Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

O OO

US005189709A
United States Patent [(113 Patent Number: 5,189,709
Wang et al. 451 Date of Patent: Feb. 23, 1993
[54] DYNAMIC PATTERN MATCHER USING 4,887,304 12/1989 Terziancccocccvvvmreirvennnes 382/30
INCOMPLETE DATA 5,067,166 11/1991 Ito . 382/30
. 5,109,431 4/1992 Nishiya et al.cccoeverennns 382/30
[75] Inventors: Lui Wang, Houston, Tex.; Gordon G. 5,121,465 6/1992 Sakoe 381/43
Johnson, Princeton, N.J. Primary Examiner—Jose L. Couso
[73] Assignee: The United States of America as Attorney, Agent, or Firm—Hardie R. Barr; Guy M.
represented by the United States Miller; Edward K. Fein
National Aeronautics and Space
Administration, Washington, D.C. . 157 ABSTRACT
. A method of matching a first query pattern with a plu-
[21] Appl. No.: 749,819 rality of stored data is disclosed. For each stored data
[22] Filed: Aug. 26, 1991 pattern, the number of components are counted which
E2VIE Lo o I, GO6K 9/00 Are identical to corresponding components in the first
! . query pattern, thereby forming a set of match numbers
[52] US.CL ceeeeenecireinnseen, 382/10; 382/30; >
381/43 equals the number of components in any stored pattern,
[58] Field of Searchooooo... 381/42, 43; 382/10, thatstored data pattern is displayed as an output pattern

382/14. 15, 36, 37, 38, 39. 30, 34 set indicating a match. If no match exists then a second
A query pattern is determined by modifying the first query

[56] References Cited pattern, component by component, in dependence upon
U.S. PATENT DOCUMENTS both a first, global influence of all stored patterns on all
components of the first query pattern and a second,
R; 752}2‘; I‘Z}ggg g;"a’;maneta] """" 343;?‘{2‘;65 particular influence of all stored patterns on each re-
3,979,722 9/1976 SGKOE oo 382/30 Spective component of the first query pattern. The first
4,001,820 1/1977 Rosenbaum et al. 343/58A two method steps are then repeated using the second
4,319,221 3/1982 SakO€ ..coovrerererererrnnennns 340/146.3 Q query pattern in place of the first query pattern. If no
4,446,531 5/1984 Tanakaceccoecmmrcnenn. 364/728 match a third query pattern similarly is determined by
4,467,437 8/1984 Tsuruta et al. ..o 382/30 modifying the second query pattern. Finally, the output
4,571,697 2/1986 Watan.abe 364/561 pattern is displayed, component by component, with
4,601,054 7/1986 Watari et al. ooooovvicsnsiren 382/1 those respective components of the third query pattern
4,618,988 10/1986 Schiller 382/5 :
4.670.850 6/1987 S2KOE wovro 381743 that have been modified at most once from the first
4,794,528 12/1988 Hirose et al. 3647300 ~ Query pattern.
4,817,176 3/1989 Marshall et al.ccoevercenne 382/43

4,882,756 11/1989 Watari ...cocvverecrecerenennes 381/42 20 Claims, 3 Drawing Sheets

1t COMPONENT VALUE

N

IF O IF |

RESPONSE

.

https://core.ac.uk/display/10447904?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

U.S. Patent Feb. 23, 1993 Sheet 1 of 3 5,189,709

(0,1)

(0,0)

(L0

(1,0)
FIG.I
B'
H(1,0)
r (0,1) STORED AT HEIGHT C(1,0)2
82
(0,0) (1,1) STORED AT HEIGHT
H(2,0)
c(2,0)2
(,O) (1, n
FIG.2
B!
(O,1) STORED
SURFACE S
82

(1,1} STORED

F|63 (1,0) : (1,1

U.S. Patent Feb. 23, 1993 Sheet 2 of 3 5,189,709

g!
(O,!1) STORED

QUERY (0,0)

g2
(1,1) STORED
FIG.4 (1,0) ' 0
STORE (0,0)
SURFACE
{0,0) .1 STORE (1,1)
QUERY (1,0)
FIGS (1,0) (1,1)
gl
(0,1) STORED
QUERY POINT
(0,0)
NEW POSITION >
(0,0) B

(1,1)STORED

F'Ge (1,0 - | (1,1)

Sheet 3 of 3 5,189,709

Feb. 23, 1993

U.S. Patent

L9ld

3SNOJS3Y

N/

INTVA LNINOJWOD |

5,189,709

1

DYNAMIC PATTERN MATCHER USING
INCOMPLETE DATA -

ORIGIN OF THE INVENTION

The invention described herein was made in the per-
formance of work under a NASA contract and is sub-
ject to the provisions of Section 305 of the National
Aeronautics and Space Act of 1958, Public Law 85-568
(72 Stat. 435; 42 U.S.C. 2457).

BACKGROUND OF THE INVENTION
Field of the Invention

This invention relates generally to pattern matching
systems, and more particularly to a method for dynami-
cally adapting the system to enhance the effectiveness
of a pattern match.

State of the Art

Apparatus and methods for calculating the similarity
between patterns are known. For example, U.S. Pat.
No. 3,727,183 to LeMay discloses a pattern recognition
device using an image recognition algorithm capable of
compensating for registration errors. A scanning wave-
form is used to scan the input image. The scanning
waveform is capable of being modified to minimize the
degree of error.

U.S. Pat. No. 4,446,531 to Tanaka teaches the use of
a computer for calculating the similarity between pat-
terns employing a pattern recognition technique using
height or “weight” factors as measures of relative im-
portance.

U.S. Pat. No. Re. 26,104 to Glauberman et al dis-
closes data processing apparatus utilizing a pattern rec-
ognition method designed for analyzing character sym-
bols.

U.S. Pat. No. 4,319,221 to Sakoe shows a pattern
recognition arrangement wherein a single input pattern
feature vector is pattern matched with the reference
pattern.

There is considerable interest in the storage and re-
trieval of data, particularly, when the search is called or
initiated by incomplete information. For many search
algorithms, a query initiating a data search requires
exact information, and the data file is searched for an
exact match. Inability to find an exact match thus results
in a failure of the system or method.

It is therefore desirable to provide a method of stor-
age and retrieval that shares some of the attributes of an
artificial neural network (ANN), such as searching for a
match using a query having only incomplete informa-
tion, while avoiding some of the deficiencies such as
long “learning” time and possible “retraining” when
additional data is stored. In addition, it is desirable to
provide several features not available in ANN systems,
such as attaching relative importance as well as time
dependence to stored data points. Thus, stored data may
change in importance over time, whether the time de-
pendent change is caused by the user, by outside input,
or simply by a programmed degradation or appreciation
over time. It is desirable that the stored data be allowed
to change in this way without affecting the speed of
retrieval or requiring additional training.

10

15

20

25

30

35

40

65

2
SUMMARY OF THE INVENTION

It is an object of the present invention to find an exact
match between a query pattern and one or more stored
patterns, if an exact match exists.

It is another object of the present invention to find the
“best” match between a query pattern and a stored
pattern; i.e., to find one or more stored patterns which
are the closest to a match with the query pattern if no
exact match exists.

It is an additional object of the present invention to
isolate a subset of the stored patterns for which a partial
match is possible and to distinguish those portions of the
stored patterns in the subset which match the query
from those portions which do not match and are there-
fore ambiguous.

It is a further object of the present invention to allow
the user to efficiently enhance the probability of a
match by focusing on only the ambiguous portion of the
stored and query patterns.

It is a still further object of the present invention to
allow the user to efficiently enhance the probability of a
match by restating the query with additional data.

It is a yet further object of the present invention to
allow the user to efficiently enhance the probability of a
match by storing more data.

It is an even further object of the present invention to
allow the user to efficiently enhance the probability of a
match by modifying one or more of the stored patterns.

The present invention incorporates procedures that
seek a response which will be exact, if the query is an
exact match to a positive stored data item of a given
relative importance, or a *“reasonable guess” in view of
both the query and the stored data. The invention will
return a stored item if the query is within a predeter-
mined variance of a stored item, or the response may
contain certain “ambiguous” components indicating
that there is a conflict in the stored data that causes an
inexact response to the particular query. The particular
portions of the pattern which are ambiguous are indi-
cated to the user. The invention, in this event, asks for
instructions as to how the user wishes to proceed in
effecting a match, as for example, changing the data in
the query or changing one or more of the stored pat-
terns.

Many physical entities (photographs, electrocardio-
grams, voice patterns, seismic signatures, written docu-
ments, star patterns, fingerprints, eye fundus patterns,
etc.) are capable of being represented by patterns of
other physical entities (elements) in some format suit-
able for electronic systems such as a sequence of digital
electronic signals. As is well known, these patterns are
capable of being stored in a computer memory to create
a library of stored patterns. The present invention
makes use of this capability as well as the ability to
incorporate within each pattern a relative time-depend-
ent importance property.

Preferably, the query pattern comprising a set of
elements representative of the entity to be matched is
also created in the same format as the stored patterns. If
not, it should be converted to this format prior to pat-
tern matching.

The aforementioned objects and advantages are
achieved in accordance with the present invention, by
the following method:

The data to be stored and queried, as well as the
query itself, is assumed to be in the form of binary lattice
points (1,1,0,0, . . ., 0); that is, as points (also called

5,189,709

3

“patterns”) in a finite dimensional space having only
zero or one as components. A positive integer n is used
to indicate the length of such a point; i.e., the number of
components or elements defining the point. The data
and query are then stored in the n-dimensional space.
For example, if the data points to be stored, as well as
the queries, are of the form (0,0,1,0) or (1,0,1,0), then
n=four.

Let K denote the number of data points or patterns
stored. For each data point B™, where m is an integer
from 1 to K, we have

Bm=(b"1,..., b"™n)

which is point associated with the time t,,. For each
point B™ we define an integer H(m, t,;) indicating the
relative importance of the point with respect to the
other points at the time t,. The function H(m,tn,)
(which is the coefficient of a positive integer P, to be
more fully explained later), may be allowed to incre-
ment or decrement as the time parameter t varies from
some initial time. In addition, for the point B™ there is
associated with the relative importance H(m,t,,) a direc-
tion number C(m,t,) indicating whether the point
should be sought; i.e., whether it is attractive, (a posi-
tive one); avoided or repelied (a negative one); or ig-
nored (a zero).

Generally, the method of the present invention in-
volves a comparison of a query pattern with each of the
stored patterns, on an element-by-element basis to de-
termine the total number of elements which match,
called the “‘degree of match”, for each stored pattern. A
“‘complete match” is said to exist between the query and
one or more of the stored patterns if the degree of
match for any stored pattern or patterns is equal to (or
within some predetermined variation from) the number
of elements in the patterns. For some applications, lo-
cating a complete match finishes the exercise. In other
applications (for example, when H(m,t) is a much more
significant factor that the degree of match) the pattern
matching procedure continues. Of course, if C(m,t) is
zero a complete match is not-significant.

If no complete match is found by this first element-
by-element comparison, a new or shifted query, called
the “derived query,” is formulated from the original
query. In formulating the derived query, use is made of
the closeness of match, or degree of match, between the
query of each of the stored patterns determined in the
first comparison. In this way, the probability of a match
between one or more of the stored patterns and the
derived query is increased.

The derived query is then compared on an element-
by-element basis with each of the stored patterns in
another attempt to find a match. The closeness of match
of the derived query with each of the stored patterns is
also determined and may be called the “second degree
of match”.

A complete match between the derived query and
one or more of the stored patterns exists and is indicated
if the second degree of match for any stored pattern is
equal to the number of elements in the patterns. If a
complete match is not found with the derived query
pattern, a response pattern is created from the original
query pattern and other information determined from
the comparisons of the original and derived query pat-
terns with the stored patterns. The response or “an-
swer” pattern has as its elements both “determined”
elements—i.e., those which are identical with corre-
sponding elements of one (or more) or the set of closest

50

60

65

4

stored patterns—as well as “ambiguous” elements
(those which are not identical).

The representational format of the answer pattern
may then be converted to a desired (usually the origi-
nal) format (photograph, etc.) with the ambiguous ele-
ments distinguished from the determined elements in
some manner (e.g., lighter, darker, as + or —, etc.)

Various manipulations may then be performed to
enhance the probability of match, such as refining, en-
hancing, supplementing, etc., the ambiguous portions of
the query and repeating the above steps.

The preferred embodiments of the present invention
will now be described with reference to the accompa-
nying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 s a representational diagram of a two-dimen-
sional figure (n=2) having vertices at all binary points.

FIG. 2 is a representational diagram of the two-di-
mensional figure of FIG. 1 in which two stored points
of prescribed height are placed perpendicular to the
two-dimensional figure.

FIG. 3 is a representational diagram identical to that
of FIG. 2 in which a smooth surface S is formed over
the set of points in three-dimensional space.

FIG. 4 is a representational diagram similar to that of
FIG. 3 showing the slope of the surface at a query point
thereon in each of the two directions.

FIG. § is a representational diagram showing two
stored points placed on a two dimensional figure and
illustrating a conflict in the stored data.

FIG. 6 is a representational diagram similar to that of
FIGS. 1-4 illustrating that the query point is “moved”
to a new position.

FIG. 7 is a process diagram showing the procedure
for producing a response to an original query.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Conceptual Illustration

As an illustration of the present invention, consider
an n-dimensional cube with a direction and relative
importance of C(m,t)PH(n) (see FIG. 1 for n=2). The
relative importance of each stored point B” may be
shown by placing a point in the n+1 dimension space
perpendicular to the n-dimensional cube with direction
and relative importance of C(m,t)PH(m.d. FIG. 2 illus-
trates the case where n=2; two points, B! and B2, are
stored at (0,1) and (1,1) with relative importance magni-
tudes of H(1,t) and H(2,t), respectively. The direction
numbers C(1,t) and C(2,t) are both positive ones since
relative importance H(1,t) and H(2,t) both are shown in
the positive n4-1 direction.

As an assist in conceptualizing, imagine a smooth
surface S formed over the set of points in n+1 dimen-
sional space. As shown in FIG. 3, this undulating sur-
face rises at stored points with a positive C value, falis
toward a zero height over non-stored points, and is
negative at points that are to be avoided; i.e., points
having a negative C value. This surface may change in
time as the relative importance (magnitude of H) of
stored data items (patterns) increment or decrement. It
also, of course, changes as the sign of C changes.

For purposes of this invention, significance lies not so
much in the surface itself, but, rather, in the slope of the

5,189,709

5

surface in each of the n directions at a point of interest
such as a query point. (See FIG. 4.)

If a query point (pattern) is present, noting also that it
is a binary point in the n-dimensioned cube, it is desired
to determine toward which binary point in the cube it
would need to move to effect a match. Assuming that
“high” or relatively important points attract, relatively
lower points attract less and negative points repulse, the
tendency at the query point would be to move accord-
ingly. Ambiguities may exist, as when the query is
equally attracted to two or more binary points (or
equally repulsed by two or more points).

For example, in FIG. 5, assume that stored points
(0,0) and (1,1) have the same relative importance, signi-
fied by the same height perpendicular to the n-dimen-
sioned cube. A query at point (1,0) would be equally
attracted to both points, as would a query at point (0,1),
thus a conflict or ambiguity is indicated. On the other
hand, a query at point (1,1) would encounter no conflict
and would be most strongly attracted to point (1,1)—i.e,
no movement—because the slope of the surface S is
zero in every direction. Likewise, a query at point (0,0)
would have no tendency to move from that point. Of
course, if the relative importance of (1,1) and (0,0) were
significantly different, then the response to a query such
as (1,0) would not be ambiguous, it would move toward
the relatively more important point. The invention fa-
cilitates dealing with ambiguities as will be explained in
detail hereinbelow.

As previously noted, the imaginary surface S is not
significant; only its slope at points of interest (query
points) is important in the decision process. Further, the
magnitude of the slope is not necessarily significant for
our purposes, only its algebraic sign. If the sign of the
slope in the i*% direction is positive, then the point
should “move” in the i direction, while if the sign is
negative, the query point should “move” in the negative
ith direction. When the slope in the i* direction is zero,
there is no “movement” in the i direction.

The method according to the present invention pro-
ceeds as follows: The slopes in each of n directions on
the surface are determined for the query point and the
values stored. A new or “shifted” query point (not
necessarily a binary point) is determined from the origi-
nal query in a manner to be described below, and it is
then applied to the n-dimensioned cube. The slopes in
each of the n directions on the surface at the new posi-
tion (the second slopes) are determined and the values
noted and stored, completing the numerical computa-
tions. (See FIG. 6.) It should be noted that no more than
two iterations are required to determine the response.
The information gained from the computations can be
analyzed for a response to the original query.

The sign of the slope in each direction at the original
query point is noted; thereafter, the sign of the slope in
each direction at the shifted query point is noted.

The response point or answer pattern is formed from
the original query point and the slopes of the original
and shifted query points as follows:

If the i*" component or element of the query point is
0 and both the first slope and the second slope in the it%

direction are positive, then the i element of the re-
sponse is 1.

If the i element of the query point is 1 and both
slopes in the i direction are negative, the i? element of
the response is 0.

20

25

30

35

55

65

6

If the i* element of the query point is 0 and the first
slope in the i* direction is negative, then the i’ element
of the response is O.

If the i element of the query point is 1 and the first
slope in the i direction is positive, then the it element
of the response is 1.

If the i* element of the query point is 0, the first slope
in the i direction is positive and the second slope in the
ih is negative, then the i element of the response is
ambiguous (denoted herein by the symbol *).

If the i element of the query point is 1, the first slope
in the i direction is negative and the second slope in the
ith direction is positive, then the i’ element of the re-
sponse is ambiguous; i.e., *.

Thus the response is of the form (0,0,1,1,1, . . .,1,0,1)
for a definitive response or complete match, or the
response is of the form (0,0,1,%,1 .. .,%,0,1) when some
of the elements are ambiguous; i.e., the response is par-
tially ambiguous. A complete match is said to exist if the
degree of match is equal to the number of elements in
the patterns. In the case of a partially ambiguous re-
sponse, there are several options or combination of
options available to the user. One, obviously, is to re-
phrase the query or use another query. Another is to
store more data in the stored patterns, and yet another
is to modify some of the stored data.

1t should be noted that the stored points, each of
which has a time dependent relative importance prop-
erty, can decrement over time to a near zero value, or
become negative or positive or zero, thus allowing a
stored point to more strongly attract (or repulse) or
ignore. While the relative importance property of a
point can be increased or decreased at any time, or

_allowed to remain constant, none of these changes re-

quire any “retraining time”. This particular feature is
not found in artificial neural systems.

FIRST EXAMPLE

The following example of this method was installed
and operated in a Symbolic computer using a LISP
program as set forth in the attached Appendix. It should
be pointed out that both the “zero” and *“one” elements
of a point were considered to be of equal significance.
Using the previously stated concepts, a pattern match
was atternpted between a query pattern and a library of
stored patterns to determine a response or answer pat-
tern using the following algorithm:

(1) Suppose that n is the maximum length of a point to

be stored.

(2) Each of B!, B, .. ., Bis a data point to be stored
of relative importance H(l,t1), . . ., H(k,tx) and sign
C(Lt1), . . . , C(k,tp) respectively.

(3) Let P denote a positive prime number (for mod P
calculations) and each of L and L’ an integer
(L>L'>1D.

(4) Let X=(xy, . . . , X) be a query point.

(5) We first compute and store, for each integer i from
1 to n, the value of the D; ; (see below), which is
proportional to the slope in the i* direction at the
query point X=(x1, ..., Xn),

Di([1: X:BY, ... B = C(1,0) PHLO (PLAXD Sy(X,7) +
C(2,1) PHRD [pLAXD)] Sy(X.)) +
C@3,1) PHOD [PLAX S3(X) + ... +
. Clk.f) PH(D [PLAXKY Si(x. 1)

5,189,709

7

where

(1) C(m,t) is the sign (or 0) of the stored point B”
at time t (if 0, C is then ignored in computations),

(2) H(m,t) is the height of the stored point B™ at
time t,

(3) J(X,j) is the number of components of B that
agree with the corresponding component of X,
i.e., a measure of closeness and

(4) S{X.i) is —1 if the i component of B/ agrees
with the i component of X and is 0,

1 if the i component of B/agrees with the i* com-
ponent of X and is 1;

—P3if the i*" component of X is 1 and the i’ com-
ponent of B/is 0; and

P3if the i component of X is 0 and the i compo-
nent of B/ is 1.

P can be any prime number. In the preferred embodi-

ment, P=2.

(6) A new point X' is formed from the query point X
and the signs of the numbers Dy ({t] : X : B, . ..
,BR), ..., Di((t]: X : Bl, ..., B%) in the following
manner:

If the i component of the query point is 0 and D;
A[t]:X:Bl, . . ., BX) is positive, then the i* compo-
nent of X' is 1;

If the i** component of the query point is 1 and D,
K[t}:X:B!, ..., Bk) is negative, then the i** compo-
nent of X' is 0; and

If the i** component of the query point is 0 and D
A[t]:X:B}, . .., BX) is zero, then the i*" component
of X' is the i" component of X.

(7) For each integer i from 1 to n, we compute and
store the value of the D;; (see below), which is
proportional to the slope in the i* direction at the
shifted point X'=(x"1, ..., x'n).

Dy(1]: X:B,....BY = C(1,n PHOD [PLIX D) Sx) + ... +
Clk,1y PHD [pLUX K s1x0 i)

where

(1) C(m,t) is the sign (or 0) of the stored point B™
at time t;

(2) H(i,t) is the height of the stored point Bfat time
5

(3) J(X',J) is the number of components of B/ that
agree with the corresponding component of X’;
and

(4) S(X',i) is —1 if the i component of B/ agrees
with the i’® component of X' and is 0;

1if the i"? component of B/agrees with the i compo-
nent of X' and is 1;

—P3if the i component of X' is 1 and the i* com-
ponent of B/is O; and

P3if the i component of X' is 0 and the i* compo-
nent of B/is 1.

At this point the response to the original query is
made in the following manner (see FIG. 7):

(8) The value of the slope in each direction at the
original query point X has been stored and the
value of the slope in each direction at the shifted
point X’ has been stored.

If the i* component of the query point is 0 and both
the slope of the query point X and the slope of the
shifted point X’ in the i* direction is positive, then the
i%® component of the response is 1.

If the i** component of the query point is 1 and both
the slope of the query point X and the slope of the

10

25

35

45

50

55

65

8

shifted point X' in the i** direction is negative, then the
i*? component of the response is 0. -

If the i component of the query point is 0 and the
first slope in the i*f direction is negative, then the it
component of the response is 0.

If the i component of the query point is 1 and the
first slope in the i* direction is positive, then the i
component of the response is 1.

If the i component of the query point is 0, the slope
of the query point X in the i direction is positive and
the siope of the shifted point X' in the i* direction is
negative, then the i component of the response is *; i.e.,
it is uncertain.

If the i%" component of the query point is 1, the slope
of the query point X in the i* direction is negative and
the slope of the shifted point X’ in the i?# direction is
positive, then the i component of the response is *; i.e.,
it is uncertain. This process is shown in FIG. 7.

If there is uncertainty in the response, then the afore-
mentioned options come into play. The machine may be
queried by the user with a different query, additional
data may be added and a query made, or one or more of
the items stored may be modified and a query made. In
any event, a query may be made immediately, as there is
no “training time” required.

If there is no uncertainty, then stored data may be
modified and another query made.

SECOND EXAMPLE

In the case described in FIGS. 2, 3 and 4, the dimen-
sion is two (n=2) P=2, L=5 and L'=3 and for simplic-
ity we set t=tj=tp=0. The points B!=(0,1) and
B2=(1,1) are stored at relative importance H(1,0)=7
and H2,0)=5 with C(1,0)=1 and C(2,0)=1. The
query point is X=(0,0).

For this case:

JX =1,
JX2) =0,
Six = ~1,

and Sy(X,1) = 23,
We now have: .
Dy(0:x:B,BY) = ((1,0) 2H0O) 2LKX) §y(X.1) +
€(2,0) 20RO 2LAXY) S)(x,1) = 1 x 2T x 25%X1(—1) +
1x25x25%X0 23 = 2124 28 <.
Dy(0:X:B),BY) = C(1,0) 2500} 2LIXD) §1(x.2) +
C(2,0) 2H@0) 2LAX2) Sy(x,2) = 1 x 27 x 25%X1 x 23 +
1x25x25%X0 23 =215 4 28 < 0.
Because D; 1(0:X:B!, B2) <0 and D} »(0:X:B!,B2)>0
the energy point X=(0,0) is “moved” to a new point
X'=(0,1). Also since the first component of X is 0 and
Dj,1 s less than zero it follows that the response in the
first component is 0, and there is no need to compute
Da,.
We now compute Dp(0:X:B,B?) =
€(1,0) 2810 2LAXLY) 55 2) + 2,0) 2H(20) 2L KX .2 55(x°,2) =
1x2Tx23X2 141 x25%x1 x 23Xl x 150
Because Dj 7 and D3 ; are both positive and the sec-
ond component of the query point X is 0, it follows that

the second component of the response is 1; thus we find
the response to the query X=(0,0) is (0,1).

to

5,189,709

9

The algorithms indicated for the method according
the invention are intended to be implemented on a

multiprocessor machine as there is a considerable
amount of parallelism.

10
query pattern, component by component, in depen-
dence upon both a first, global influence of all
stored patterns on all components of the first query
pattern and a second, particular influence of all

The pattern matching method according to the pre- 5 stored patterns on each respective component of
ferred embodiment of the present invention is summa- said first query pattern (steps (5) « (12) in the Ta-
rized in the following Table: ble).

TABLE
Step No. Step Name Operation Subscripts
1) Store Patterns B = by i=1,...,n
: j=1....k
2) Define Query X = x; i=1...,n
3) Match Set M = m; j=1...,k
4) Initial Output Oj = ojj = x5 i=1...,n
where mj = n i=1...,k
5) Disturbance LM = Lm; ji=1...,k
Where 2 =L =20 Max. Range,
3=L=7 Best range.
(5A) Disturbance LM + H(t) = Lm; + h;, i=1...,k
with Height
(6) Sign Sgn = sgn;j = 2b;; — 1. i=1L...,n
i=1...,k
(6A) Sign with [o(3] Sgn = ¢jsgnij=CiQ2b;;— 1. i=1...,n
Direction Where ¢;j= +1, —lor0. j=1...,k
N Magnitude Mag = mag,;; = [(logxor (b; x) = 1)N:1].
Where 2 =N =20 Max. range,
3JENE=ET Best range.
i=1, , n
i=1...,k
(8) Exponent Exp = exp;; = Lm; + mag;;. i=1, ,n
) j=1...,k
) Positive/ Foreachi = 1,..., n form two sums:
Negative Sums
Pos. sum; = P{exp;j) + ... + P(exp;) for each (exp;i) of j
where sgn;; > 0,
Neg. sum; = P(exp;1) + ... + P(exp;) for each (exp;) of j
where sgn;; < 0.
(10) Second Query Form intermediate set D = d;
If Pos. sum; Z Neg. sum;, thend; = 1;
Else d; = 0.
Form X' = x{/ = d;. i=1...,n
(11) Intermediate R=r; i=1...,n
Response
Where r; = x; if d; = x; and
r; = set flag, if d; = x;
12 Initialize SetX = X', X' = x/, i=1...,n
SetL = L', where L' < L;
13) Recompute Go through steps (3)-(9) forming a

(14)

as)

new intermediate set D = d;
Computations are required only for
those components i that had “set flag™.

Third Query
if d/ = x/, then x;”’
if df = x/, then x;*
0O =X"=x/

x;’, and
*

Output

For those components that had “set flag™;

In the pattern matching method set forth in this table

a first query pattern, taking the form of a set X=x;, is
matched with a plurality of stored data patterns, taking

the form of a matrix B=b;;, where i=j, . . .

, n is the

number of components in each pattern and j=j, ...,k
is the number of stored patterns. As may be understood
from this table, the method comprises the following
essential steps:

(a) For each stored data pattern, the number of com-
ponents which are identical to corresponding com-
ponents in said first query pattern are counted,
thereby forming a set of match numbers M=m;
(steps (1)-(3) in the Table).

(b) If any match number m;=n, then the respective
j* stored data pattern is displayed as an output

55

pattern set Oj=oj7indicating a match (step (4) in the 65

Table).
(c) If no match number m;=n, then a second query
pattern X'=x; is determined by modifying the first

(d) Steps (a) and (b) are then repeated using the sec-

ond query pattern in place of the first query pat-
tern.

(e) If no match number mj=n, a third query pattern

X"=x/" is determined by modifying the second
query pattern, component by component, in depen-
dence upon both a third, global influence of all
stored patterns on all components of the second
query pattern and a fourth, particular influence of
all stored patterns on each respective component of
the second query pattern, with the third and fourth
influences being less than the first and second influ-
ences, respectively (steps (13 and (14) in the Table).

() The output pattern O=o0;, is then displayed, com-

ponent by component, with those respective com-
ponents of the third query pattern that have been
modified at most once from the first query pattern
(step (15) in the Table).

5,189,709

11
If desired, those respective components that have
been modified twice from the first query pattern may be
displayed in the output pattern O=o0;in such a manner
as to indicate conflict between the first query pattern
and the set of all stored data patterns. For example,
these components that have been modified twice may

be displayed as an asterisk (*).

The step (c) indicated above preferably comprises the

steps of:

(1) multiplying each match number m;of a match set
M by a first disturbance factor L to produce a set
LM;

(2) determining a sign matrix Sgn for all components
sgn,; by setting each component equal to —1 if the
corresponding stored pattern component b is 0,
and to +1 if the stored pattern component is 1;

(3) determining a magnitude matrix Mag for all com-
ponents according to the formula mag;=[(logxor
(bjj, x;) =1) N:1], where N is a magnification factor;

(4) determining an exponent matrix Exp=LM+Mag
for all components according to the formula ex-
pij=Lm;+mag;;

(5) forming the positive and negative sums for all
components as follows:

Pos.sum;=P(exp;1) +. . . + P(expix) for each
(exp;x) of j where sgn;;>0,

Neg.sum;=P(exp;1) +. . . + P(exp;k) for each
(exp;x) of j where sgn; ;<0 and

(6) determining a second query pattern set X'=x; for
all i as follows:
if Pos. sum;=Neg. sum;, then x;/=1,
else x;/=0.

Thereafter, a response set R=r;is determined for all

i as follows:

ri=x; if x{ =x;, and

ri=set flag, if x{ =x;.

Similarly, step (e) indicated above preferably includes
the steps (1) through (6) using a second disturbance
factor L’ which is less than the first disturbance factor L
for those components i that have a set flag.

According to a preferred embodiment of the present
invention, the height factor set H=nh;is associated with
the components of each stored pattern by, each height
factor component h; being indicative of the relative
importance of each stored pattern with respect to the
other stored patterns. This height factor set H is added

20

30

35

45

50

12
to the set LM for purposes of determining the matrix
Exp.

The height factor components h;may be a function of
time and are also preferably an integer, suchas —1,0, 1,
2, etc.

According to a further preferred embodiment of the
present invention a sign factor set C=c; is associated
with the components of each stored pattern b Each
sign factor component c; is indicative of whether the
pattern component is to be sought, avoided or ignored.
The sign factor set C is multiplied by the sign matrix
Sgn for the purposes of determining the positive and
negative sums.

Some or all of the sign factor components ¢jmay be a

_function of time. These sign factor components c; are

preferably the integer values +1, 0 and —1.

The maximum range for the first disturbance factor L
is approximately 2 to 20; the best range for this factor L
is 3 to 7. For example, the first disturbance factor L may
be chosen to be 3 while the second disturbance factor L’
is chosen to be 2.

The maximum range for the magnification factor N is
2 10 20 with the best range of values 3 to 7. For example,
the magnification factor may be chosen as 3.

In conclusion, the method of matching a first query
pattern, represented by the set X, with a plurality of
stored data patterns, represented by the matrix B, is
accomplished by approximating the surface in vector
space defined by the stored patterns by a Bernstein
Polynomial. This approximation makes it possible to
compute the derivative of the surface in all directions at
the query. point. It is thus possible to determine a new
query point by proceeding in the direction of positive
slope (derivative) and in the opposite direction of a
negative slope (derivative). '

A preferred embodiment and best mode of a LIST
computer program which implements the present in-
vention is set forth in the attached Appendix.

There has thus been shown and described a novel
dynamic pattern matcher which fulfills all the objects
and advantages sought therefor. Many changes, modifi-
cations, variations and other uses and applications of the
subject invention will, however, become apparent to
those skilled in the art after considering this specifica-
tion.and the accompanying drawings which disclose the
preferred embodiments thereof. All such changes, mod-
ifications, variations and other uses and applications
which do not depart from the spirit and scope of the
invention are deemed to be covered by the invention,
which is to be limited only by the claims which follow.

APPENDIX

::: =*= Moce: LISP: Syntax: Common-lisp: Package: USZR: Basze: il =~

: (defmacre flip (x)
‘(ecend ((= ,x 0) 1)
(¢ 0)))

{cefflaver box-mouse-sensitive-items~mixin
{{item=-1ist nil) :
{sensitive~item nil}
(item-blinker))
[$]
:Tequired-flavors tv:isheet)
(:settable-instance-variables item=1ist))

(defstzruct (item)
lett

5,189,709
13 14

tep

zight
bottem
(state Q)
nane)

(defmetkbod (box-mouse-sensitive-items-mixin :after :init) (ignoze)
{setg item~blinker
(tvimake-blinker self ‘tvibollow-rectangular~blinker :visibility rill))

(defmethod (box-mouse~sensitive-items—mixin :find~items) (re-list)
(loop fer item in item-list
ncone
(anc (member (item-name iterm) re-list :test ¢’'equal)
(list item}}})

(defmethod (box-mouse-sensitive-items-mixin :make-item)
(name left teop right bottoem)
(let ({item (make-item :left left

itop top
szight right
:bottom bottom
iname nama)))

{push item ftem=-list)

{(tv:mouse=-wakeup)

item}}

(cefmethod (box-mouse-sensitive~items=mixin :print-item-centent)
(septicnal (stream *terminal-ior)}
{locp for item in item-list

for left » (icem-left item)

for top = (item-top item)

for zight = (item-zight item)

for bottom = (item-bottom item)

for state « {(item-state item)

for name » (item-nams item

do

(format stream "~Aname = ~D leit = -0 top = =D right = -D bettom = =~D state = =-D°

name left top right bottom statel))

(defmathod (box-mouse-sensitive-itema-mixin :remove-item) (item)
(setg item~list (delg item item=list))
(tvimouse~wakeup))

(defmethod (box-mouse-sensitive-items~-mixin :remove-all} ()
{setg item~list nil)
(tv:imouse~wakeup})

(defmethod (box-mouse=-sensitive-items~mixin :reset-state} (}
(loep for item in item=list N
do
{3et? (item=3tate item) 0}))

:: Neote this function uses the cursent item-list orcer anc to generste a linear bit vector
:; item=list orcer cannct be alter!!!! -
{cefmathod (bex=-mouse~sansitive-items-mixin :make~item-scate-arsay) ()
(let* ({1 (length item-list))
(state-array (make-arzay 1 :element-type ’ (unsigned=byte 1))))
(declare (sys:array-registecs state=-array)).
(loop for item in item=-l{st
for index downfrom (i~- 1)
de
(setf (bit state~array index) (item-sctate item)))
atate-array})

: (defun foo (row-index col-index lat dir)
; (let* ((max-row-index 4)
: (max—col-index 4)
H (no-rows (l+ max~row-index})
{no~cels (l+ max-col-index)})
tleoop for ¢ from 0 to max~-row-index
collect
(loop for r from O to max-col~index
cellect
{case dir
(:row (nth (+ (* c no-rows)) lst)}
(:ecl (ath (¢ c© (* r no-cols})) list}}i))})

{defun test (no~rows no-~cols lst dir)
(locp for € from O below no-rows

v ay

collecs
: (leep for r from O below no~ccls
: collect
: (case dir
H . (:zow (nth (+ (* c no-rows) r) lst}}

{:col (nth (+ ¢ (* r no=~cols)) 1lst}i}}))

: (defun bar (lat)
: (let ({11 {(length (car lsz)}}))
(loep for 4 4in lst

5,189,709 :
15 16

{(loop for k from 0 below (1~ 1ll) by 2
ccllect
(let {(counter 0))
(4f (dotimes (c 3 (4f (2 counter 2) t nil)}
{and (» (nth (+ c© k) i} 1} (incf counter)))

.

1
N

A A

(defur xx (item~list no-rows no-cols ioptional (type :Iowl)
(let ((ril (reverse item-list))
cuter-loop=count inner~leop-count)
(case type
{:row (setg outer~loop=-count no=rows)
(setq inner-loop=count no-celsi)
{:col (setg ocuter-loop-count no-cecls)
(setq inner-lecp~count no-tows}i} -
(loop for ¢ from 0 below cuter-loop-count
collect
(locp for T from © below inner-loop-count
coliect
(ath (case type
{:cel ({« (* r outer-loop-count) c})
(:zow (+ (* c outer-leop-count) £))] ril)
s:(item~state (nth (+ (* ¢ outer-leop~count) r) zil))
1N

~

D N T

s At

(defun-method get=-list box-mouse-sensitive-i{tems-mixin (no-rovs no-cols éoptional (type :row)}
(ler ((ril (reverse item-list))
cuter-leoop=count inner-loep-count)
(case type
{:Tow (setg outer-loop-tount no=-rows)
(setq inner-loop-count ne=-cols))
{s:col (setgq ocuter-loocp=-caount no-cols)
(setq inner-leoop—count no-gows}))
(leop for ¢ fxom O below outer-loop-count

collect
{loocp for z from 0 below inner-loeop-count
collect
(item=-3tate (nth (case type
- (tesl (+ (* T ocuter-leop-count) cl)

(:row (+ {* ¢ ocuter-loop~count) r))) rill)
1))

(defun-method compress~rule box-mouse-sensitive-items-mixin (lat}
{let ((1l1 (length (car ist))))
(loop for 1 in lst
nconc
(locp for k from O below (1- 11) by 2
collect
(let ((ceunter Q)
(if (dotimes (c 3 (if (2 courter 2) t nil))

(and (= (nth (+ ¢ k} i) 1! (incf councer)))
1

0)1))))

(defun make~col-list (list ne-rows no-cols)
{loop for ¢ from 0 below neo-rows
collect
{leop for r from 0 below no-cols
collect
(nth (+ ¢ (* r no-zrows)) list})))

(defun make-rc-list (list no-rows no-cols ékey (type :col))
(let (cuter~loop-count lnner-loop-count}
(case type
{:row (setq ocuter-loop-count no-rows)
(setq inner-loop~count no-cols})
{:col (setqg cuter-leop-count ne-cels)
(setq inner-locp~count no-rows)))
(loep for ¢ fron O below outer-loop~count
collect
doop for r frem 0O below inmner-locp-count
collect
(nth (case type
(teol (+ (* r outer~locp=-count) ¢})
(zzow (+ (* ¢ outer-locp~count) r£l}} 1ist)))))

(defmethod (box-mouse~sensitive-items-mixin :compress}
(lat® ((size (item~name (car item-list}})
(no=zrows (l+ (car size))}
(no=cols (1« (edr size)))
(cempress-rows (l+ (flecr (/ ne-rows 31}))
{compress=cols (le (floocr (/ no=-cols 3))))
(compress~rc-vactaer (make-array (* corpress-rows compress=-cols)
ielement-type ° (Unsigned-byte 1)))
compress-list outer~leoop~count {nner-loop~count)
(ceclare (apecial comress-rc-vector))
(print (make-rc=-list

(type!

(compress-rule {(get-list no-rows no-cols :col))
COMPress~rovs ne=cols :type :row))

5,189,709

17 18
(serq compress-lisc
{4f (eg type :ccl)
{print (compress~-rule (make-rc-list
(compress-rule (get-list no-rovs no=cols :irow))
no-rovs compress-cols :type :col}))
:: the following code i3 wreng
(print (compress-rule (make-rc-list
{compress-rule (get~list no-rows no-cocls :col))
compress-rovs No-cols :type :rowij)))
(case type
{:row (setq outer-loop-count COmMpPress=~rows)
{setg inner-loop-count compress=-cols))
(:col (setg ocuter-loop~count compress-ceols)
{setq inner-loop—count compress-rows)))
{loep for ¢ from O below cuter-loop~count
do
{loop for r frem U belowv inner-loeop-count
do
(set{ (bit compreas~rc-vector (case type
(zeol (¢ ¢ (* r outer-loop-count)!}}
’ . (:row (4 r {* c outer-leeop-~count}))})
(pop compress~list))})
compress-re=vecter) }

(cefwhopper (bex=mouse~sensitive-items-mixin :handle-mcuse) () -
(unwind=protect
{centinve=whopper)
{setg sensitive-item nil)
(senc item=blinker :set-visibility nil}})
(def>ethod (box-mouse~sensitive-items-mixin :whe-line-documentation-string) (}
(zl:atring
“L:Toggle Bit, L-2:Clear Pad Grid M(Hold):Draw, R(Hold):Erase, Ctl-l:Save, Mets-L:Run Super-L: Run N
1)
B (vhen sensitive-item (item-documentation sensitive-item}})}
(defmethod (box-mouse—-sensitive~itema~mixin :mouse-sensitive~item) (x y)‘
{decf x (send self :left-margin-size))
(decf y (send self :top-margin-size))
(setgy sensitive-item
{(dolist (item item-list)
(when (and (2 y (item-top item))
(< y ({tem-bottom item))
(€ x (item-left item))
(€ x (item-zight item)))
(recurn item)})))

(defmethod (box-mouse-sensitive~items-mixin :mouse-moves) (x y)
(tv:mouse-set=-blinker-curscrpos)
;: See Lif the mouse i3 inside an item
(let {(iter {send self :mouse-sensitive-item x y}})
{(cond (;; It is, turn on the blinker
(not (null item))
(let ((left (item-left item))
(top (item-tep item))
(right (item—zight item))
(bottom (item-bottom item)})
(send item-blinker :set=curaorpos left top!
{senc item-blinker :set~size (-~ right lef:) (- bottem top})
{send item=blinker :set=visibility 2)}}
32 It’s not on an item, turn off the blinker.
(t (send item-blinker :set-visibility ail))))}

; (defpethod (box-mouse-sensitive-items~mixin :mouse~click) (buttoz x y)
(let ({item (senc self :mouse=-sensitive-item x yl))))

.~

(defflaver sensitive-pad-mixin ((row ail) (eeol ail))
8]
{(:required-flavers box-mouse-sensitive~itema-mixin tv:graphics-mixin tv:window)
1settable-instance-variables)

(ceimethod (sensitive-pad~-mixin :make-sensitive-area)
(pac=width pad=-height)

:; The orcer of the loop i3 extremely important!!
It determines the scanning of the grid frem left to
;7 TiQht and top te bottom is how is done now..

(3end self :zemove-all)
(loop for r fzom O below row
fer tep from O by pad-height
do
{loop for ¢ from O below col
for left from 0 by pad-width
do
(send self :make-item (cons r c) left tep (+ left psd-width) (+ top pad-height})}})

(defreathod (sensitive-pacd-mixin :draw=grid)
(septional (make-sensitive—areas t)

5,189,709
19 20

(erase~content t)
faux pac~width pad-height grid-width grid-beight}
(vhen erase~content
(send self :expose)
(senc self :clear-wvindow))
(multiple-value~bind (vidth beight}) (send self :inside-size)
(setg pad-width (floor (/ width col)))
(setq pad-height (floor (/ haight row}))
(setqg grid-width (* col pade-widzhl})
({setq grid-height (* row pacd-height}}
{loop for c from O te row
for y from 0O by pad-height
de
{4 (2 y height) (decf ¥))
(senc self :Craw-line 0 y ¢ridewidth y tv:ialu-seta))
(loop for r £rom 0 to col
for x from Q0 by pad-width
do
(4f (2 x width) (dec? x})
(send self :draw-line x 0 x grid~height tv:alu-seta))
4{f make-sensitive-areas
(send seifl :make-sensitive-area pad-vidth pac-height)}}}

(Cefun draw-pattern (row col pattern-arzray window .optional (size nil) (from-x 0)
Saux box—width box-height alu (draw-half nil) (dim =1}
(p pattern-array))
(declare (sys:array-register p)}
(multiple-value-bind (width height) (Lf (null size] (send window :inside-~size)
(apply ¢’values size))
(setq box-width (fleor (/ width col})})
{setg box-height (floor {(/ height row)}))
(lecp for ¢ from 1 to row
for top from <from-y by box-height
do
{loop for r from 1 to é€ol
fozr left from <from-x by box-width
do
(case (kit p (incf dim))
({1 t) (setg alu tv:ialu-seta))}
{(0 nil) (setqg alu tvialu-andca)) 3
(* (setq drav-balf t})) :
(L¢ (not draw-balf)
(senc wvindow :draw-rectangle box-width box~height (l+ left) (1+ top) alu)
(send window :draw-rectangle
(fleer (/ bex=width 2))
{floor (/ box-height 2})
(+ left (floer (/ box=width 4)))
{+ tep {floor (/ box-height 4}})
tv:ialu-sets)
(setq craw-half nill}i)))

(fzom-y Q)

sz {serq foo (tv:make-window ‘tv:iwindow :edges~from :mouse :blinker-p nil))

{cefflavor stcred-patterns-pane (input-patiern-strear state-list garys-state-list height-list)
{box-mouse-sengitive~items-mixin sensitive-pad-mixin
tvigraphics=mixin tv:pane~mixin tv:window}
:settable~instance-variables)

(defnethod (stcrecd-patterns~pane :who-line-documentation-string) ()
{zl:string "L-2:Delece, Ctl=-L:Modify”))

(cefmethod (stored-patterns~pane :divide-storage-boxes)
(senc sel?f :seil-row s=row)
(send self :set-col s-col)
(send 3elf :draw-grid t))

(s-row s-col)

(defmethod (stored-pattezns-pane :update~state-and-height=list) ()
(setg state-list nil)

(setq Garys-state~list nil)
(setq height-list nil}
(loop for i in item~-lisc
for state = (item~state i)
for h » (item-name i}
do
(vhen (typep state ‘array)
(setq state~list (cons state state=list))
(setq heignt-list (cons h height=list})}))
({setq GarTys-stste-list (mapcar ‘convert-to-one state-list)}}

(defun-method ecdit~-pattern stored-patterns=-pane (item-state window)
(let ((item=arzay item—-szate)
(ip-items (reverse (sencd window :item~-listi}}}
(declare {(sys:array-register item-aczray})
{send windov :reset=-statce)
{send window :clear-window)
(senc windew :Crav-grid nil) -
{loop fezr 4 in ip-items
for index frem O
do
(= (bit item-arzay index) 1)
(sene vindow :upcate-item i :crawl)))}

[$8

2

51 5,189,709 2
(defmethod (stored-patterns~pane :mouse-click) (button x y)
(lat {{item (senc self :mouse-zensitive-item x yl})
(ip (send self :input-pattern-stream)})
(cond ((egl button f\c-mouse-L-1l}
(edit=pattern (ltem-scate item) ip)
t)
((egql button ¢\mouse-L-2)
{let ((left (item-left item))
(top (item-top item})
{right (item—right item})
(bottom (item-bottom item)!})
(setf (item—state item) 0}
{setf (itew-name item) 0)
(send self :drawv-rectangie (- right left 1) (- bettem top 1)
(1 lefe) (le top) tvialu-andeal)
(send self :update-state-and-height-lisc) :this should be changed to :after for
: saintance sake!!
<)
(t £1)3))

: (deZmathed (storecd-patierns-pane zafter :refresh) ()
: (send self :draw-grid ail))

: (defflavor bernstein-flaver (store-patterms-arTay-and-heigh-list) ()
; :setttable-instance-variables)

(defflaver input-pattern~pane (stcre~patterns-strean

{pen=box-1 1}

(pen~boex~h 1))
(box~mouse-sensitive~items-mixin sensitive-pad-mixin
tvi:graphics-mixin tv:pane~mixin tv:window)

:setzable~instance-variables)

.
(defun-method update-cne-item input-pattern-pane (item type)
(let {({left (itemleft Ltem))
(top (item~top item))
fright (item-zight item))
(pottom (item~bottiom item))
(state (item-state item)}
alu)
{set? (item-state item) (case types
(:toggle (and (setq alu tv:alue-xor! (flip statel}))
(:drav (and (setq alu tv:ialu-seta) 1))
terase (and (setg alu tv:alu-ancca) 0))))
(send self :draw-rectangle
(- right left 1) (~ bottom top 1) (1« left) (1< topi alu}}}

(defmethod {(input-pattern-pane :reverse-pad) ()
(leop for item in (send self :item~liat)
do
(update-cne-item item :toggle)))

(cefmethod (input=pattern~-pane :ccllect~update-boxes) (ebi)
{lat {((row=index (car cbi)}
(cel-index (cdr ebi)))
(send self :find-items
tloop for i from rov-index below (+ row-index pen-box-l)
neone
(loep for 3§ from ccl-index bealow (< col~-index pen-box=h)
ecllect
(cons L 311

(defmethod (input-patte:zn-pane :update~item) (item type)
(let {(current-row-col-index (i{tem-name item)))}
(dolist (item (senc self :collect~upcate-boxes current-row-col-index))
(upcdate~cone~-item item type)}))

(defmethed (input~pattern-pane :store-pattern) (}
(let ((sp (send self :store-patterns-stream))
(p=rov (3encd sell :row))
(pwcol (send self :eol))
(pattem=4rray (send self :make~item—state-array))
stored-pac-item left top)
(setq stored-pac-iten (lecp for ! in (reverse (send sp :itex—list))
thereisz (and (numberp (item—state 1)) 4))}
(setq lef: (item-left stored-pac-item))
(setq top (item-top stored-pad-item))
(set? (item-state stored—pad-item) pattern-array)
(setf (item~name stored-pad-item) 3) :default height
(draw-pattern p-row p-col pattern-array sp ’
(list (~ (item-zright storecd-pac-item) left)

(= (item~bottom stored-pad~item) top))
left tep)

{send sp :draw—grid nil nil)}))
(defmethod (input-pattern-pane :after istore~pattern} {)
(let ({sp (send »elf :store-patterns-strean;)!
(send sp :update-state-and-height=list)})

(defmethod (input-pattern-pane :mouse~-click) (butten x y}

5,189,709
23

(let ((item (send self :mouse~sensitive-item x y)))
(cond ({and item (eql button #\mouse-L-1))
(update=one—-item item :toggle)
t)
{(eql button #\mouse-L-2)
{(when (and row col)
(send self :draw-grid nil)
{(send self :reset-state)
t))
{{eql button f\c-mouse-l-1)
(send self :store-partern)’
t)
({eql butten f\m-mouse-l~-l)
:: (procesa~run-functiorn ®Run Berstein®
2:4¢ (lambda ()
(let ((sp (send self :store-patterns-stream))
(op (senc (send self :superior) :get-pane ‘outpput-pattern))

(lisp (send (send self :superior) :get-pane ‘lispl))
(send lisp :clear~window)

(send op :clear-window)
(drav=-pattern row col

(top-level (send self :wmake~item-state-array)
{send sp.:3tate~list) (send ap :theigbt-list)
lisp)
op)))
t{(eql button #\super-mouse-l-l}
;2 (process~run-function "Run Berstein®
24’ (lamdbda ()
(let ((sp (send self :store-patterns-stream))
(ep (send (send self :supericr) :get-pane ‘output~pattern))
(lisp (send (send self :superior) :qet-pane ‘lispl))
(send lisp :clear—=window)
(send op :clear-window)
{(drav-pattezn reow col

(garys-top-level (send self :make-item-state-array)

(senc 3p :garys-state-list)
1isp)
opl}}
s
e t))))

(defvhopper (irput-pattern-pane :mouse-moves) (x y)
(let (({item (send self :mouse-sensitive-item x y}} .
(button (tv:mouse-buttens)))
(cond ((and item (member button ‘(2 4)))

(and (= butten 2)
{and (= button 4)
Tt}
(¢ nil))}

tcontinue-vhopper x y!)

{update~cne~iten item :draw))
{upcate-one=-iten iten :erase))

(cefflaver ecutput-pattern-pane {)
(tv:pane-mixin tv:window)}

{(defflaver lisp-pane ()
(tvilisp~listener-pane tv:window))

(defflaver interface ()
(tviborders~mixin tv:bordered~constraint-frame=with~shared-ie=-buffer)
:setzable-~instance-variables
{:c¢efauit~init~plisc
ipanes .
‘((stered-patterns stored-patterns-pane
:label , (zl:string "Stored Patterns®)
:blinker-p nil
:save-bits t)
(input-pattern input-pattern=pane
:label , (zl:string "Input Pad")
:blinker—p nil
:save~bits ¢)
(output~pattern output-pattern-pane
:label , {zl:string ®*Output Display®)
:blinker-p nil
:save-bits t)
(lisp lisp-pane))
sconfigurations
*((main (:layout
(main :coluwnn stored-patterns middle lisp)
(middle :rov input~pattern ocutput-pattezn})
{:zizes
(main (stored-patterns 0.50)
:then (middle 0.50)
:then (lisp :even))
(middle (input-pattern :0.J5)

:then (output=pattern :even)))))
:configuration ‘main))

(cefmethod (interface :after :init) (&rest ignore)
(let ((sp (send self :get-pane ‘stored-patterns))
(ip (send self :get-pane ‘input-pattern)})
(send 3p :set-input-pattern-stream ip)
(send ip :set-store-patterns-stream 3p)))

24

5,189,709
25 26

(setg fo0 (tvimake-wincdow ‘interface :blinker~-p nil :edges-from :mouse))

(setq bar (tvimake~window ‘interface :blinker-; nil :edges~from :mouse))
(cefvar "atore-array-list* nil)

(defvar *store~height~liss® nil)

(defvar *pattern-row-col* nill

(defun save (file window-frame}
{let ((3p (send window-fzame :get-pane ‘storec-patterms))
ip (send window-frame :Qet-pane ‘input-pattern}}}
{sys:dump-forme-to=file (I{3:pacse-pathname file)
“{(setqg ‘sten-a::ny-lil:' ‘, (send 3p :state-list))
{(setq *store-height~lisct® ‘, (send sp :height-list))
{setq "pattern-cow=col® ‘, (cons (send ip :row)
(send ip :eo0l)))))))

{cefun retrieve (file window-frame)

{let {(3p (send window-frame :get-~pane ‘stored=-patterns))
(ip. (send wincow-frame :get-pane ‘input-pattern}})}
(whean (y-or-n=p “Has the Store Pattern area been setup? *)

(lcad (fs3:parse~pathname file))
{sand i{p :set-row (car *pattern-row=-col*})
{(send ip :set-col {(cdr "pattern-row-cel®*})
{(send ip :drawv-grid)
(loop for p in *store-array-lisce
fer h in ®"store-height-listce
for pa in (reverse (send sp :item=-list})
for left = (item-left pa)
for top = {item-top pa) .
do
(set{ (item-state pa) p}
{set{ (item~-name pa) h)
(draw=-pattezrn (car "pattern-row-col®) {cdr *pattearn-rov=cocl®) p sp
{list (- (item-right pa)} left)
(= (item~bottom pa} top))
left top})
(send 3p :cdraw-grid nil nil)
(senc 3 :set~-state~list *store~array-listv)
{senc sp :3et-garys-state~-list
{loep for &« in (send sp :state~list)
ccllect
(convert=to=one e)))}

‘(send 3p :set~height~list *score~height~liat®)}}))

(defun tes ()
{cl:time
{loop for i from C te 1000 deo
(+ 1 1))
3]

-*- Mode: LISP: Syntax: Common-lisp: Package: USIR: Base: 10 -*-

.
.
-

(defun make-g-array (length initial-centents)

(make~array length :element-type ‘ (unsignecd-byte 1) :initial=-con v initial-contents
:fill-pointer t})

(defmacro closeness~count (pattern-length q store~vectors-liat)
*({loop for store~vector in ,stere-vectors-list
collect
{let ({3 atore-vector))
(declare (sys:array-register s))
{loop for i fsrom 0 below ,pattern~length
count (eq (bit ,q 1) (bit s 41))1))

(dafun sum—lst-and~2nd-terms (pattern-length cleseness-list disturb-facter store-height-list)
pattern-iength
{leep for 4 in clesenesa-list
for § in store-height-list
collect
3282 (v -zttern=length i) nil
(+ (* i cisturb-factor) J)
24}

n

(defzacre sum-third-term—aux (sum~value q b)

*(values ,b :b is 1 then 4it’s positive
(Lf (= (logxor ,g .b) 1) (+ ,sum=value) ,sum-value})}

(cefmacro flip (x)
*(eend ((= .x 0} 1)
(t 01}

(defun add-bits (on-bits-list en=bit)
tloop for mem-list = (member on-bit on-bits=-list)

until (and (null mem-list) (push on-bit en-bits-list) (return on-bits=-list))
do . :

5,189,709 :
27 28

(setg on-bits~-list (remove on-bit on-bits-list})
(setg on=bit (1+ on-bit))))

{(Cefun d-index-nev (g-value 3tored-veciors-list sum-value-list cdim-index)
:;éoptional (window pp))
tlet ({pes=sum nil)
{neg=-sum nil)
exactematch)
{setq exact-match
{loop for b in storec-vectors-list
for b-value = (bit b dim-index)
for s=value in sum-value-list
de
(Lf (null s-value}
(recurn b)
(multiple-value-bind (bucket v3123)
(sum-thizrd-term~aux s-value g-value b-value)
(case bucket .
{1l (setg pos-sum (add-bits pos=~sum vsl123}})}
(0 (setq neg=sum (add-bits neg-sum val2d}})}1)))
print exact-mateh ll)
if exact-match
xact-match
{loop for max-pes = (1f (null-pos=~sum) -1 (apply ¢’max pos~sum))
for max-neg = (if (null neg-sum) ~1 (epply (‘max neg=sum) }
until (or (and (= -1 max-pos max-neq) (retuzrn nil}}
(and (*® max-pos max—-neg) .
(L2 (> max-pos max-neg} (return 1) (return 0)1))).

o % we
. e v

de
{setg pos~sum (delete max~-pos pos=-sum))
(setg neg-sum (delete max-neg neg=-sum)})
N _
(¢efun d-dimensicns (pattern-length guery-array-vector stored-vector-list
istuzb-facier stored-heignt-iisc result-array
toptiocnal (process-incex-list nil))
{let ((z result-array)
(Q query-array-vector)
3=1-2)
(declare (sys:array-register r q))
(setq s-1-2 (sum-lst -and-2nd-terms patteam=~length
{closeness-count pattern~length q stored=vector-list)
disturb-factor stored-height=-list})
;i (print 8-1-2 11}
(if process-index-list
{loop for i in process-index~-list
for pre-bit-value = (bit r 4)
for ghit-value = (bit q i)
for d-valus = (d-index-nev gbit-value stored-vecter-list s-1-~2 i)
until (and (typep d-value ‘array) (return d-value))
de
;2 (break "in process-index-list®)
2: (format 1l "~& d=value = -D* d-value)
{if (= (logxor pre-bit-value
d-value)

[y

1)
(setf (bit r 1) **))}
(setq process-index~list
(lecp for L from 0 below pattern-length
for pre-bit-value = (bit r i)
for gbhit-value = (bit q &)
for d-value = (d-index=-nev qbit-value stored-vector-list s=1-2 i)
;:de (format t "=\ devalue = -D" d-valve}
until (and (typep d-value ‘array) (retu,n d=value))
nconc
{vhen (= (logxor pre-bit-value d-value)
1)
(setf (bit r i) (f1ip pre-bit-value))
(List 1)1
{values r process-index~list)))

- {cefun toep~level (Query-array-vector stored-vector-list stored-hejight-list
&opticnal (windoew t))
(let {((pattern-length (array-total-size query~arrey-vector))
Tesult-array
process~incex~list)
(setq result-array (make-array pattern-length))
(copy-array~contents QUery-aIray-vector result-array)
(Zormat window®=~% First iteration!!®)
(multiple-value~-setq (result-array process-index-list)
(d-dimensions pattern-length Query-array-vecter stored-vector-list §
stored-height-list result-arcay))
(when (and process-index-list (listp process-index-list))
(format window "~% Second iteration!!™)
(format window ®~% process-index-list = ~S* process-index-list)
(d~dimensions pattern-length fesult-array stored-vector=list 3
stozed-height-1list result-arzray process-index-lisc})
tesult-array))

5,189,709

29 30
DBA REPORT
HQ AFESC/DEC PREPARED BY: DATE: 07/27/
PROGRAM ID: AFLC PROJECT ID: ROBIN FACILITY ID: <15
RUN NUMBER: 01 SET NUMBER: 01 LCC RUN NUMBER: 06

COSTS CALCULATED ARE: CONSTANT §

YEARLY CONSTANT § ENERGY & CLEANING VALUES

DESCRIPTION cost QTY ENERGY TYPE
CLEANING ==> 1310

HEATING ==> 13026 304 NAT GAS
A/C =) 14 114 ELECTRIC
FNS/LGHT S==> 16 130 ELECTRIC
USER DEF1==

USER DEF2==>
USER DEF3==>
USER DEF4==>

ELET IMATE DATA

Initial menu item "8; is selected to delete estimate data. CCMAS
tells a user how data may be deleted, then asks for the CCMAS-ID.

DATA CAN BE DELETED BY ENTERING:
CCMAS-ID; CCMAS-ID AND RUN #; OR CCMAé—ID, RUN# AND SET#:
ENTER PROGRAM, PROJECT, FACILITY-ID (CCMAS-ID):

ENTER RUN NUMBER:

If the user inputs a <CR> instead of a run number CCMAS responds:

DO YOU WANT TO DELETE ALL ESTIMATE DATA FOR:
CCMAS-ID: XXXXXXAXXX

If the user inputs a run number, CCMAS responds:

ENTER SET NUMBER:

If the user inputs a <CR> instead of a set number CCMAS responds:

DO YOU WANT TO DELETE ALL ESTIMATE DATA FOR:
CCMAS-ID: XXXXXXHXXX
RUN NUMBER: X

If the user enter a set number CCMAS responds:

DO YOU WANT TO DELETE ALL ESTIMATE DATA FOR:
CCMAS~ID: XXXXXXXXXX
RUN NUMBER: X
SET NUMBER: X

A "No" response to the DO YOU WANT TO DELETE ALL ESTIMATE DATA
FOR: returns the user to the previous data input. To a "YES"
reply , CCMAS responds:

DATA WILL BE DELETED

DELETING ESTIMATE DATA FOR:
CCMAS~ID: XHXXXXXXXX

RUN NUMBER: X (If Specified)
SET NUMBER: X (If Specified)

DATA DELETED

The user is then returned to the initial menu.

5,189,709

31

What is claimed is:

1. A method of comparing, with the aid of a comput-

ing system, a query pattern with a set of stored patterns,
said method comprising the steps of:

a) creating a library of stored patterns in a desired
format wherein each pattern comprises a set of
elements, each pattern having a relative time-
dependent importance/avoidance property;
b) presenting a query pattern comprising a set of
elements representative of the entity to be matched
in the same size and format as the stored patterns;
c) comparing the query pattern with each of the
stored patterns, on an element-by-element basis and
determining a first degree of match for each stored
pattern;
d) indicating a complete match if one exists;
e) creating, if no complete match exists, a derived
query pattern having the same number of elements
as the original query pattern and the stored pat-
terns, said derived query pattern being created as
follows:
1) determining a set of first change numbers D
according to the following formula:

i

2

Di([: X : B, ... ,BY = C(1,)PHLY) (PLXXD] Sy(x.i) +
CRNPH2Y (PLAXD] Sy (X)) + ... + Clk)PHKGD [pLAXK)] Si(X. i)

5

20

5

30

where:

D is the first change number for the i* element
of the query pattern,

t indicates a function of time, 3

C(i,t) is the algebraic sign of the relative impor-
tance property at time t of stored pattern B/,
p*in is the magnitude of the relative impor-
tance property of stored pattern B/ at time t,

5

J(X,i) is the degree of match with stored pattern 40
Bi

(SLX,i) is:

—1if thei % element of B?and the i* element of
X are both 0;

1 if the i element of BZand the i element of 4
X are both 1;

—p3 if the i element of Bz is 0 and the i*
element of X is 1;

p3if the i* element of B?is 1 and the i*" element

of X is 0, 50

2) setting the value of the i’* element of the derived
query pattern at 1 if the value of the i*? element of
the query pattern is 1 and the first change num-
ber for the i'" element is positive;

3) setting the value of the i” element of the derived
query pattern at 1 if the value of the i element of
the query pattern is 1 and the first change num-
ber for the i' element is zero;

4) setting the value of the i’” element of the derived
query pattern at 0 if the value of the i*? element of
the query pattern is 1 and the first change num-
ber for the i*# element is negative;

5) setting the value of the i’ element of the derived
query pattern at 1 if the value of the i’ element of 6
the query pattern is O and the first change num-
ber for the i# element is positive;

5

32

6) setting the value of the i* element of the derived
query pattern at 0 if the value of the i) element of
the query pattern is O and the first change num-
ber for the it element is zero;

7) setting the value of the i element of the derived
query pattern at 0 if the value of the i* element of
the query pattern is 0 and the first change num-
ber for the i?h element is negative;

f) comparing the derived query pattern with each of
the stored patterns, on an element by element basis
and determining a second degree of match;

£) indicating an answer pattern, said answer pattern
being the derived query pattern if a complete
match exists between the derived query pattern
and a stored pattern,

h) creating, if no complete match exists, an answer
pattern having the same number of elements as the
derived query pattern and the stored patterns, said
answer pattern being created as follows:

" 1) determining a set of second change numbers D>
according to the following formula:

Dy} X: B, ... BN = CQ,pHLA [PLAX.D] Sy(x.) +
CPHZO [PLIX DL Sy + ... +

Ctk, kD [pLAX K] S i)

where:

D; ;is the second change number for the i% ele-
ment of the query pattern,

t indicates a function of time,

C(i,t) is the algebraic sign of the relative impor-
tance property (or zero) of the stored pattern
Bi at time t,

pHin) is the magnitude of the relative importance
property of stored pattern B/,

J(X',i) is the second degree of match B/and X,

SAX',1) is:

— 1 if the element of B?, and the i* element of
X' are both 0

1 if the i* element of BZand the i element of
X' are both 1;

—P3 if the i* element of Bz is O and the i*
element of X' is 1; P3if the i’ element of B2
is 1 and the i* element of X' is O,

2) setting the value of the i*” element of the answer
pattern at 1 if the value of the i?* element of the
query pattern is 0 and both the first change num-
ber and the second change number for the it
element are positive;

3) setting the value of the i element of the answer
pattern at 0 if the value of the i’ element of the
query pattern is 1 and both the first change num-
ber and the second change number for the i%
element are negative;

4) setting the value of the i# element of the answer
pattern at O if the value of the i element of the
query pattern is 0 and the first change number
for the i element is negative;

5,189,709

KX)

5) setting the value of the i*" element of the answer
pattern at | if the vajue of the i element of the
query is 1 and the first change number is positive;

6) setting the value of the i element of the answer
pattern at *, where * indicates ambiguity, if the
value of the i element of the query pattern is 0,
the first change number for the i element is
positive and the second change number is nega-
tive; and

setting the value of the i element of the answer
pattern at * if the value of the i* element of the
query pattern is 1, the first change number is
negative and the second change number for the
ith element is positive; and

i) converting answer pattern from representational
format to desired format with ambiguous elements
distinguished from determined elements in some
manner.

2. A method, using a computing system, for calculat-
ing the similarity between a first pattern, called a “*query
pattern”, and at least one of a library of k second pat-
terns, called “stored patterns, ” the query pattern being
representative of a physical entity and being repre-
sented by a first sequence of successive feature elements
X=X1,X2...,X;...,X,) where n equals the number
of feature elements, each stored pattern being represen-
tative of a physical entity and being represented by a
second sequence of successive feature elements B=(B,,
By, ..., B; ... By), the method comprising the steps of:

(2) comparing the query pattern with the m* stored
pattern on an element by element basis;

(b) counting as a “first degree of match” for the m*
stored pattern, the number of elements of the query
pattern which are equal to the corresponding ele-
ment of the m* stored pattern;

(c) outputting a “matched pattern” indication if the
first degree of match for the m? stored pattern is
equal of n;

(d) storing the count for the first degree of match for
the m* stored pattern if less than n;

(e) repeating steps (a) through (d) for each remaining
stored pattern;

(f) computing, using the query pattern and the first
degree of match, a first set of n change numbers for
the set of stored patterns according to the follow-
ing equation;

Dl X8,BY = (1,0 PHOD [PLAXD) Syxiy + ... +
Clit) PHGD [PLAXD} Sy(X.d) + ... +
C(k 1) PHKD (pLAXK)] Si(X.1)

where:

(1) Dy ;is the first change number for the i element
of the query pattern;

(2) P is a positive prime number;

(3) L and L' are integers such that (L>L'>1);

(4) t indicates a function of time;

(5) C(i,t) is the algebraic sign of the relative impor-.

tance property of stored pattern B,

(6) pHUi) is the magnitude of the relative impor-
tance property of stored pattern B

(7) J(X,1) is the degree of match with stored pattern
Bi

(8) SAX,i) is:
—1 if the element of B2 and the i*" element of X

are both 0;

35

45

50

60

65

M
1 if the i element of BZand the i* element of X
are both 1;
—p3if the i element of BZis 0 and the i* element
of X is 1; and
p3 if the i* element of B?is 1 and the i element
of X is 0;

(8) computing, using the query pattern X and the first
et of change numbers, a derived query pattern X’
where X'=X', X'2. .., X' ..., X'a);

(h) comparing the derived query pattern to the m?
stored pattern on an element by element basis;

(i) counting as a “second degree of match” for the
m? stored pattern, the number of elements of the
derived query pattern which are equal to the corre-
sponding element of the m stored pattern;

(j) outputting a “matched pattern” indication if the
second degree of match for the m" stored pattern is
equal to n;

(k) storing the count for the second degree of match
for the m* stored pattern if less than n;

(1) repeating steps (h) through (k) for each remaining
stored pattern;

(m) computing a second set of n change numbers for
the set of stored patterns using the query pattern
and the second degree of match;

(n) computing an “answer pattern” using the query
pattern, the first set of change numbers and the
second set of change numbers.

3. The method of claim 2, further comprising the

further step of computing the second set of n change
numbers according to the follow equation:

Dyf[1):X: BY, ... BN = (1,5 PHON [PLAX. s\(x) + ... +
CGi,1y PHUD (PLAXD) Sy(X0) + ... +
Clk, i) PHY [PLAXK) S1x,0)

where:

(1) Dy ; is the second change number for the it ele-
ment of the query pattern;

(2) t indicates a function of time;

(3) C(,t) is the algebraic sign of the relative impor-
tance property (or zero);

(4) pHUD is the magnitude of the relative importance
property;

(5) J(X',i) is the second degree of match (the number
of elements of B that agree with the corresponding
element of X';

(6) SX',i) is:

—1 if the element of B and the i element of X’ are
both 0;

1if the i’ element of B and the i element of X' are
both 1;

—p3if the i element of B is 0 and the i** element of
X' is 1; and

plithe i element of B is 1 and the i" element of X'
is 0.

4. A method of matching a first query pattern, taking
the form of a set X=x;; with a plurality of stored data
patterns, taking the form of a matrix B=b;p, where
i=1, ..., nis the number of components in each pattern
and j=1, ..., k is the number of stored data patterns,
said method comprising the steps of:

(a) for each stored data pattern, counting the number

of components which are identical to correspond-
ing components in said first query pattern, thereby

5,189,709

35

forming a set of match numbers M=mp where

j=1 ...,k

(b) if any match number m;=n, then displaying the
respective j® stored data pattern an an output pat-
tern set Oj=o0;;indicating a match;

(c) if no match number m;j=n, then determining a
second query pattern X'=x; by modifying said
first query pattern, component by component, in
dependence upon both a first, global influence of
all stored patterns on all components of said first
query pattern and a second, particular influence of
all stored patterns on each respective component of
said first query pattern, wherein such step further
comprises the steps:

(1) multiplying each match number mj of a match
set M by a first disturbance factor L to produce
a set LM;

(2) determining a sign matrix Sgn for all compo-
nents sgn; by setting each component equal to
—1 if the corresponding stored pattern compo-
nent b;jis 0, and to + 1 if the stored pattern com-
ponent is 1;

(3) determining a magnitude matrix Mag for all
components according to the formula mag;=|-
(logxor(b;;x)=1), where N is a magnification
factor;

(4) determining an exponent matrix Exp=LM +-
Mag for all components according to the for-
mula exp;j=Lm;+mag;;

(5) forming the positive and negative sums for all
components as follows:

Pos.sum;=P(exp;1)+. . . +P(exp;x) for each
{expix) of j where sgn;;>0,

Neg.sum;=P(exp;1)+. . . +P(exp;x) for each
(expix) of j where sgn;;<0;

(6) determining a second query pattern set X'=x/
for all i as follows:
if Pos.sum;=Neg.sum;, then x/=1,
else x/=0;

(d) repeating steps (a) and (b) using said second query
pattern in place of said first query pattern;

(e) if no match number mj=n, then determining a
third query pattern X"”=x;" by modifying said
second query pattern, component by component,
in dependence upon both a third, global influence
of all stored patterns on all components of said
second query pattern and a fourth, particular influ-
ence of all stored patterns on each respective com-
ponent of said second query pattern, said third and
fourth influences being less than said first and sec-
ond influences, respectively; and

(f) displaying as said output pattern O-32 o; compo-
nent by component, those respective components

i0

20

25

30

35

45

55

65

36

of said third query pattern that have been modified
at most once from said first query pattern.
§. The method defined in claim 4, further comprising
the step of determining a response set R=r;for all i as
follows:

ri=x; if x{ =x; and
ri=set flag, if x{ =x;.

6. The method defined in claim §, wherein step (e)
includes the steps (1) through (6), using a second distur-
bance factor L’ which is less than said first disturbance
factor L, for those components i that have a set flag.

7. The method defined in claim 4, wherein a height
factor set H=h; is associated with the components of
each stored pattern by, each height factor component h;
being indicative of the relative importance of each
stored pattern with respect to the other stored patterns,
and wherein said height factor set H is added to the set
LM for purposes of determining the matrix Exp.

8. The method defined in claim 7, wherein at least
some of said height factor components h;are a function
of time.

9. The method defined in claim 7, wherein each of
said height factor components h;is an integer.

10. The method defined in claim 4, wherein a sign
factor set C=c; is associated with the components of
each stored pattern by, each sign factor component c;
being indicative of whether the pattern component is to
be sought, avoided or ignored, and wherein said sign
factor set C is multiplied by the sign matrix Sgn for the
purposes of determining the positive and negative sums.

11. The method defined in claim 10, wherein at least
some of said sign factor components c;are a function of
time.

12. The method defined in claim 10, wherein each of
said sign factor components c;is an integer.

13. The method defined in claim 10, wherein each of
said sign factor components cassumes one of the values
+1,0and —-1.

14. The method defined in claim 4, wherein said first
disturbance factor L is in the range of 2 to 20.

15. The method defined in claim 4, wherein said first
disturbance factor L is in the range of 3 to 7.

16. The method defined in claim 4, wherein said first
disturbance factor L is 3.

17. The method defined in claim 16, wherein said
second disturbance factor L' is 2.

18. The method defined in claim 4, wherein said mag-
nification factor N is in the range of 2 to 20.

19. The method defined in claim 4, wherein said mag-
nification factor N is in the range of 3 to 7.

20. The method defined in claim 4, wherein said mag-

nification factor N is 3.
* * * * *

