr ailing edge up) . 

4 . Modified pylon leading edges. 

5. Engine nacelles open . 

6 . CQ = 0 . 001 for tests with area- suction flaps deflected 
with boundar y-layer control operating . 

7 . No auxiliary devices (e . g ., fences or tufts) . 

DISCUSSION 

As the test program progressed, it became apparent that the control 
of air- flow separation at the wing leading edge was of primary importance 
when a high-lift flap was employed . It was demonstrated that both maxi­
mum lift and longitudinal stability became increasingly dependent on the 
leading- edge configuration as the flap lift was increased . This point 
will be examined by considering selected results from tests of the air­
plane with slotted flaps (plan form 1) and with area- suction flaps on 
plan form 2 . The latter plan form was chosen over plan form 1 for the 
discussion of area- suction- flap results because a more complete sequence 
of data was taken . Comparison of incremental differences from tests of 
otherwise identical conditions for plan forms 1 and 2 show that only 
small differences exist . 
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Flap Lift 

The flap lift increments measured at low angles of attack are 
compared with theoretical values in the following table . 

-
of) 6CL due to flaps 

Type of flap -
deg Theoretical Measured 

Sl otted 36 0 . 74 0 . 75 (from fig . S) 
Area suction 55 1.11 1. 06 (from fig . 12) -. 

9 

The measured flap lift increments varied somewhat with wing leading- edge 
configuration) being as much as lO percent lower in one case with suction 
flaps deflected 550

• The theor etical values were computed by the theory 
of reference 2 using the geometry of plan form 1 in both cases and a o 
values from the curve labeled II theoryll in figure 3 of reference 2. From 
the comparisons) it can be concluded that) where no separation from the 
wing leading edge existed ) the flaps gave approximately the lift increments 
to be expected . 

Maximum Lift and Stability 

Basic wing.- Shown in figure S are the characteristics of the basic 
wing with slotted flaps at 00 and 360 deflection) and slats both open and 
closed. The drag and pitching- moment variations above an angle of about 
90 with slats closed and flaps up are typical of those due to flow separa­
tion originating at the tips of swept wings and spreading inboard with 
increase i n angle of attack. In this case the variations occurred some SO 
before maximum lift. With slats open (flaps undeflected) the lift and 
pitchi ng-moment curves were linear to higher angles of attack) indicating 
that the outboard slats protected the tip region; however) drag data and 
tuft observations showed that flow separation star ted from the unprotected 
leading edge between the pylons and fuselage at about 130 angle of attack . 
While the lift and pitching-moment variations were substantially improved 
by extending the slats) the drag level was high and roughness (as evi ­
denced by visible airplane buffeting) appeared at high lifts . It will 
be noted that the results being discussed concern configurations with 
the horizontal tail on . Directly comparable data for two wing configura­
tions with the horizontal tail off and on are given in figures 17 and 20) 
respectively . These data show the tail has a generally stabilizing 
infl uence on the pitching-moment changes at high lift . 

Deflecting the flaps with the slats closed caused the wing tips to 
stall at about 60 angle of attack (fig . S) . The stall spread inboard so 
quickly with increasing a that extreme instability and rapid loss of 
flap lift increment resulted. Extension of the slats with the flaps 
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defl ected contr ol l ed the tip stall and virtuall y e l iminated the instabil­
ity, an effect s i milar t o that with f l aps undef l e cted . However , f l ow 
separati on agai n appeared i nboard of the pylons only 30 l ater than the 
tip region had stalled with s l ats closed. As a was further increased, 
the drag l evel was high and the flow rough, similar to the slats - open, 
flaps - undefl ected case . 

Gl ove 3i was i nstalled between the pylons and fuse l age i n an attempt 
to suppress the leading- edge stall in this region . I t delayed t he inboard 
stall with f l aps e i ther up or down (about 50 accor ding to tuft observa ­
tions) , but did not mater ial ly change the lift characteristics at high 
angl es of attack . 

Pl an form 2 with area- s uction f l aps deflected 550
. - Installation of 

the area- suction flaps , whil e r etaining the basic wi ng leading edge with 
slats open, r esulted in the appear ance of leading- edge flow separ ation 
inboard of the pylons about 60 angl e of attack earlier than with the 
slotted flaps at 360 deflection . Thi s can be discerned in the drag and 
pitching-moment data in figur es 8 and 10 . Loss of wing lift due to this 
leading- edge f l ow separation r apidly reduced the lift increment provided 
by the boundar y- layer contr ol eff e ct, so that a few degrees above the 
onset of separ ati on the lift was no gr eater than for the flap deflected 
without boundary- layer control, and considerably less than with the 
slotted flaps defl ected . It was appar ent that the higher loading induced 
inboard by the ar ea- suction flaps caused this region of the wing to stall 
long before the outboard r egions had r eached their maximum lift . 

In an effort to del ay the inboar d flow separ ation, the wing leading 
edge from fuselage to pylons was modi fied by installing glove 4i which 
resulted in a contour comparable to a nose flap deflected about 300 

(described in fig . 7) . It can be seen from the results presented in 
figure 11 that this leading- edge device had a powerful effect on the 
stall characteri stics, delaying the inboard stall for about 60 angle of 
attack with boundary- l ayer contr ol operati ve . As a result, a useful flap 
lift increment due to boundary- l ayer control was mainta ined to CLmax' 
and CLmax was increased from about 1 . 6 to 2 . 15 . 

With the above configuration, tuft observations indicated incipient 
separati on in the wing tip r egion near CLmax and, hence, instability 
might be imminent . The wing slats wer e therefore modified as shown in 
fi gure 6 to increase their effecti veness as a leading- edge device. The 
modifi cati on was i nstalled in two steps , first from the wing tips to a 
point correspondi ng approxi matel y to the span position of the outboard 
end of the trailing- edge flap (M2) , and then over the entire slat span 
(Ms) . The test results are given in figure 12 . Modification M2 had 
littl e effect beyond i ncreasing the nose- down moment after CLmax ' Modi ­
fication Ms r esulted in an increase of lift- curve slope and a s l ight 
increase in CLmax to about 2 . 25 . It is possible that further improvement 
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of t he l eading-edge devices would provide additional ga ins in CLmax. 

For example, if boundary- layer control methods were applied to leading­
edge flaps, and the relative lift effectiveness of inboard and outboard 
devices again properly adjusted, further increases in CLm would be 
anticipated. ax 

A number of combinations of other leading- edge devices were tried, 
each indicating generally the same result, namely that a weakening of 
the leading- edge protection inboard reduced CLmax ' and a weakening 
outboard caused a tendency toward longitudinal instability. The test 
results presented in figures 16 to 26 include s uch configurations. 

Boundary- Layer Control Requirements 

No attempt was made to mlnlIDlze the boundary- layer air-flow require­
ments in these tests in which material of constant porosity was used . 
The study reported in reference 3 showed reductions of as much as 55 per­
cent in critical flow coefficient by selection of proper magnitude 
and variat ion of chordwise pressure drop across the porous area. The 
tests with all suction flaps on plan form 2 and most suction flaps on 
plan form 1 were made with a constant chordwise length of opening of 
porous area from 1/2 inch forward to 3 inches behind the mid- arc reference 
line (see fig . 4) . The forward edge of the opening was ver y nearly at 
the position of minimum surface pressure, as recommended in reference 3 
as one requirement for minimizing the required suction flow quantity . 
The constant chordwise length of opening was chosen in order to have a 
relatively greater quantity of boundary- l ayer air withdrawn near the flap 
tips . Typical variations of lift due to suction with flow coefficient 
CQ are shown in figure 13 . Example surfa ce pressure distributions over 
the porous area and suction duct pressures are shown in figure 14 . The 
methods outlined in reference 3 were applied to estimate critical values 
of CQ and duct pressures . The estimated values a re compared with the 
measured values in the table below . Data a t 450 deflection are those 
recorded for tests with plan form 1 . 

Of, CQcrit Average duct pressure ratio at CQcrit 
deg Estimated Measured Estimated Measured 

45 0 . 00038 0 . 0004 1 . 023 1. 02 (data of fig. 25) 
55 . 00068 .0006 1 . 032 1. 03 (data of fig. 14) 

The estimated values agree quite closely with the measured results for 
both 450 and 550 area -suction flaps . 

The duct pressure ratios ar e referenced to the wind-tunnel test speed 
which was quite low as compared with the approach speed range of the 
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airplane . If the measured values at 550 flap deflection were applied 
to an airplane with a wing loading of 64 .1 pounds per square foot (50,000 
pounds weight), and a pumping system designed to provide C~rit (0.0006) 
at a conservative approach speed of 120 knots (1.3Vstall), the required 
pressure ratio would be 1 .115 . As speed is r educed in the approach, the 
available CQ WOuld, of , c ow~se, increase whereas C~rit stays essenti­
ally constant . At Vstall the system would provide a CQ of about 
0 .00078 . 

CONCLUDING REMARKS 

A low- speed wind- tunnel investi8ation was conducted on a high- wing 
airplane of aspect ratio 6 . 75 and 36 sweepback fitted both with slotted 
flaps and with ar ea- suction plain flaps . An alternate wing plan form 
with an extended root chord and lesser sweepback of the inboard portion 
of the flaps was also tested with area- suction plain flaps. 

Flap lift increments a t low angles of attack were approximately 
equal to those predicted by theory . 

Flap lift increments at high angles of attack were reduced by stall 
at the wing leading edge . High- lift devices ext ending from the fuselage 
to the nacelle pylons (at 0 . 39 semispan) were effective in maintaining 
flap lift increments at high angles of attack and in increasing maximum 
lift . Longitudinal stability depended on the lift effectiveness of devices 
outboard of the pylons . The addition of a simulated inboard nose flap 
and an increase in deflection of the outboard slat (from 170 to 240 ) 
increased maximum lift with area- suction flaps deflected 550 on the alter­
nate plan form from about 1 . 6 to about 2.2. The onset of noticeable 
airpl ane buffeting was delayed from an angle of attack of about 50 for 
the basic airplane to about 120 . 

Critical flow coefficients of about 0 . 0006 and 0 . 0004 were measured 
for area- suction flaps at 550 and 450 deflection, r espectively , with a 
porous surface having cons t ant porosity . 

No significant differences were found in the results with the two 
wing plan forms tested . 

Ames Aeronautica l Laboratory 
National Advisory Committee for Aeronautics 

Moffett Field, Calif . , Jan. 24, 1957 
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TABIE I . - GEOMETRI C DATA ON THE TEST AIRPLANE 

Wing 
Area) SQ ft (pl an form 1) ...• 
Area added by fillet on plan form 2) SQ ft . • • . 
Span) ft 
Aspect ratio . . . . . . . . . . . . . . . . 
Taper rat i o . • . . • . • . • • . 
Mean aerodynamic chor d) ft . . • • . 
Sweepback of the Quarter- chord line) deg 
Incidence) deg .• • • 
Dihedral) deg . . . . • . • . . • • . . . . . 
Twist) deg • . . • • . . . • . . • 
Root airfoil (streamwise) fuselage 

center line) ..•••.••.... 
Tip airfoil (streamwise) b /2 = 435 in . ) 
Span of one flap) ft . . • . • . • . • . 

NACA 63- 009.95 
NACA 63 - 008 . 25 

Inboard end of flap , feet f r om fuselage center line . 
Flap chord) percent of wing chord (slotted flap) 
Span of one slat) ft •..•..•• • ••. ••• 
Inboard end of slat) feet from fuselage center line • 
Slat chord at inboard end ) percent wing chord . 
Slat chord at win8 tip) percent wing chord 
Slat deflection) deg 

Horizontal Tail 
Area ) sQ ft 
Span) ft 
Aspect ratio 
Taper ratio . 
Mean aerodynami c chord 
Sweepback of the Quarter- chord line) deg 

V 1 
tail length tail area o ume) . _ x 

wlng c wing area 

Dihedral) deg ....... . 
Height of tail above wing plane) ft 
Elevator hinge location) percent tail chord 

Fuselage 
Length) ft •. . . . . . . . • • .• .• •.•. • . 
Frontal area (excluding canopy) ) sQ ft 
Maximum width) ft . . • • . • . . . • • 
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780 . 0 
29 . 7 

72.50 
6 . 75 
0.34 

11 . 68 
35 . 9 

4 
o 
o 

(mod . ) 
(mod . ) 
16 . 84 

4 . 00 
25 

21.42 
14.14 

16 .9 
24 . 3 

17 

166 . 6 
25 .83 

4 . 0 
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TABIE II. - COORDINATES OF THE IEADING- EDGE GLOVES J 

NORMAL TO THE WI NG lEADING EDGE 
[Dimensions given in inches] 

Gl ove 1 
Leading-edge station 71. 00 Leadi ng-edge station 539.00 

Xn zupper Zlower Xn zupper zlower 
-4.30 -3. 06 -3.06 -4.30 - 2. 23 - 2. 23 
-4.11 - 2. 25 - 3.82 -4. 21 -1. 94 - 2.50 
-3.92 -l. 88 -4.l0 -4.l3 -l. 79 - 2.58 
- 3.54 -1. 39 -4.45 -3. 95 -1. 57 -2.68 
-3.16 -1. 00 -4.69 - 3.78 -1.41 - 2.75 
- 2.79 -. 65 -4.87 -3.61 -1. 26 - 2.79 
- 2.40 -. 33 -5. 03 - 3.43 -1.13 - 2.82 
-. 51 1. 02 -5. 54 - 2. 56 - . 55 - 2.91 
3·31 3·02 -6 .11 -. 83 .30 - 2.93 
7.15 4.36 -6 .50 · 93 · 93 - 2.86 

11 . 03 5.43 -6.83 2.70 1. 42 - 2.81 
14 .93 6.13 - 7.14 4.48 1.81 - 2.75 
18 .85 6.79 -7.43 6 .27 2.12 - 2.70 
22 .81 7·37 -7.71 8 .07 2·37 - 2.69 
26 .79 7.85 -8. 00 9.89 2.57 -·2.71 
30 .81 8. 25 -8. 28 11 .72 2.73 - 2.77 

Glove 2 

-4.77 -3.96 - 3.96 -4.77 - 3·00 -3.00 
-4.69 -3.34 -4.50 -4.69 - 2.60 -3.73 
-4.61 -3.07 -4.72 -4.61 - 2.42 - 3.50 
-4.50 -2.78 -4.96 -4.49 -2.21 -3.62 
-4.30 -2.40 -5.24 -4.30 -1. 94 -3.75 
-4 .11 - 2.10 -5.44 -4. 21 -1.84 -3.79 
-3.92 -1. 83 -5.61 -4.13 -1.74 -3.82 
-3.54 -1.39 - 5.86 -3·95 -1 .56 -3.88 
-3.16 -1 .00 -6.06 - 3.78 -1. 41 -3.92 
- 2.79 -. 65 -6. 21 -3.61 -1. 26 -3. 95 
- 2.40 -. 33 -6.35 -3.43 -1. 13 -3. 97 
-· 51 1.02 -6.78 - 2.56 -. 55 -3.99 
3·31 3.02 -7.10 -.83 .30 -3.81 
7.15 4.36 -7. 21 ·93 . 93 -3.60 

11 .03 5.34 -7.28 2.70 1. 42 - 3.31 
14 .93 6.13 -7.38 4.48 1.81 -3· 05 
18 .85 6.79 -7.54 6. 27 2.12 -2.85 
22 .81 7.37 -7.76 8. 07 2.37 - 2.72 
26 .79 7.85 -8.00 9.89 2·57 - 2.68 
30.81 8. 25 -8. 27 11.72 2.73 - 2. 73 

CONFIDENTIAL 

15 



16 CONFI DENTI AL NACA RM A57A24 

TABIE II. - COORDI NATES OF THE IEADING-EDGE GLOVES J 

NORMAL TO THE WI NG IEADI NG EDGE - Concluded 

Glove 4i 

Leading- edge station 100 . 00 

xn zupper Zlower 

- 3 . 76 - 3 . 90 
- 3 .5 - 2. 53 -4. 28 
- 3 . 0 -1. 82 - 4 .55 
- 2. 0 -. 78 -4 .69 
-1. 0 . 03 - 4 .62 

0 . 65 - 4 . 49 
2. 0 1. 61 - 4 .13 
4 . 0 - 3 . 78 
6 . 0 - 3 ·55 
8 . 0 - 3 .54 

10 . 0 - 3 .60 
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Dimensions are 
given in inches 

_ I 
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~ == 140.1 

870 

Figure 1. - Three-view sketch of the test airplane. 
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Figure 2.- View of the airplane mounted on the struts in the wind tunnel ; front view, f l a ps 
undeflected . 
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Figure 3 ·- View from behind and above the left wing showing the fillet area of plan form 2 . 
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Section at slat tip 

tion 

Section at wing fold line 

Section at slat inboard end 

Figure 6 .- Contours of the slat modification at various stations . 

CONFIDENTIAL 

--~ 



NACA RM A57A24 CONFIDENTIAL 

r--.05c, constant 

(a) Wing fence. 

o l·o5c 

Jj 6l --

630 '. '" 
I ~....-

4 ....-
inches //;' 

Pylon 
Nacelle 

(b) Modified pylon leading edge. 

z 

(c) Wing leading-edge gloves . 
Typical section normal 
to wing leading edge. 

~ing r eference plane 

Figur e 7 .- Mi s ce l laneous tes t devi ces . 
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Figure 11.- Effect of a simulated inboard nose flap, glove 4i , on the aerodynamic characteristics 
of the complete airplane with plan form 2, slats open, and area- suction flaps deflected 550 ; 
R = 8 . 2xlOS . 
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Figure 12.- Effects of slat modifications on the aerodynamic characteristics of the complete 
plane with plan form 2, slats open, glove 4i, and area- suction flapsj R = 8 . 2xl06 • 
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Figure 15 .- Reynolds number effects on the aerodynamic characteristics of the complete airplane 
with plan form 1 and slotted flaps . 
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Figure 16.- Effect of slats on the aerodynamic characteristics of the airplane with plan form 1 
and area- suction flaps deflected 550

; horizontal tail off; R = 8 . 2xl 06 . 
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Figure 20 .- Effects of inboard wing leading- edge devices on the aerodynamic characteristics of 
the complet e airplane wit h plan form 1, slats open, and area- suction flaps deflected 55°; 
R = 8 . 2xl 06 . 
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Figure 21.- Effects of slat modifications on t he aerodynamic char a cteristics of the complete air­
plane with plan form 1, glove 4i , and area- suction flaps deflected 550

; R = 8 . 2xl06. 
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Fi gure 22 .- Effects of inboard wing l eading-edge devi ces on the aerodynamic char acteristics of 
the complete airplane with plan form I, slats open , and area - suction flaps deflected 450; 
R = 8 . 2xl06
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Figure 23 . - Effect of slat modifications on the aerodynamic char acteristics of the complete air­
plane with plan form 1, glove 4i, and area- suction flaps defl ected 450

; R = 8 . 2xl 06 . 
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Figure 24 .- Aerodynamic characteristi cs of the complete airplane with plan form 1, glove 2, slats 
closed, and area-suction flaps; R = 8 . 2xl06
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