
ar * ,) - I "i /

EXPERT SYSTEM FOR UNIX SYSTEM / *) "' , a t!
MLIABILITU AND AVAILABILITU EN

/,>

Catherine Q. Xu, Ph.D.
Senior Staff Engineer

Aeronautical Ra&o, Ine.
Annapolis, MD 21401

ABSTRACT

Highly reliable and available systems are critical to the airline industry. However, most off-the-sheK computer
operating systems and hardware do not have built-in fault tolerant mechanisms, the U N E worktaeion is one
example. In this research effort, ARINC has developed a rule-based Expert System (ES) to monitor, commmd,
and control a UNIX workstation system with hot-standby redundancy. The ES on each workstation a d s as an
on-line system administrator to diagnose, report, correct, and prevent certain types of hardware and sofiware
failures. If a primary station is approaching failure, the ES coordinates the switch-over to a hot-standby
secondary workstation. The goal is to discover and solve certain fatal problems early enough to prevent complete
system failure from occurring and therefore to enhance system reliability and availability. Test results show that
the ES can diagnose all targeted faulty scenarios and take desired actions in a consistent manner regardless of
the sequence of the faults. The ES can perform designated system administration tasks about ten times faster
than an experienced human operator. Compared with a single workstation system, our hot-standby redulldancy
system downtime is predicted to be reduced by more than 50 percent by using the ES to command and control
the system.

INTRODUCTION

Product reliabiliv and availability are the two most important qualities that ARINC bas been pursuing.
Currently, a number of systems and products are developed on computer systems ru g under the U N K
Operating System (0s) . Because most off-the-shelf UNIX workstations are general-purpose machines. no fault
tolerant mechanisms are built k t o either the operating system or the hardware. Therefore, hadware or software
failures are not automatically detected by the OS utilities. In other words, most UNPX systems da not have any
built-in intelligent fault diagnostics, fault-correction, or failure-prevention capabilities.

This research project develops a monitor, command, and control ES acting as an on-line sqisteiix
administrator to detect, report, correct, and prevent certain types of hardware and software failures on a UNAX
workstation system with hot-standby redundancy. The goal is to use the ES to discover and solve certain fatal
problems early enough to prevent system f d u r e from occurring and therefore enhance the system reliability and
availability.

The reason we are investigating the potential of using the ES to monitor, command, and controk the
UNHX workstation is because we need software to perform some of the system administrator's jobs in a real
time, automatic fashion. Usually system administrators use rules of thumb logic gained througka experience to
solve problems. IES are the most effective approach to capture and use rules of thumb logic to solve proislewas.

As shown in Figure 1, a redundant workstation system consists of two processors-A and B - 4 0 t h
powered on, where processor A is the original primary machine and processor B is the secondary. The two
processors communicate via StarLan.

Qne ES resides on each machine, and each ES accomplishes two tasks: (1) process self-checking and
hardware management and (2) hot-standby switch-over.

https://ntrs.nasa.gov/search.jsp?R=19930016399 2020-03-24T07:28:03+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10448032?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1. Command and Control Expert System Overview

Processor Self-check in^ and Hardware Resource Management

Each ES monitors the health (such as disk space usage, CPU usage, and application process health) of
the machine on which it resides. If hardware resource utilization reaches a certain threshold, the ES will first
try to correct the situation by taking some actions that a system administrator would take under the same
circumstances. If the ES detects problems that it cannot correct or problems that may cause system failure, it
will give warnings to the operator. Human intervention is needed in this situation.

Hot-Standbv Switch-Over

The two ESs exchange the health information of their host processors with each other. They also
monitor the link between the two processors. If the ES on the primary processor detects potential fatal problems,
it GI1 send a signal to the secondary processor, and the secondary processor will take over the primary role.
Because the svJitch occurs before the original primary processor failure, there is no system downtime.

The ES uses human heuristic rules to monitor, command, and control the hot-standby redmdmt system
in real time. Unlike other commonly used fault tolerant systems, which take action after the failure occurs, this
ES tries to predict failure and take action before failures occur.

AND SO SELECTION

Whv Use Expert Svstems?

A processor usually has multiple processes running simultaneously, has many peripherals, md hmdles
complicated communications. To ensure that the processor operates properly, and that tasks are performed
successfully, the processor health status have to be monitored and adjusted continuously. Ideay, problems
leading toward processor failure should be discovered and reported, if not solved, before the f d m e occurs.
However, most processors cannot perform self-checking and error-correcting by themselves, and it is me&stic
to have human experts monitor and adjust the processors all the time. Therefore, in most applications, serious
problems or even failures occur before human experts issue correction commands.

ES are suitable tools for performing processor monitoring, command, and control for the foUca\~g
reasons:

e Human experts use rules of thumb logic gained through experience to solve processor problems;
ESs are the most effective tool (in comparison with other types of software) to capture the rules
of thumb and use them to solve problems.

o The two research areas of this project, i.e., processor self-tuning and the hot-standby swilchg,
do not necessarily need physical maneuvering. Control commands can be executed by software.

0 The processor problems are rather complicated and therefore need specific knowledge and
in-depth reasoning to be solved. Conventional programs are not equipped with the features to
effectively capture and retrieve knowledge and reasoning.

0 Experts agree on solutions. Domain knowledge can be translated into rules and relationships.

e Successful expert systems have been developed in similar applications [Ill.

Hardware Platform

The target processor for this project is the AT&T/6386, SCSI based workstation, running under U W
SYSTEM V OS. Two workstations are connected through a StarLan network.

We chose this hardware platform because of its similarity to the ARINC Tower Data Link Service
(TDLS). This would allow the results from this research effort to be easily used by TDLS or similar projects.
Because UNIX is a machine-independent OS, the research results could also be applied to other UNIX platforms
(such as SUN, HP) with little modification.

Software Develo~ment Tools

The ES shell chosen for this project is the Cxpert by Software Plus Ltd. Cxpert supports commonly used
knowledge representation methods such as Attributes, Frames, Procedures and commonly used inference chaining
methods such as forward chaining and backward chaining. Cxpert also provides query and window display
facilities. In addition, Ckpert knowledge representation language (KRL) is fully compatible with C language.

UNIX PROCESSOR SELF

When application processes run on a UNIX processor, the hardware resources are used by these
processes. The health of the processor affects the performance of the applications. For instance, when the CPU
is overriioaded, the response time of the application process is slower.

$$is IES prototype shall monitor and maintain the health of the processor in real time in three important
areas: disk space, CPU load, and process management. It will solve and report problems in a manner similar
to a system administrator, except that it can perform its task 24 hours a day continuously, while humans cannot
because it would be too expensive to be practical).

ik(;kaswledee Formalization

The self-tuning (or resource management) ES shall handle the situations stated in the CONDITION side
of the f o l l o ~ g PFTNEN statements, and the action the IES takes is on the ACTION side of the statements.
The f o l i o ~ n g IF-THEN statements are called production rules. They are the body of the ES knowledge base
(m), and they are structured from human heuristics used to handle the same situations.

For disk space management, disk utilization in terms of disk usage percentage is checked every specified
time period, as follows:

IF disk usage reaches a certain user-defined high water mark, and

IF Iile archiving is necessary,
THEN the ES will archive the specified fdes to tape and then remove them from the disk to
create free disk space.

IF the files were archived earlier,
THEN only cleanup is performed.

IF disk usage increases at an abnormally fast rate,
THEW the ES will give the operator a warning.

IF disk usage reaches critical threshold (which means that after this threshold, any writing to
the disk has a high probability of failure),
THEN the ES will announce that the processor is approaching a failure condition, and when switch-over
is an option, it will initiate switch-over from the primary machine to the secondary machine.

Th;: CPU load is monitored by the ES every specified time period, as follows:

IF the CPU is overloaded,
THEN, to improve system response time for critical processes, certain low priority processes will be
terminated.

IF the CPLJ is still overloaded,
THEN the operator will get a warning.

In many airline or communications related applications, certain application processes [nust run
con:inwously. The process management part of this ES runs checks every specified period of lime:

IF the critical processors are not running,
THEN the critical processes are restarted by the ES automatically.

These are several of the simple but important scenarios that often occur on an applicatiom processor.
We studied the logic and procedures a system administrator would take under these scenarios and reformdated
hurnan knowledge into an IF-THEN format to facilitate ES implementation.

The ES can be expanded to handle more complicated and diversified problems, as long as the humm
heuristic for those problems can be structured into logical rules.

The high-level design for the resource management ES is illustrated in Figure 2. Each block depicts
a logical function in the ES, and the arrow indicates data and its flow directions. This block diagrm is appbcable
to each one of the three areas above.

Figure 2. Self-Tuning ES Block Diagram

The Monitor (for each one of the areas above) uses UNIX system administration commands to coPBect
resource utilization data. For example, the disk monitor function uses the df command to determhe free disk
space and other information about disk usage. Monitor then processes this data so that it can be used by the
following processes depicted in the diagram:

0 The Diagnose and Decision block is essentially a rule-based knowledge base that is form&ed
from human heuristic to diagnose the health of the resource utilization. This knowledge base
fires different rules according to the information from the Monitor. The result of a fired rule
is an action item, which selects and executes the proper action(s). This block also sends the
action item into the log and display blocks.

0 The Action block is a set of functions that will maintain the health of the processor resource
usage.

0 The Log saves the action item, time stamp, and brief health message onto disk storage.

0 The Display displays health information and action items on a window system.

Imulementation Details

For all three managed areas, the implementation is similar. Monitor and Action are irnplemewted by C
language, Diagnose and Decision and Log are implemented by Cxpert KRL, and Display is implemented by the
Cxpert I-Iyperwindow system.

Performance Test

Test-run results show that the hardware resource management ES can handle all the fault scenarios
described above and execute corrective actions regardless of the sequence of faults. The ES behavior is fully
predictable. The one-round (i.e., a visit to the three targeted areas once) ES execution time is less than 15
seconds, which is much faster than comparable human action. A more sophisticated ES may have a longer
one-round execution time, but it will still be much faster than manual operation. The performance speed can
be improved by using C or C + + language for coding. In addition, operator error can be avoided because all
the proper actions that the ES takes are pre-coded into the ES and tested.

HOT-STANDBY SWTC WING ES

Requirements Analvsis

As shown in Figure 2, the hot-standby redundant system consists of two identical UNUL processors
linked by StarLan Ethernet for peer-to-peer communications. When the system is fust started up, one processor
is designated to be primary and the other to be secondary. Hot-standby implies both machines are powered,
and both are accepting and processing the same input. However, only the results of the primary processor are
used as system output. Hot-standby switching requires that when the primary processor fails, the primary role
is switched to the secondary processor within a specified period of time. This period of time must be short
enough so that the outside world will not be affected by the processor failure.

Many mechanisms can be used to initiate hot-standby switching[7]. The ES uses the following
mechanism:

Each processor uses the self-tuning ES to check its own health and sends its health information
to its peerprocessor via the StarLan link. If the primary processor detects its own failure, it
stops its normal operation and sends a signal to the secondary processor. The secondary
configures itself to be the primary processor and picks up the operation where the other
machine stopped.

Knowledge Formalization

The production rules for the hot-standby switching ESs in the two machines are slightly different because
of the different roles they play. The two processors use the self-tuning ES to check self-health and send this
information to their peer processor via the link. In the meantime, each processor tries to read the health of the
other machine.

In the primary machine-hosted ES, the rules are as follows:

IF the StarLan link is healthy, and

IF the secondary processor is healthy, and

IF the primary is going to fail (in the prototype, only disk problems are
considered as fatal),
THEN the primary stops its output, announces its failure to the secondary, and sends
out a switch-over command.

IF the secondary processor is NOT healthy,
THEN the primary processor will report that its peer is dead; no switch-over is allowed under
this circumstance.

IF the Pink is dead,
THEN the primary machine will report this; no switch-over is allowed under this circumstance, either.

In the secondary processor, the rules are as follows:

IF the link is healthy, and

IF the secondary is healthy, and

IF the primary is dead, and

IF the primary sends a signal for switch-over,
THEN the secondary processor reconfigures itself to be prirnaq and
announces that it is primary now.

IF there is no switch signal from the primary,
THEN the secondary will announce this fact, but no switch-over
occurs. (Note: this rule is intended to avoid a race condition betweem
the two machines for the primary role and confuse or upset the
outside world. A more elaborate rule set will allow the secondary to
take over without the primary switch signal.)

IF the secondary is dead,
THEN it will notify the primary, and no switch signal will be sent to the secondary in case of
primary failure.

IF the link is dead,
THEN no switch-over is allowed.

Listed above are some simple rules to control and coordinate the hot-standby switch-over process. More
elaborate rules are necessary for a real operation context. These rules are for prototyping purposes only. The
ES can be expanded to handle more complicated situations.

Hieh-Level Desim

Figure 3 illustrates the functional blocks in the hot-standby switching ES. The functionality of each block
is explained by the block name. The ES high-level design is the same for both ESs, except that the primary
machine has the Send Switch while the secondary machine has the Receive Switch.

Figure 3. Hot-Standby Switching ES Block Diagram

265

Figure 4 shows the primary and secondary machine console display. In the DISK window, machine disk
space usage is given as a percentage. The ES action for self-t is also shown in the window. In the CPU
~ d o w , average run queue size, average queue occupancy data, and the ES action for process control (such as
s t a r t /m process) are displayed. The PEER window shows weather the peer processor is healthy. The LINF
~ d o w shows weather the RFS is still running on StarLan. The SWITCH window shows weather the host
macKme is primary or secondary. The LOG window logs the time, problem, and action taken by the ES.

There are dso colors associated with the windows to indicate the status of the related area. If a critical situation
occurs in a ccerth area, the corresponding window will turn red; if a warning occurs, the window will turn white,
etc.

Prlmary Dlsplay:
I

8'BW I(:19:15 LWSK HULTHY
Oiim lb:¶S:B WU PROC WED RESTART PROC
O Q m l(l:ll:26 CCE92 HEMTHY

ndary Display:

AMRAG€ QUEUE: 1.2
W N E USAGUXI: 15

01320 1&ll:15 LWX HEALTHY
91329 16:13:21 CPU HEMTHY
51320 18:13:32 BOTH HENTHV

Figure 4. Prototype Console Display

The Switch-Over Knowledge Base (KB) is implemented by Cxpert KRL, and the rest of the blocks are achieved
by C hnckions.

The hot-standby switching ES incorporated the ES in the section titled "UNIX Processor Self-Tuning ES" for
processor self-checking and self-tuning.

In this ES, in addition to the knowledge base, the technical challenge is the Inter-Process Communication (IPC).
Regular IPC facilities such as message queues, unnamed pipes, and semaphores cannot communicate across the
network, and the named pipes cannot satisfy the independency requirement between the two processors. This
ES hplementation uses a unique and innovative method that combines the StarLan Remote File Sharing (RFS)
facility -with file and record-locking techniques to accomplish the peer-to-peer communication across the network.
This implementation will allow the two processors to operate independently if the link or one of the processors
is dead. It will also allow the two processors to operate cooperatively if the link is healthy and both of the
processors are running.

Performance Test

In adidition to all the faulty scenarios presented in the section titled "UNIX Processor Self-Tuning ES", tests are
generated to simulate link failure, primary failure, secondary failure, and both processor failures. The ES

performs correctly under these circmstances. The one-round execution time (which is the t h e that the ES takes
to check the three self-t areas, the peer, and the link once) is less than 30 seconds, which laems that the
secondary will take over the prirnary function in less than 30 seconds in case of primary fdure. A more
sophisticated ES may have a longer one-round time, but performance speed can be improved by uskg C or C+
language to avoid Cxpert KRL overhead costs.

CONCLUSIONS

Command and Control Expert Svstem (CCES) Potential Avvlications

The commercial application of the ARINC CC IES is very wide, because its knowledge base captures
general UNIX system administration knowledge, and the rules that CCES uses are applicable to m y UNlX
system with little or no design change. Only the detailed hplernentation may vary for different platforms. For
example, in the air traffic control industry, this ES has potential applications in a number of FAA dhpected
services, the TDLS is one example.

Conclusions

The UNIX processor self-t g ES prototype dlows the processor to have better hardware resource
management and, therefore, better performance and less chance of failure.

The hot-standby switching ES prototype provides coordination, command, and control to the switch-over
process and, therefore, reduces system downtime and improves system reliability and availabgw.

REFERENCES

[I] A Guide to Expert Svstems, Waterman, Addison-Wesley, 1986

121 "Applying Systems Analysis Techniques to Knowledge Engineering", Exvert Svstems, Vol. 7, No. 2, May
1990, Swaffield, 6. and Knight, B.

[3] "Architecture of Fault-Tolerant Computers, IEEE Comvuter, Siewiorek, D. P., August 1984

[4] "Artificial Intelligence Technologies for Real-Time and Object-Oriented Applications," Electrical
Communication, Vol. 62, No. 314, Barachini, F., 1988

[5] AT&T StarGROUP Software Reference Set, AT&T, 1988

[6] Building Ex~er t Svstems, Hayes-Roth and Waterman, Addison-Wesley, 1983

[7] Design and Analvsis of Fault Tolerant Digjtal Systems, Johnson, J. W., Addison-Wesley, 1989

[8] "Design for Ultrahigh Availability: The Unix RTR Operating System," IEEE Com~uter, Wallace, J. J.
and Barnes, W. W., AT&T Bell Laboratories, August 1984

[9] "Expert Systems Making Quiet Inroads into Networking Applications, " Networking Management, May
1991

[lo] "The Real-Time Expert," BYTE. Laffet, T.J., January 1991

1111 "YES/MVS: A Continuous Real Time Expert System, " Proceedings AAAI-84, Griesmer, J. H., <er a/> ;
IBM, 1984

[12] "New Controls for Air Traffic," IEEE Spectrum, February 1991

