E EL

<u>.</u>

512-31

Integrated Technology Plan for the **Civil Space Program**

N 9 3-77 885 FOCUSED TECHNOLOGY: NUCLEAR PROPULSION

Nuclear Thermal Propulsion

Nuclear Electric Propulsion

JUNE 27th, 1991 Washington, D.C.

OVERVIE

Thomas J. Miller Head, Nuclear Propulsion Office NASA Lewis Research Center

IMPACT:

- Nuclear Propulsion Enables and/or Enhances Space Exploration Missions

Enables: Enhances:

Nuclear Electric Propulsion (NEP) Robotic Science Missions Lunar & Mars Cargo, & Mars Piloted Space Exploration

Nuclear Thermal Propulsion (NTP) Mars Piloted Lunar & Mars Cargo, Lunar Piloted & Robotic Science Space Exploration

USER COORDINATION:

- Exploration Studies Identify Nuclear Propulsion as a Key Technology
- OAET/RZ Provide Performance Predictions for NASA Studies
- OSSA Study on NEP for Robotic Science Missions
- DOE, DoD & NASA Included on Steering Committee (also Astronaut Office)

TECHNICAL REVIEWS:

- Interagency Design Review Teams will Periodically Review Technical Progress

OVERALL TECHNICAL AND PROGRAMMATIC STATUS:

- High Priority Technology Areas Identified (some efforts initiated)
- Budget Deliberations Continue
- Single Multi Agency Plan Defined for FY92 Implementation

MAJOR TECHNICAL/PROGRAMMATIC ISSUES:

- Agency/Department Roles
- Funding to Initiate Technical Efforts
- Projected Budget Does Not Support Schedules

Nuclear Thermal Propulsion

tar jeđ

PERFORMANCE OBJECTIVES

PARAMETER	STATE-OF-THE ART	OBJECTIVE
THRUST (Lbi)	75K (NERVA)	75K-125K/Engine
	250K (PHOEBUS)	(New sharter multiple engines)
SPECIFIC IMPULSE (SOC)	825	≥ 925
CHAMBER PRESSURE	450	500 - 1000
EXHAUST TEMP. (*K)	2300-2500	> 2.700 - 4 - 4 - 4 - 4
POWER (MWI)	1100 (NERVA)	≥ 1,600
	4,200 (PHOEBUS)	1.0
LIFETIME (Hrs) Single Burn	1.0	4.5 -
Cumulative	15	
REUSABILITY (No. Missions)	normal a normalization of the state of the s	a seren da 🕈 👘 🖓 🖾 a Line da la composición de la compo

CHALLENGES

- High Temperature Fuel and Materials
- Hot Hydrogen Environment
- Test Facilities
- Safety
- Environmental Impact Compliance
- Concept Development

MISSION BENEFITS

- Short Transit Time Missions are Enabled
- Reduced IMLEO (~ 1/2 of Chemical)
- Crew Safety Enhanced
- Wider Launch Windows
- More Mars Opportunities
- High Thrust Available
- Aerobrake Not Required

Nuclear Electric Propulsion

PE	REORMANCE O	BJECTIVES			
PARAMETER STATE-OF-THE ART OBJECTIVE					
POWER	SP-100				
POWER LEVEL (MWe)	0.1		≥10.	0.	
SPECIFIC MASS (Kg/KWe)	30		s 10)	
PROPULSION	ION	MPD	ION	MPD	
SPECIFIC IMPULSE (sec)	2000-9000	1000-5000	2000-9000	1000-7000	
EFFICIENCY	0.7-0.8	0.3 .	0.7-0.8	>0.5	
POWER LEVEL (MWe)	0.01-0.03	0.01-0.5	1 - 2	1 - 5	
LIFETIME (Hrs)	10,000	7	10,000	≥ 2000	
PMAD					
EFFICIENCY	0.90	1	0.95	i	

4 400

CHALLENGES

- Long Operational Lifetime
- High Temperature Reactors, Turbines, Radiators
- High Fuel Burn-up Reactor Fuels, Designs

SPECIFIC MASS (Kg/KWe)

REJECTION TEMP. (*K)

- Efficient, High Temperature Power Conditioning
- High Efficiency, Long Life Thrusters
- · Safety
- Environmental Impact Compliance
- Concept Development

MISSION BENEFITS

- Low Resupply Mass
- Availability of Onboard Power
- Reduced IMLEO Sensitivity w/Mission Opportunity
- Broad Launch Windows
- · Commonality with Surface Nuclear Power

≤ 2.5

600

Aerobrake Not Required

TRANSPORTATION TECHNOLOGY **SPACE TRANSPORTATION**

Nuclear	Thermal	l Pro	pulsion

SCHEDULE

OBJECTIVES	SCHEDULE		
Programmatic Develop propulsion technologies capable of fulfilling requirements, such as performance, long life, and multiple starts, for future piloted and cargo missions to Mars and the Moon, and robotic precursor missions.	 1992 Lab-Scale Demonstration of 2700K reactor fuel 1994 Complete conceptual designs of selected concepts for piloted Mars mission 1996 Nuclear Furnace Facility Complete 1998 Select NTR Concept(s) for Systems Testing 		
TechnicalFuel Temperature2700- 3100K (1995)Fuel Lifetime4.5 hrs (cyclic)Man-RatedAutonomous Robotic OperationGround TestingFull System (TRL-6) by 2006	 1999 Systems Facility Construction Complete 2002 First NTR Reactor Test Complete 2006 Full System Ground Testing Complete Verifying Technology Readiness Level 6 (TRL-6) for NTR 		
RESOURCES.	PARTICIPANTS		

NASA	DOE*
1991 \$00.4M	
1992 \$05.0M	\$014.0M
1993 \$13.0M	\$055.0M
1994 \$22.0M	\$095.0M
1995 \$39.0M	\$145.0M

\$190.0M

\$210.0M

* DOE current estimate for both NTP & NEP

** NASA dollars do not include CoF

1996 \$50.3M

1997 \$83.0M

Lewis Research Center Lead Center

Marshall Space Flight Center **Participating Center**

Johnson Space Center Supporting Center

DOE Laboratories INEL, LANL, SNL, ORNL, ANL, BNL...

June 17, 199 10P01-01

<u> ::::</u>:

TRANSPORTATION TECHNOLOGY SPACE TRANSPORTATION

TRANSPORTATION TECHNOLOGY SPACE TRANSPORTATION

OBJECTIVES Programmatic Develop propulsion technologies capable of fulfilling requirements, such as performance, long life, and multiple starts, for future piloted and cargo missions to Mars and the Moon, and robotic precursor missions. Technical Power > 10MWe Specific Mass Power > 10MWe Specific Mass 200 Verify 1000 hours of life for 500 kW electric propulsion technical Power > 10MWe Specific Mass 3-10 years 2000 Verify 1000 hours of life for 500 kW electric propulsion system 205 Complete ground tests to verify megawatt class power/propulsion system 206 Verify TRL-6 through flight test of 500 kW subscale NEF vehicle RESOURCES PARTICIPANTS 1991 - 1992 \$02.0M \$014.0M \$055.0M 1993 \$06.0M \$055.0M \$145.0M 1995 \$23.0M \$145.0M Johnson Space Center 1997 \$45.0M 1997 \$45.0M		Nuclear Elec	tric Propulsion
RESOURCESPARTICIPANTSNASA**DOE*Lewis Research CenterDOE Laboratories1991-Lead CenterINEL, LANL, SNL1992\$02.0M\$014.0MLead CenterINEL, LANL, SNL1993\$06.0M\$055.0MJet Propulsion LaboratoryBNL1994\$15.9M\$095.0MParticipating CenterBNL1995\$23.0M\$145.0MJohnson Space Center1996\$26.0M\$190.0MSupporting Center1997\$45.0M\$210.0MSupporting Center	OBJECTIVES Programmatic Develop propulsion te requirements, such as multiple starts, for futu Mars and the Moon, a Technical Power Specific Mass Lifetime	chnologies capable of fulfilling s performance, long life, and ire piloted and cargo missions to nd robotic precursor missions. > 10MWe < 10kg/kwe by 2006 < 5 kg/kwe by TBD 3-10 years	SCHEDULE 1993 Complete 500 kW electric propulsion testing facility and designs for high power (MW class) electric thrusters 1994 Complete candidate systems study for reactor power source, power conversion, power processing, thruster and control concepts 1997 Complete breadboard demo of megawatt class electric thruster technology 2000 Verify 1000 hours of life for 500 kW electric propulsion system 2005 Complete ground tests to verify megawatt class power/propulsion system 2006 Verify TRL-6 through flight test of 500 kW subscale NE vehicle
*DOE current actimate for both NTP & NEP	RESOURCES NASA** 1991 - 1992 \$02.0M 1993 \$06.0M 1994 \$15.9M 1995 \$23.0M 1996 \$26.0M 1997 \$45.0M	DOE* \$014.0M \$055.0M \$095.0M \$145.0M \$190.0M \$210.0M	PARTICIPANTS Lewis Research Center Lead Center Lead Center Jet Propulsion Laboratory Participating Center Johnson Space Center Supporting Center

PR12-4

SPACE TRANSPORTATION

NUCLEAR THERMAL ROCKET (NTR) PROPULSION

Dr. Stanley K. Borowski NASA Lewis Research Center

NTR TECHNOLOGY HAS A WIDE RANGE OF M	IISSION APPLICATIONS: PROBES, OTVs, CARGO AND	
PILOTED VEHICLES	SATISEY ENTIRE SPECTRUM OF SEI MISSIONS -	
ADVANCED DESIGNS DESIRABLE BUT NOT R	EQUIRED FOR CURRENT MISSIONS OF INTEREST	
LUNAR TRANSFER VEHICLES	MARS TRANSFER VEHICLES	
• CARGO	CARGO	
- SEP (MULTI - 100kW ₀ - MW ₀ CLASS) - NEP (MW ₀ CLASS, α≥ 15 kg/kW ₀) - SC/NTR (≤ 75 kibi "NERVA" CLASS) - "DUAL MODE" SC/NTR (≤ 75 kibi & MULTI - 10 kW ₀ CLASS)	 SEP/NEP (≥ 5 MW_θ, α ≤ 15 kg/kW_θ) SC/NTR (≥ 75 klbf) "DUAL MODE" SC/NTR (~ 75 klbf & 10's kW_θ-MW_θ) PILOTED 	
PILOTED		
- SC/NTR (≤ 75 klbf) - "DUAL MODE" SC/NTR (≤ 75 klbf & MULTI - 10 kW ₀ CLASS)	- NEP/SEP (2 10 MW ₀ , d S 10 kg/kW ₀) - SC/NTR (≥ 75 klbf) - "DUAL MODE" SC/NTR (~ 75 klbf - 250 klbf & ~ 10's kW ₀ -MW ₀ FOR EP) - COMBINED HIGH & LOW THRUST	
COMMONAL	CONCEPTS	
MODULARITY	● "QUICK PILOTED TRIPS" (≤ 1 YEAR)	
DEST	- SC/NTR (SPLIT/SPRINT MISSIONS) - "DUAL MODE" SC/NTR + MMW ₀ EP	-
	- GC/NTR	
	- "SUPER" NEP (10's MWe, $\alpha \leq 5 \text{ kg/kWe}$)	
	- "SUPER" NEP (10's MW _{θ} , $\alpha \le 5$ kg/kW _{θ})	
	- "SUPER" NEP (10's MW _θ , α ≤ 5 kg/kW _θ) A LEAR PROPULSION PROJECT	
	- "SUPER" NEP (10'S MW _θ , α ≤ 5 kg/kW _θ) A LEAR PROPULSION PROJECT	
	- "SUPER" NEP (10'S MW ₀ , α ≤ 5 kg/kW ₀) A JLEAR PROPULSION PROJECT	· · · · · · · · · · · · · · · · · · ·
BATIONALE FOR NASA DEVE	- "SUPER" NEP (10'S MW ₀ , α ≤ 5 kg/kW ₀) A LEAR PROPULSION PROJECT	·. ·.
BATIONALE FOR NASA DEVE	- "SUPER" NEP (10'S MW ₀ , $\alpha \le 5$ kg/kW ₀) A LEAR PROPULSION PROJECT	· · · · ·
NASA RATIONALE FOR NASA DEVE THE ROVER/NERVA PROGRAMS ESTABLIS	- "SUPER" NEP (10'S MW ₀ , α ≤ 5 kg/kW ₀) A LEAR PROPULSION PROJECT LEWIS RESEARCH CENTER ELOPMENT OF NTR PROPULSION HED A SIGNIFICANT DATA BASE ON SC/NTRS	
• THE ROVER/NERVA PROGRAMS ESTABLIS - 1.4 B\$ INVESTMENT IN 1960-1970 TIME FRAM	- "SUPER" NEP (10'S MW _θ , α ≤ 5 kg/kW _θ) A LEAR PROPULSION PROJECT LEWIS RESEARCH CENTER LOPMENT OF NTR PROPULSION HED A SIGNIFICANT DATA BASE ON SC/NTRS IE EQUIVALENT TO >9.5 B\$ TODAY	•
NASA RATIONALE FOR NASA DEVE THE ROVER/NERVA PROGRAMS ESTABLIS -1.4 B\$ INVESTMENT IN 1960-1970 TIME FRAM THE SC/NTR CONCEPT HAS BEEN SUCCES POWER AND THRUST LEVELS, AND HYDRO SPECIFIC IMPULSES SUFFICIENT TO PERFO MODE I.e., WITH PROPULSIVE RETURN OF I	- "SUPER" NEP (10'S MW _θ , α ≤ 5 kg/kW _θ) A LEAR PROPULSION PROJECT LEWIS RESEARCH CENTER LOPMENT OF NTR PROPULSION HED A SIGNIFICANT DATA BASE ON SC/NTRS IE EQUIVALENT TO >9.5 B\$ TODAY SFULLY GROUND TESTED (TO TRL 6) AT THE DGEN EXHAUST TEMPERATURES/EQUIVALENT DRM A 434 DAY 2016 MARS MISSION IN "REUSE" ENTIRE VEHICLE TO LEO	•
• THE ROVER/NERVA PROGRAMS ESTABLIS • THE ROVER/NERVA PROGRAMS ESTABLIS • 1.4 B\$ INVESTMENT IN 1960-1970 TIME FRAM • THE SC/NTR CONCEPT HAS BEEN SUCCES POWER AND THRUST LEVELS, AND HYDRO SPECIFIC IMPULSES SUFFICIENT TO PERFO MODE I.e., WITH PROPULSIVE RETURN OF I • A STATE-OF-THE-ART GRAPHITE CORE NTR IMLEO ~ 725 1, 102 1 LIGHTER THAN REFEREN	- "SUPER" NEP (10'S MW ₀ , α ≤ 5 kg/kW ₀) A. ALEAR PROPULSION PROJECT LEWIS RESEARCH CENTER LEWIS RESEARCH CENTER LOPMENT OF NTR PROPULSION HED A SIGNIFICANT DATA BASE ON SC/NTRS IE EQUIVALENT TO >9.5 B\$ TODAY SFULLY GROUND TESTED (TO TRL 6) AT THE DGEN EXHAUST TEMPERATURES/EQUIVALENT DRM A 434 DAY 2016 MARS MISSION IN "REUSE" ENTIRE VEHICLE TO LEO (AT 1000 psi, ε = 500:1) OPERATING AT 2360 K/850 s HAS ICE CHEM/AB VEHICLE WITH ECCV RETURN TO EARTH	
SPACE SUBJECT OF THE ART OF THE ART OF THE SUBJECT OF SUBJ	- "SUPER" NEP (10'S MW ₀ , $\alpha \le 5$ kg/kW ₀) A. ALEAR PROPULSION PROJECT LEWIS RESEARCH CENTER ELOPMENT OF NTR PROPULSION HED A SIGNIFICANT DATA BASE ON SC/NTRS HE EQUIVALENT TO >9.5 B\$ TODAY SFULLY GROUND TESTED (TO TRL 6) AT THE DGEN EXHAUST TEMPERATURES/EQUIVALENT DRM A 434 DAY 2016 MARS MISSION IN "REUSE" ENTIRE VEHICLE TO LEO (AT 1000 psi, $\varepsilon = 500$:1) OPERATING AT 2360 K/850 s HAS ICE CHEMAB VEHICLE WITH ECCV RETURN TO EARTH IT TIMES ACROSS THE 15 YEAR CYCLE. BY TYPE, PARTICULAR OPPORTUNITY, MISSION	
SUPERATE OF THE ART GRAPHITE CORE NTR MODE I.e., WITH PROPULSIVE RETURN OF I MAGNITUDE WILL DEPEND ON TRAJECTOR MODE, AND IN-PLACE INFRASTRUCTURE WITH MODEST TECHNOLOGY ADVANCES BE DELIVERING 925 s), A 1 YEAR ROUND-TRIP M WITH ACCEPTABLE TOTAL IMLEO (<1000 1) FO	 "SUPER" NEP (10'S MW_θ, α ≤ 5 kg/kW_θ) A LEAR PROPULSION PROJECT LEWIS RESEARCH CENTER LEWIS RESEARCH CENTER LOPMENT OF NTR PROPULSION HED A SIGNIFICANT DATA BASE ON SC/NTRS HED A SIGNIFICANT DATA BASE ON SC/NTRS HE EQUIVALENT TO >9.5 B\$ TODAY SFULLY GROUND TESTED (TO TRL 6) AT THE DGEN EXHAUST TEMPERATURES/EQUIVALENT DRM A 434 DAY 2016 MARS MISSION IN "REUSE" INTIRE VEHICLE TO LEO (AT 1000 psi, ε = 500:1) OPERATING AT 2360 K/850 s HAS ICE CHEM/AB VEHICLE WITH ECCV RETURN TO EARTH IT TIMES ACROSS THE 15 YEAR CYCLE. RY TYPE, PARTICULAR OPPORTUNITY, MISSION YOND 72 VINTAGE NERVA (COMPOSITE FUEL ARS MISSION (2016) IS POSSIBLE, IN SPLIT/SPRINT MODE, DR BOTH PILOTED AND CARGO VEHICLES 	
SUME AND IN-PLACE INFRASTRUCTURE WITH MODEST TECHNOLOGY OFFERS POTENTIAL FO	- "SUPER" NEP (10'S MW _θ , α ≤ 5 kg/kW _θ) A LEAR PROPULSION PROJECT LEWIS RESEARCH CENTER LEWIS RESEARCH CENTER LEWIS RESEARCH CENTER ELOPMENT OF NTR PROPULSION HED A SIGNIFICANT DATA BASE ON SC/NTRS IE EQUIVALENT TO >9.5 B\$ TODAY SFULLY GROUND TESTED (TO TRL 6) AT THE DE EQUIVALENT TO >9.5 B\$ TODAY SFULLY GROUND TESTED (TO TRL 6) AT THE DE EQUIVALENT TO >9.5 B\$ TODAY SFULLY GROUND TESTED (TO TRL 6) AT THE DE EQUIVALENT TO PROPERATURES/EQUIVALENT DRM A 434 DAY 2016 MARS MISSION IN "REUSE" ENTIRE VEHICLE TO LEO (AT 1000 psi, ε = 500:1) OPERATING AT 2360 K/850 s HAS ICE CHEMAB VEHICLE WITH ECCV RETURN TO EARTH IT TIMES ACROSS THE 15 YEAR CYCLE. BY TYPE, PARTICULAR OPPORTUNITY, MISSION YOND 72 VINTAGE NERVA (COMPOSITE FUEL ARS MISSION (2016) IS POSSIBLE, IN SPLIT/SPRINT MODE. DR BOTH PILOTED AND CARGO VEHICLES R SIGNIFICANT EVOLUTIONARY GROWTH	
 NASS BATIONALE FOR NASA DEVE THE ROVER/NERVA PROGRAMS ESTABLISH - 1.4 B\$ INVESTMENT IN 1960-1970 TIME FRAM THE SC/NTR CONCEPT HAS BEEN SUCCESS POWER AND THRUST LEVELS, AND HYDRO SPECIFIC IMPULSES SUFFICIENT TO PERFORMODE I.e., WITH PROPULSIVE RETURN OF INDER I.e., WITH PROPULSIVE RETURN OF INTERNATION OF INTERNATION PROVIDE REDUCTIONS IN TRANSS MAGNITUDE WILL DEPEND ON TRAJECTOR MODE, AND IN-PLACE INFRASTRUCTURE - WITH MODEST TECHNOLOGY ADVANCES BE DELIVERING 925 s), A 1 YEAR ROUND-TRIP M WITH ACCEPTABLE TOTAL IMLEO (<1000 t) FOR - SOLID CORE: GRAPHITE (2500 K)> COMPORE 	- "SUPER" NEP (10's MW _θ , α ≤ 5 kg/kW _θ) A ALEAR PROPULSION PROJECT LEWIS RESEARCH CENTER ELOPMENT OF NTR PROPULSION HED A SIGNIFICANT DATA BASE ON SC/NTRS IE EQUIVALENT TO >9.5 B\$ TODAY SFULLY GROUND TESTED (TO TRL 6) AT THE OGEN EXHAUST TEMPERATURES/EQUIVALENT DRM A 434 DAY 2016 MARS MISSION IN "REUSE" ENTIRE VEHICLE TO LEO (AT 1000 psi, ε = 500:1) OPERATING AT 2360 K/850 s HAS ICE CHEMAB VEHICLE WITH ECCV RETURN TO EARTH IT TIMES ACROSS THE 15 YEAR CYCLE. IN TYPE, PARTICULAR OPPORTUNITY, MISSION YOND 72 VINTAGE NERVA (COMPOSITE FUEL ARS MISSION (2016) IS POSSIBLE, IN SPLIT/SPRINT MODE. DR BOTH PILOTED AND CARGO VEHICLES IF SIGNIFICANT EVOLUTIONARY GROWTH SITE (2700 K) — CARBIDES (>3000 K)	

÷

ſ

Nuclear Thermal A ropulsion Vehicle Opposition/Swingby Mission Mass Statement

(SOURCE: MSFC)

NERVA: I_{SP} = 925 8 T/W_{eng} = 4.0

ADV. NTR: Isp = 1050 s T/Weng = 20.0

Crew of 4, 30-day stay; Inbound Venus swingby; Elliptic parking orbit at Mars, 250 km x 24 hrs; Apsidal rotation penalty optimized; 25 t. surface cargo; 925 Isp; Reusable return

Element	NERVA *	Advanced NTR
MEV desc aerobrake	7000	7000
MEV ascent stage	22464	22464
MEV descent stage	18659	18659
MEV surface cargo	25000	<u>25000</u>
MEV total	73118	73118
MTV crew hab module 'dry'	28531	28531
MTV consumables & resupply	5408	5408
MTV science	1000	1000
MTV crew habitat system tot	34939	34939
MTV frame, struts & RCS inert wt	4808	4808
Reactor/engine weight	9684	1701
Radiation shadow shield weight	4500	4500
EOC propellant (dV= 1799 m/s)	17598	13075
TEI propellant (dV= 4230 m/s)	61951	44301
EOC/TEl common tank wt (1)	13358	10501
MOC propellant (dV= 2830 m/s)	101810	75163
MOC tanks (2)	19128	15696
TMI propellant (dV=4105 m/s)	237850	165190
TMI tanks (2)	36636	27503
ECCV	7000	7000
Cargo to Mars orbit only	0	0
IMLEO	622380	477495

2016 opposition with Venus swingby 434 day mission time

*PARAMETERS ARE ACTUALLY FOR COMPOSITE FUEL NERVA DERIVATIVE ENGINE SYSTEM

PR12-12

<u> </u>	
ROVE	R/NERVA PROGRAM SUMMARY
 20 REACTORS DESIGNED, BUILT, AI APPROXIMATELY \$1.4 BILLION. (FII 	ND TESTED BETWEEN 1955 AND 1973 AT A COST OF RST REACTOR TEST: KIWI-A, JULY 1959)
DEMONSTRATED PERFORMANCE	
POWER (MWI) THRUST (kibf)	~1100 (NRX SERIES) - 4100 (PHOEBUS -2A) ~55 (NRX SERIES) - 210 (PHOEBUS -2A)
FUEL TEMPS. (K)	~2750/2550 (PEWEE)
BURN ENDURANCE	-050 (FEWEE) 1-2 HOURS 52 HUNITES AT 1125 MWI (SINGLE BURN)
- NHX-AD - NUCLEAR FURNACE START/STOP	109 MINUTES ACCUMULATED (4 TESTS) AT 44 MWt 28 AUTO START-UPS/SHUTDOWNS WITH XE
BROAD AND DEEP DATABASE ACH DESIGN (1972)	IEVED/USED IN PRELIMINARY NERVA "FLIGHT ENGINE"
ANTICIPATED PERFORMANCE	
BURN ENDURANCE SPECIFIC IMPULSE	210 HOURS (DEMONSTRATED IN ELECTRIC FORMACE TESTS AT WESTINGHOUSE) UP TO 9255 (COMPOSITE)/UP TO 10205 (CARBIDE ELIELS)
	SI TE EXPLORATION INITIATIVE OFFIC
	SI JE EXAFORATION INILITATIAE OLLEC.
	St JE EXPLORATION INITIATIVE OFFIC
	SI JE EXAFORATION INILITATIAE OLAR.
	SI JE EXAFOLITATION INILITATIAE OLLEC.
	SI JE EXDROUATION INITIATIAE OLLIC.
	St. JE EXDEONATION INITIATIAE OLLIC.
	St. JE EXPLORATION INITIATIAE OLLIC.
	St JE EXPLORATION INITIATIAE OLLIC.
	St JE EXPLORATION INITIATIAE OLLIC.
	St JE ENDLORATION INITIATIAE OLLIC.
	St NE EKPLORATION MITTATURE OFFIC
	ST IE EXPLORATION INITIATIVE OFFIC
	St JE EKPLORATION INITIATIVE OFFIC.

-

1

÷

Ļ

1

تبريد

-

PR12-13

REL	CLAS	S SC/NTR	SYSTEMS	CS_FOR_/S	
PARAMETERS	72 NERVA	NERV	A DERIVAT	IVES	PBR*
ENGINE CYCLE	HOT BLEED/ TOPPING	ТОР	PING (EXPAN	DER)	HOT BLEED
FUEL FORM	GRAPHITE	GRAPHITE	COMPOSITE	CARBIDE	UC ₂ /ZrC KERNEL
EXHAUST TEMP. (K)	2,350-2,500	2,500	2,700	3,100	3,200
CHAMBER PRESS. psia)	450	1,000	1,000	1,000	1,000
NOZZLE EXP. RATIO	100:1	500:1	500:1	500:1	100:1
SPECIFIC IMPULSE (s)	825-850/ 845-870	885	925	1,020	971
ENGINE WEIGHT ⁺⁺ (kg)	11,250	8,000	8,816	9,313	1702
NGINE THRUST/	3.0	4.3	3.9	3.7	20
ECHNOLOGY	6*	5*	4-5*	3-4*	2*
	TO FLIGHT CONCE	PT), TRL = NERVA/NDR	2 (CONCEPT I SYSTEMS - 3 EXPLORA DERFOR	FORMULATIC 5-6 AT 250 I TION INIT MANCE (N) (IDI LEVEL MATIVE OFFICF <u>COMPARISON</u>
THRUST-TO-WI	TO FLIGHT CONCE EIGHT RATIOS FOR NGINE COMPO NERVA vs. "ST MPS: AN EXTENSION EDUCTIONS IN WITE ADDUCTORS IN WITE ADDUCTORS IN WITE	PT), TRL = NERVA/NDR SPA SE ONENTS - TATE-OF- VE DATABA EIGHT, INCF	2 (CONCEPT I SYSTEMS - 1 EXPLORA DERFOR THE-ART SE DEVELO REASES IN R	FORMULATIC 5-6 AT 250 I TION INT MANCE (COMPO PED SINCE ELIABILITY	NN) KIDI LEVEL TIATIVE OFFICF <u>COMPARISON</u> <u>SITE NTR-</u> NERVA SHOULD AND REDUCED
THRUET-TO-WI THRUST-TO-WI THRUST-TO-WI TOPOLEAR E SSME vs. '72 PROGEN TURBOPUL OW SIGNIFICANT R 'ELOPMENT TIME F - SSME: 72	TO FLIGHT CONCE EIGHT RATIOS FOR NGINE COMPO NERVA vs. "ST MPS: AN EXTENSI EDUCTIONS IN WI OR NTR APPLICAT 2.6 KG/S @ 7040 PS	PT), TRL = : NERVA/NDR >>	2 (CONCEPT I SYSTEMS - 1 EXPLORA PERFOR THE-ART SE DEVELOI REASES IN R	FORMULATIC 5-6 AT 250 I TIOM INIT MANCE (COMPO PED SINCE ELIABILITY	NN) (Ibf LEVEL TIATUVE OFFICF COMPARISON SITE NTR- NERVA SHOULD AND REDUCED
THE E C (PRELUDE OTE: THRUST-TO-WI IU/ CAR E DN-NUCLEAR E -SSME vs. '72 PROGEN TURBOPUL OW SIGNIFICANT R 'ELOPMENT TIME F - SSME: 72 - NERVA: ~	TO FLIGHT CONCE EIGHT RATIOS FOR NGINE COMPO NERVA vs. "ST MPS: AN EXTENSIN EDUCTIONS IN WI OR NTR APPLICAT 2.6 KG/S @ 7040 PS 40 KG/S @ 1360 PS	PT), TRL = NERVA/NDR Image: Strategy and Strategy	2 (CONCEPT I SYSTEMS - 1 EXPLORA PERFOR THE-ART SE DEVELO REASES IN R OTAL MASS	FORMULATIC 5-6 AT 250 I TION INIT MANCE (COMPO PED SINCE ELIABILITY	NN) (Ibf LEVEL TIATIVE OFFICF <u>COMPARISON</u> <u>SITE NTR-</u> NERVA SHOULD AND REDUCED
INC = 0 (PRELODE OTE: THRUST-TO-WI ON-NUCLEAR E -SSME vs. '72 DROGEN TURBOPUL OW SIGNIFICANT F /ELOPMENT TIME F - SSME: 72 - NERVA: ~ . - "SOTA" NTR: ~ .	TO FLIGHT CONCE EIGHT RATIOS FOR NGINE COMPO NERVA vs. "ST MPS: AN EXTENSIN EDUCTIONS IN WI OR NTR APPLICAT 2.6 KG/S @ 1040 PS 40 KG/S @ 1360 PS 37 KG/S @ 1627 PS	PT), TRL = 1 NERVA/NDR SPACE DNENTS ONENTS CATE-OF- VE DATABA EIGHT, INCE FIONS SI, 350 KG TO SI, 243 KG TO SI, 304 KG TO	2 (CONCEPT I SYSTEMS - 1 EXPLORA PERFOR THE-ART SE DEVELOR EASES IN R OTAL MASS OTAL MASS	FORMULATIC 5-6 AT 250 I TION INIT MANCE (COMPO PED SINCE ELIABILITY	NN) (Ibf LEVEL TIATIVE OFFICF COMPARISON SITE NTR- NERVA SHOULD AND REDUCED
THE = 6 (PRELODE NOTE: THRUST-TO-WI ON-NUCLEAR E -SSME vs. '72 DROGEN TURBOPUL LOW SIGNIFICANT F VELOPMENT TIME F - SSME: 72 - NERVA: ~. - "SOTA" NTR: ~. ZZLE DESIGN AND C EORETICAL EFFICIE NERVA	TO FLIGHT CONCE EIGHT RATIOS FOR NGINE COMPO NERVA vs. "ST MPS: AN EXTENSIN EDUCTIONS IN WI OR NTR APPLICAT 2.6 KG/S @ 1027 PS 40 KG/S @ 1627 PS 37 KG/S @ 1627 PS COOLING: TYPICA NCY WITH PERFOI	PT), TRL = : NERVA/NDR SI, 200 KG TO SI, 350 SI, 350 SI, 350 SI, 304 KG TO SI, 304	2 (CONCEPT I SYSTEMS - 1 EXPLORA PERFOR THE-ART SE DEVELOR REASES IN R OTAL MASS OTAL MASS OTAL MASS OTAL MASS OTAL MASS	FORMULATIC 5-6 AT 250 I TION INIT MANCE (COMPO PED SINCE ELIABILITY W CAPABLI Y GREATER	NN) (Ibf LEVEL TIATITUE OFFICF COMPARISON SITE NTR- NERVA SHOULD AND REDUCED E OF ~ 98% THAN THAT USE
INC = 6 (PRELODE NOTE: THRUST-TO-WI ON-NUCLEAR E -SSME vs. '72 DROGEN TURBOPUL LOW SIGNIFICANT R VELOPMENT TIME F - SSME: 72 - NERVA: ~. - "SOTA" NTR: ~. ZZLE DESIGN AND C EORETICAL EFFICIE NERVA - SSME: T. (H	TO FLIGHT CONCE EIGHT RATIOS FOR IGHT RATIOS IN IGHT IGHT RATIOS IGHT IGHT IGHT IGHT IGHT IGHT IGHT IGHT IGHT IGHT IGHT IGHT IGHT I	PT), TRL = NERVA/NDR NERVA/NDR SPACE DNENTS DNENTS DNENTS SI, 350 KG TO SI, 304 KG TO SI, 305 SI, 405 SI SI, 305 SI SI, 305 SI SI, 305 SI SI, 305 SI SI, 305 SI SI SI, 305 SI SI SI SI SI SI SI SI SI SI SI SI SI S	2 (CONCEPT I SYSTEMS - 1 EXPLORA 	FORMULATIC 5-6 AT 250 I TIOM INIT MANCE (COMPO PED SINCE ELIABILITY W CAPABLI Y GREATER ABILITY ~ 16 ZZLE MASS	NN) (Ibf LEVEL TIATITUE OFFICF COMPARISON SITE NTR- NERVA SHOULD AND REDUCED E OF ~ 98% THAN THAT USER 4 KW/CM ² ~ 600 KG
IV/VD/V ON-NUCLEAR E ON-NUCLEAR E SSME vs. '72 DROGEN TURBOPUL LOW SIGNIFICANT R VELOPMENT TIME F - SSME: 72 - NERVA: - - "SOTA" NTR: - - SSME: T - SSME: T - SSME: T - NERVA: - - SSME: T - NERVA - - SSME: T - NERVA: - - NERVA: T	TO FLIGHT CONCE EIGHT RATIOS FOR INGINE COMPO NERVA vs. "ST MPS: AN EXTENSIN EDUCTIONS IN WI OR NTR APPLICAT 2.6 KG/S @ 1027 PS 40 KG/S @ 1627 PS 37 KG/S @ 1627 PS COOLING: TYPICA NCY WITH PERFOI NCY WITH PERFOI NCY WITH PERFOI A 3116°K, Pc ~ 311 YDROGEN REGEN COLING: TYPICA NCY WITH PERFOI A 2350-2500°K, Pc DZZLE MASS ~ 1050 25:1 TO 100:1)	PT), TRL = NERVAINDR NERVAINDR SPACE ONENTS - CATE-OF- VE DATABA EIGHT, INCF IONS SI, 350 KG TO SI, 243 KG TO SI, 243 KG TO SI, 243 KG TO SI, 304 KG TO SI, 405 KG SI, 405 KG	2 (CONCEPT I SYSTEMS - 1 EXPLORA PERFOR THE-ART SE DEVELOI BEASES IN R OTAL MASS OTAL MASS OTAL MASS OTAL MASS DESIGNS NOV GNIFICANTLY T FLUX CAPA DOLING), NO	FORMULATIC 5-6 AT 250 I TIOM INIT MANCE (COMPO PED SINCE ELIABILITY W CAPABLI Y GREATER ABILITY ~ 16 ZZLE MASS APABILITY ~	AN) ADD LEVEL TATIVE OFFICF COMPARISON SITE NTR- NERVA SHOULD AND REDUCED E OF ~ 98% THAN THAT USER A KW/CM ² ~ 600 KG ~ 4.1 KW/CM ² , NSION FROM

ÿ

PR12-14

SOURCE: INEL

PR12-15

lorage

PR12-16

ELEMENT: NUCLEAR	THERMAL PROPULSION				
IV. TECHNOLOGY PERFORMANCE OBJECT	IVES				
• INNOVATIVE CONCEPTS	• TURBOPUMPS: HIGH PRESSURES (~500-1000 ATMS) REQUIRED FOR CRITI- CALITY WILL REQUIRE TECHNOLOGY ADVANCES BEYOND SSME				
CLOSED CYCLE ~10,000K 1500- GAS CORE 3000 OPEN CYCLE 20,000K 3000-	• MATERIALS: LIGHTWEIGHT, HIGH STRENGTH PRESSURE VESSEL MATERIALS TO IMPROVE ENGINE				
GAS CORE 5000	THRUST-TO-WEIGHT PERFORMANCE				
	NOZZLES: TRANSPIRATION-COOLED NOZZLE DESIGNS TO ENABLE HIGH-ISP OPERATION				
	• LIGHTWEIGHT, HIGH TEMPERATURE RA- DIATORS TO ALLOW HIGH ISP OPERA- TION AND IMPROVE ENGINE THRUST- TO-WEIGHT				
	Juclear Propulsion Project				
	JUCLEAR PROPULSION PROJECT				
NASA <u>SYNERGY WITH OTHER</u>	JUCLEAR PROPULSION PROJECT				
NASA <u>SYNERGY WITH OTHER</u>	JUCLEAR PROPULSION PROJECT				
NASA SYNERGY WITH OTHER OTHEMICAL ROCKET SYSTEMS EX: HYDROGEN TURBOPUMPS REGENERATIVELY-COOLED I	NUCLEAR PROPULSION PROJECT				
NASA SYNERGY WITH OTHER SYNERGY WITH OTHER CHEMICAL ROCKET SYSTEMS EX: HYDROGEN TURBOPUMPS REGENERATIVELY-COOLED I LIGHTWEIGHT, HIGH STRENGTH CF EX: AL/LI, COMPOSITE MATERIAL	NUCLEAR PROPULSION PROJECT				
NASA SYNERGY WITH OTHER SYNERGY WITH OTHER • CHEMICAL ROCKET SYSTEMS EX: HYDROGEN TURBOPUMPS REGENERATIVELY-COOLED N • LIGHTWEIGHT, HIGH STRENGTH CF EX: AL/LI, COMPOSITE MATERIAL • CRYO FLUID SYSTEMS EX: LH ₂ STORAGE AND TRANSFE	NUCLEAR PROPULSION PROJECT				
 NASA SYNERGY WITH OTHER CHEMICAL ROCKET SYSTEMS EX: HYDROGEN TURBOPUMPS REGENERATIVELY-COOLED IN LIGHTWEIGHT, HIGH STRENGTH CF EX: AL/LI, COMPOSITE MATERIAL CRYO FLUID SYSTEMS EX: LH₂ STORAGE AND TRANSFE THERMAL PROTECTION EX: LIGHTWEIGHT SUPER-MLI ("S REFRIGERATION 	UUCLEAR PROPULSION PROJECT LEWIS RESEARCH CENTER TECHNOLOGY AREAS NOZZLES RYOGENIC TANKS S R SUPERFLOC") TO REDUCE/ ELIMINATE LH2 BOILOFF				
 NASA SYNERGY WITH OTHER CHEMICAL ROCKET SYSTEMS EX: HYDROGEN TURBOPUMPS REGENERATIVELY-COOLED IN LIGHTWEIGHT, HIGH STRENGTH CF EX: AL/LI, COMPOSITE MATERIAL CRYO FLUID SYSTEMS EX: LH₂ STORAGE AND TRANSFE THERMAL PROTECTION EX: LIGHTWEIGHT SUPER-MLI ("S REFRIGERATION "SLUSH HYDROGEN" TECHNOLOGY PROGRAM CAN IMPROVE PERFORM VOLUME AND MASS 	UUCLEAR PROPULSION PROJECT LEWIS RESEARCH CENTER TECHNOLOGY AREAS NOZZLES NOZZLES RYOGENIC TANKS S R SUPERFLOC") TO REDUCE/ ELIMINATE LH2 BOILOFF Y BEING PURSUED IN NASP MANCE BY REDUCING TANK				
 NASA SYNERGY WITH OTHER CHEMICAL ROCKET SYSTEMS EX: HYDROGEN TURBOPUMPS REGENERATIVELY-COOLED N LIGHTWEIGHT, HIGH STRENGTH CF EX: AL/LI, COMPOSITE MATERIAL CRYO FLUID SYSTEMS EX: LH₂ STORAGE AND TRANSFE THERMAL PROTECTION EX: LIGHTWEIGHT SUPER-MLI ("S REFRIGERATION "SLUSH HYDROGEN" TECHNOLOGY PROGRAM CAN IMPROVE PERFORM VOLUME AND MASS "DUAL MODE" NTR OPERATION - LO (~ 50 kWe) FOR REFRIGERATION M VEHICLE 	JUCLEAR PROPULSION PROJECT LEWIS RESEARCH CENTER TECHNOLOGY AREAS NOZZLES RYOGENIC TANKS SUPERFLOC") TO REDUCE/ ELIMINATE LH2 BOILOFF Y BEING PURSUED IN NASP MANCE BY REDUCING TANK OW LEVEL POWER PRODUCTION AY LEAD TO MORE "ROBUST" NTR				

Ę.

U

-

_

= .

PR12-17

03

FOCUSED TECHNOLOGY: NUCLEAR PROPULSION SUMMARY

IMPACT:

- Nuclear Propulsion Enables and/or Enhances Space Exploration Missions

Enables: *Enhances:*

Nuclear Electric Propulsion (NEP) Robotic Science Missions s: Lunar & Mars Cargo, & Mars Piloted Space Exploration Nuclear Thermal Propulsion (NTP) Mars Piloted Lunar & Mars Cargo, Lunar Piloted & Robotic Science Space Exploration

USER COORDINATION:

- Exploration Studies Identify Nuclear Propulsion as a Key Technology

- OAET/RZ Provide Performance Predictions for NASA Studies
- OSSA Study on NEP for Robotic Science Missions
- DOE, DoD & NASA Included on Steering Committee (also Astronaut Office)

TECHNICAL REVIEWS:

- Interagency Design Review Teams will Periodically Review Technical Progress

OVERALL TECHNICAL AND PROGRAMMATIC STATUS:

- High Priority Technology Areas Identified (some efforts initiated)
- Budget Deliberations Continue
- Single Multi Agency Plan Defined for FY92 Implementation

MAJOR TECHNICAL/PROGRAMMATIC ISSUES:

- Agency/Department Roles
- Funding to Initiate Technical Efforts
- Projected Budget Does Not Support Schedules

SUPPLEMENTAL INFORMATION	
NUCLEA	AR PROPULSION PROJECT

SCHEMATIC REPRESENTATION OF A PARTICLE BED REACTOR BASED ROCKET CONCEPT

ROCKET

- SPECIFIC IMPULSE: 832 s WITH CAPABILITY IN THE 800-900 s RANGE

/ENGINE THRUST-TO-WEIGHT RATIO: ≤5

- NUCLEAR PROPULSION PROJECT

-

PARAMETERS	APOLLO		CHEM/AB	NTR	
• IMLEO (t)	123*		234	208	
• MISSION MODE	EXPENDABLE		PARTIALLY REUSABLE	FULLY REUSABLE	
 PROPULSION ENGINE/# PROPELLANT TOTAL THRUST (kibi) isp(s) 	J-2/1 LOX/LH2 225 425	SPS ⁺ /1 STORABLES 22 256	ASE/4 LOX/LH2 80 481	NERVA-DERIVATIVE/ LH2 75 915	
 BURN DURATION/ENGINE (mins) TLI LOC TEI EOC 	5.2 DIREC	6.3 2.5 T ENTRY	26.0/4 4.9/4 1.6/4 AEROCAPTURE	28.4 7.2 4.3 9.2	
EARTH ENTRY VELOCITY (km/s)/"g-loading"	11.2/ <u>s</u>	7g	<u>≤</u> 11.2/ <u>≤</u> 5g	0.5 g - 0.7 g (begin-end EOC)	
• RETURN MASS FRACTION (%)	4.8		11.5	23.4	

NUCLEAR ELECTRIC PROPULSION

James H. Gilland

NASA Lewis Research Center

NUCLEAR ELECTRIC PROPULSION MISSION ADVANTAGES

Progressive Technology Development Paths

- Evolutionary Development to Meet a Wide Range of Missions
- Commonality with Surface Power Technology
- Low Propellant Requirements
 - Low Vehicle Mass
 - Small Resupply Mass
- Reduced Interplanetary Trip Times
- Tolerant of Mission Variations
 - Changes in Payload
 - Broad Launch Windows
 - Reduced Dependence on Mission Opportunity

MISSION CHARA	ACTERISTICS
ance Parameters	
oulse (Isp): Determines Prop	ellant Mass
(P): Affects Trip Time	
The mass (α) : Determines 11	rip Time Limits
liciency (η): Affects Trip Tir	ne, Vehicle Mass
ENABLING PARAMETER	NEP CAPABILITIES
Isp	2000 - 10000 seconds
α	<10 kg/kWe
η	>50%
α	<10 kg/kWe
Pe	>=10 MWe
η	>50%
Isp	2000 - 10000 seconds
	/MISSION CHARA ance Parameters oulse (Isp): Determines Prop (Pe): Affects Trip Time ific Mass (α): Determines Trip ificiency (η): Affects Trip Time ENABLING PARAMETER Isp α η Isp Ιsp Ιsp Ιsp Π Ιsp Π Ιsp Π Δ Π Δ Π Δ Π Δ Π Δ Π Δ Π Δ Π Π Π Π Π Π Π Π Π Π Π Π Π Π Π Π

_

=

i.

PATHWAYS TO EVOLUTION							
	FVOI VING	EVOLVING HIGHER					
MISSION	SP-100 TECHNOLOGY	RISK TECHNOLOGIES					
INTERPLANETARY	SP-100	SP-100					
PROBES/PRECURSORS	THERMOELECTRIC	THERMOELECTRIC					
	100 kWe	100 kWe					
LUNAR/MARS CARGO	GROWTH SP-100	ADVANCED REACTOR					
	K-RANKINE	ADVANCED POWER CONVERSION					
	1-5 MWe	1-5 MWe					
MANNED MARS	GROWTH SP-100	ADVANCED REACTOR					
	K-RANKINE	ADVANCED POWER CONVERSION					
"ALL UP"	10-20 MWe	10-20 MWe					
'QUICK TRIP'		40-80 MWe					

	PRESI	ENT	GOAL		
Power Nuclear SP-100	100 kWe ~45 kg/kWe GES 2001 UN Fuel Pin TE Conversion 1350 K K Heat Pipe		>=10 MWe <= 10 kg/kWe TRL 6 by 2006		
Propulsion					
Thrusters Isp.(s) η Pe (MWe) Lifetime(h)	Ion 2000 - 9000 .78 .0103 10000	MPD 1000 - 5000 .3 .015 ?	Ion 2000 - 9000 .78 1 - 2 10000	MPD 1000 - 7000 >.5 1 - 5 >= 2000	
n 17					
Power Managen	nent and Distric	oution (PMAD)			
Power Managen	nent and Distric η ~ 0.90 4 kg/kW 400 K Reject	oution (PMAD) /e ion Temp. MUCLEAR	η ~ 0 <= 2.5 kg 700 K Re PROPULSION PRO	95 /kWe jection Temp.	
Power Managen	nent and Distric η ~ 0.90 4 kg/kW 400 K Reject	oution (PMAD) /e ion Temp. MUCLEAR	η~0 <= 2.5 kg 700 K Re PROPULSION PRO LEWIS RESEAR	0.95 /kWe jection Temp. OJECT	
Power Managen = NASA ASSOCIA Space Nuclear	nent and Distric η ~ 0.90 4 kg/kW 400 K Reject TED NE	Dution (PMAD) /e ion Temp. WUCLEAR PTECHN	η~0 <= 2.5 kg 700 K Re PROPULSION PRO LEWIS RESEAR	95 /kWe jection Temp. DJECT	
Power Managen = NASA <u>ASSOCIA</u> Space Nuclear	nent and Distric η ~ 0.90 4 kg/kW 400 K Reject TED NE	Dution (PMAD) /e ion Temp. WUCLEAR PTECHN D's - 100's MWe	η ~ 0 <= 2.5 kg 700 K Re PROPULSION PRO LEWIS RESEAR OLOGY J	95 /kWe jection Temp. DJECT	
Power Managen = NASA <u>ASSOCIA</u> Space Nuclear DOE MMW DoD/DOE/	η ~ 0.90 4 kg/kW 400 K Reject TED NE Power 'e Program - 10 NASA SP-100	Dution (PMAD) Ye ion Temp. WUCLEAR PTECHN D's - 100's MWe Program - 100 k	η ~ 0 <= 2.5 kg 700 K Re PROPULSION PRO LEWIS RESEAR OLOGY J	995 /kWe jection Temp. DJECT CH CENTER EFFORTS 99 - 2001	
Power Managen = NASA ASSOCIA Space Nuclear DOE MMW DoD/DOE/I Electric Propul	Power Ve Program - 10 NASA SP-100	Dution (PMAD) Ve ion Temp. MUCLEAR PTECHN D's - 100's MWe Program - 100 k	η ~ 0 <= 2.5 kg 700 K Re PROPULSION PRO LEWIS RESEAR OLOGY J in Earth Orbit We, TRL 6 in 19	995 /kWe jection Temp. DJECT CH CENTER EFFORTS 99 - 2001	
Power Managen NASSOCIA Space Nuclear DOE MMW DoD/DOE/I Electric Propul NASA OAE Thrusters	η ~ 0.90 4 kg/kW 400 K Reject TED NE Power 'e Program - 10 NASA SP-100 Ision T Base R&T ir	Dution (PMAD) Ye ion Temp. WUCLEAR D's - 100's MWe Program - 100 k h Electric Propula	η ~ 0 <= 2.5 kg 700 K Re PROPULSION PRO LEWIS RESEAR OLOGY J in Earth Orbit We, TRL 6 in 19 sion - Resistojet,	995 /kWe jection Temp. DJECT CH CENTER EFFORTS 99 - 2001 Arcjet, Ion, MPD	
Power Managen = NASA ASSOCIA Space Nuclear DOE MMW DoD/DOE/I Electric Propul NASA OAE Thrusters Air Force E Tests	Power Power Power Posser Posser - 10 NASA SP-100 Ision T Base R&T in Et Base R&T in Et Base R&T in	Dution (PMAD) Ye ion Temp. PUCLEAR PTECHN O's - 100's MWe Program - 100 k D's Electric Propuls ion Program - Ai	η ~ 0 <= 2.5 kg 700 K Re PROPULSION PRO LEWIS RESEAR OLOGY J in Earth Orbit We, TRL 6 in 19 sion - Resistojet, rcjet, MPD Thrus	995 /kWe jection Temp. DJECT CH CENTER EFFORTS 99 - 2001 Arcjet, Ion, MPD ters, SEP Flight	

PR12-30

REPRESENTATIVE MARS NEP SYSTEM

POWER (10 MWe):

UN Fuel Pin, Li Cooled Reactor (SP-100 Technology) 1350 K Reactor Outlet Temperature K-Rankine Power Conversion System K Heat Pipe Radiator (5.5 kg/m²) Man-Rated Shadow Shield - 5 Rem/year 100 m from Shield, 40 m Diameter Dose Plane 10 Year Lifetime 5000 V DC Shielded Coaxial Transmission Line 600 K Power Conditioning

PROPULSION:

Argon Ion Thrusters 1.25 MWe thrusters 5000 - 9000 s Isp 1 m X 5 m Grids 10,000 hours Lifetime

MUCLEAR PROPULSION PROJECT

<u> </u>			LEWIS RESE	
NEP	SUBSYST	TEM TRA	ADE SP	ACE
	D			
	Power			
Reactor	<u>Conversion</u>	<u>Radiator</u>	<u>PMAD</u>	<u>Thruster</u>
Fuel Pin (SP-100)	Themoelectric	Pumped Loop	Si	Ion
Advanced Fuel Pin	Brayton		GaAs	MPD
		Refractory		
NERVA- Derived	Rankine	Metal HP	SiC	Pulsed Inductive (PIT)
Cermet	Adv. Brayton	Carbon	AC	
		Composite HP	•	Electron Cyclotron
Thermionic	Thermionic		DC	Resonance (ECR)
		Ceramic		
Particle Bed	MHD/Rankine	Fabric HP		Ion Cyclotron
				Resonance (ICR)
Pellet Bed		Bubble		
		Membrane		Pulsed
In-Core Boiling K		.	Ele	ectrothermal (PET)
		Liquid		
		Droplet		Deflagration
				VariableIsp
				Pulsed Plasmoid
		NUCLEAR	PROPULSION	PROJECT

EWIS RESEARCH CENTER

TECHNOLOGY

Reactor

Low α - reduced radiator mass

SYSTEM IMPACT

High Temperature Fuels, Materials High Fuel Burnup

Low α - compact reactor design

Power Conversion

High Temperature Materials

Low α - reduced radiator mass

Power Management and Distribution (PMAD)High Power ElectronicsEnabling - RelialRadiation Resistant ElectronicsEnabling - ReliabHigh Temperature ElectronicsLow α - reduced

Efficient Electronics

ribution (PMAD) Enabling - Reliability Enabling - Reliability Low α - reduced PMAD radiator mass Low α, Pe - reduced PMAD radiator mass ; lower power source requirements

NUCLEAR PROPULSION PROJECT

NASA LEWIS RESEARCH CENTER : NEP TECHNOLOGY EMPHASIS

TECHNOLOGY

SYSTEM IMPACT

Heat Rejection (Radiator)

High Temperature, Low Mass Materials Low α - Dominant mass in MWe space power systems

Thrusters

High Power

Long Lifetime

Efficient

Enabling - System reliability, simplicity

Improved vehicle mass, trip time; lower power source requirements

Maximize reliability; Minimize complexity; Reduce mass

NUCLEAR PROPULSION PROJECT

ADDITIONAL INFORMATION

NUCLEAR PROPULSION PROJECT

NASA LEWIS RESEARCH CENTER S NEP Mission Charts

- Mission System Requirement Guidelines
- Robotic Probe Missions
- NEP Lunar Cargo Assessment
 - 10 kg/kWe System compared to Chem Aerobrake over 5 year cargo mission cycle
- Sensitivity of Mars Mission to $\boldsymbol{\alpha}$
 - α values range from 7 to 15 kg/kWe
 - Power, lsp optimized
 - Lines are optimum performance for each α
- Sensitivity of Mars Mission to Power, Isp
 - Constant α of ~10 kg/kWe

÷.,

- Performance insensitive to Isp above 5000 seconds
- Dashed line is optimum performance "envelope"

NUCLEAR PROPULSION PROJECT

NASA

LEWIS RESEARCH CENTER

NEP MISSION GUIDELINES

Mission	Total Power (<u>MWe)</u>	Thruster Power (<u>MWe)</u>	Operating Time (y)	Thruster Time <u>(y)</u>	Isp (<u>s)</u>	η <u>(%)</u>	α <u>(kg/kWe</u>	Need Date
Orbital Transfer/ Precursor	0.1 - 1	0.01 - 0.05	3 - 10	1 - 2	2000 -8000	>50	10 - 30	1990- 2005
Interplanetary Probe	0.1 - 1	0.01 - 0.05	10-12	6 - 10	5000 -10000	>50	30 - 50	1990- 2005
Lunar Cargo	0.5 - 5	0.1 - 1	3 -1 0	1 - 2	3000 -10000	>50	10 - 20	2005-
Mars Cargo	2 - 10	0.5 - 2	5 - 10	2 - 3	5000 -10000	>50	10 - 20	2010-
Mars Piloted	5 - 20*	1 - 5	5 - 10	1 - 2	5000 -10000	>50	10 - 20	2014-
Mars Fast	10 - 60*	5 - 10	3 - 10	1 - 2	6000 -10000	>50	1-5	2016-
Total Power Includes Option for Multiple Propulsion Modules								

NUCLEAR PROPULSION PROJECT

RJB 4-36-81

ROBOTIC SCIENCE MISSIONS

FUTURE CANDIDATE DEEP SPACE MISSIONS UTILIZING NUCLEAR ELECTRIC PROPULSIONS

- NEPTUNE ORBITER/PROBE
- PLUTO/CHARON ORBITER/PROBE
- URANUS ORBITER/PROBE
- COMET NUCLEUS SAMPLE RETURN (a.k.a. ROSETTA)
- JUPITER GRAND TOUR
- MULTIPLE MAIN-BELT ASTEROID RENDEZVOUS
- INTERSTELLAR PROBE

ala a coloren energia

PR12-37

who was to a

PR12-39

NASA LEWIS RESEARCH CENTER **PROPULSION CONCEPTS Concepts May Be Grouped According to Acceleration** Mechanism: Electrostatic Ion Engine **Steady Electromagnetic MPD** Thruster **Electron Cyclotron Resonance Engine** Ion Cyclotron Resonance Engine **NEPTUNE (High Power MPD Thruster)** Variable Isp Plasma Rocket **Pulsed Electromagnetic Pulsed Inductive Thruster Pulsed Electrothermal Thruster Deflagration Thruster Pulsed Plasmoid Thruster**

NUCLEAR PROPULSION PROJECT

. .