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This article discusses a method for downconverting the square-wave subcarrier

of spacecraft signals, such as the one from Galileo, which results in a compression

bandwidth that lowers the sample rate signil_cantly. The study is focused on three

issues. The first is the selection of an adequate down-mixing signal for the resulting
signal to have a format similar to that of the original signal, except at a lower

subcarrier frequency. The second is the control of the noise level so that the signal to
noise ratio is not degraded due to the downconversion. The third is to determine the

bandwidth of the downconverted signal considering the uncertainty of the residual
carrier frequency.

I. Introduction

A typical downeonverted spacecraft signal (e.g., the
Galileo signal) has a square-wave suhcarrier whose fre-

quency is much higher than the modulating data band-

width, as shown in Fig. 1 (a). Note that the residual

carrier frequency is much smaller than the subcarrier fre-
quency and is not necessarily zero, which results in the

dual spectra centered at -Jr and +ft. If the signal is

sampled at this point, the sample rate needs to be at least

twice the frequency of the highest harmonic considered to

have a significant amount of power, plus the residual car-

rier frequency and the single-sided data bandwidth. This
implies that excessive equipment is needed for data pro-

cessing and storage. For limited resources, this may even

mean loss of data. On the other hand, if the square-wave
subcarrier could be downconverted to a much lower ire-

queney, as shown in Fig. 1 (b), then the sample rate can

be reduced significantly, which leads to a smaller amount

of data storage and more efficient data processing.

This article presents a method to downconvert the

square-wave subcarrier, which includes finding a down-
mixing signal and controlling the noise level. In the next

section, the downconversion in the absence of noise will be

studied. This will be followed by an analysis that considers
noise.

II. Downconversion in the Absence of
Noise

In order to use the existing telemetry recovery equip-
ment, the downconverted subcarrier needs to preserve the
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square-wave form at a lower subcarrier frequency. This
can be achieved by a downconverting procedure shown in

Fig. 2 (a), where the mixing signal y(t) and the parameters
of the lowpass filter (LPF) need to be carefully chosen.

A. Downconversion of the Subcarrier

The square-wave subcarrier, D2(t), can be represented
in its Fourier series form, assuming that D2(t) has a unit

amplitude and phase angle, 0,c:

D2(t) = _4 _ 1 sin[(2n - 1)(w,ct + 0,c)] (1)
_" 2n- 1

n=l

where w,c = 2rfsc.

In a practical system, it suffices to consider only a small

number of terms of D2(t), typically up to the third or
fifth harmonic because the power in the higher harmonics

diminishes quickly.

Mixing D2(Q down can be achieved by multiplying

D2(t) by a signal, y(t), and then passing the product,

gl(t) = D2(t)y(t), through a low-pass filter, as shown in

Fig. 2 (a). Assuming that the signal, y(t), has the form

N

y(t) = 2 sgn(,_ -w!) _ cos[(2m - 1)(wit + 01)]
rn= l

= 2 sgn(w,c - _dl)cos(wit + 01)

+ cos 3(w,t + 01) + cos 5(wit + 01)

+-..-4- cos[(2N -- 1)(wit -{-01)] (2)

where Iw,_ - wxl is very small. Note that Eq. (2) is not a
Fourier expansion of a square wave. The authors will show

that this signal can mix the square-wave subcarrier down

to a much lower frequency.

Note that y(t) can only have a finite number of terms to

ensure convergence. This implies that the downconverted

signal will not be a true square wave, instead only N num-
ber of harmonics will remain, with the highest harmonic

being the 2N- 1. In the remainder of the discussion, it will

be assumed that N <_ 3. By expanding gl(t) = D_(t)y(t),

one obtains

[4 _ 1 sin[(2n-1)(w_J +Os_)]] 2sgn(w,¢- wx)[cos (wxt +01)+cos3(wlt+01)+ cos5(wlt-4-01)]gl(t) = 2n - 1
I- n=l J

4( 1 1.= sgn(w,c - *Ol) sin [(w,_ - wl)t + 0,_ - 01] + g sin 3[(w,_ - wl)t + 0,_ - 011 + g sm 5[(w,_ - wl)t + O,c - 01]

+ sin[(w,_ - 3wx)t + O,c - 301] + sin[(w,e - 5wl)t + O,c - 501] + sin[(w,e + Wl)/+ O,c + 01]

1

+ sin[(w,_ + 3wx)t + O,c + 301] + sin[(w,_ + N,_l)t + 0,_ + 501] + g sin[(3w,e - wl)t + 30,_ - 01]

1 I sin[(3w, c - N.o_)t + 30,_ - 501]
1 sin[(3w,_ A-Wl)t -4-30sc + 01] -4- g sin[(3ws¢ + 3wi)t + 30,c + 301] + g+5

1 1 sin[(5w,_ + wl)t + 50,_ + 01]
1 sin[(3w0c -I- 5031)t -4-30se "4-5011 "4- g sin[(5w,e -- wa)t + 50,, -- 01] -4-g+5

sin[(5_,, + 3Wl)t + 500¢ + 301] + 1 sin[(5w0¢ + 5wl)t + 50,, + 501] +." "}1 sin[(5w,, - 3Wl)t + 50,, - 301] + gl g+g
(3)
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By passing D2(t)y(t) through a lowpass filter with a
proper cutoff frequency, the first three terms will remain.

z,(t) : sgn(w,c - ¢°1)4r (sin [(w,_ - w0t + 0,_ - 01]

1

+ _ sin 3 [(w,, - Wl)t + 0,, - 0x]

1 }+ g sin5 +0.o - 01] (4)

which is similar to D2(t) except at a lower frequency.

The downconverting procedure can clearly be shown by

using the following numerical example: The square-wave

subcarrier that is used in the signal from Galileo has a fun-

damental frequency, 22.5 KHz, and it can be represented

by the first three harmonics, assuming the phase of the

subcarrier, O,e = 0,

.

D2(t) =sin(22.5 x 2r/)+ _sm(67.5 x 2rt)

1 .
+_sln(ll2.5 x 2_rt)

Considering down-mixing D2(t) with a signal of the form

shown in Eq. (2), where wl = 24.75 x 2_r and N = 3

y(t) =-2cos (24.75 x 2r/)-2cos (74.25 x 2_rt)

-2cos (123.75 x 21rt)

The product of D2(t) and y(t) is

gl(t) = D2(t)y(t)

= sin (2.25 x 2rt) + ½ sin (6.75 x 2r/)

1 . 1
+ g sm (11.25 x 27rt)- gsin (38.25 x 2rt)

1 sin (42.75 x 2_rt) - sin (47.25 x 2r/)
3

°

+ sin (51.75 x 2rt) + 5 san (56.25 x 2rt)

1 1
sin (87.75 x 27rt) - ¼sin (92.25 x 2rt)

5 ,)

- sin (96.75 x 2rt) + sin (101.25 x 2r/)

1
_ 15sin (137.25 x 2./) - _ sin (141.75 x 2rt)

1 sin (186.75 x 2rt)
- sin (146.25 x 2_rt) -

1 !
- -sin (191.25 x 27rt) - _ sin (236.25 x 2_rt)

3 O

where t is in milliseconds. It is clear that if an ideal

lowpass filter is used with a cutoff frequency, fL, being
11.25 KHz < fL < 38.25 KHz, then the output becomes

.

za(t) = sin(2.25 x 2rt) + gs,n(6.75 x 2 rt)

1 sin(ll.25 x 2 7rt)+g

which is similar to D2(t), except that the fundamental

frequency is reduced from 22.5 to 2.25 KHz. Clearly, if the

subcarrier is modulated by a slow-changing data sequence,
a similar downconversion can occur.

It is important to notice that the resulting waveform

represents a square wave due to the maintenance of proper

frequency, phase, and amplitude relationships. It is dis-
torted only by the truncation of the sequence to a finite

length.

B. Downconversion of Subcarrler in the Presence

of Data and a Residual Carrier

In the case where the residual carrier and the data are

present, a typical downconverted spacecraft signal has in-
phase and quadrature components of the form

z(t) = Asin (wrt + Or) + BDI(I)D=(t)cos (wrt + Or)

where A and B denote the amplitudes, wr = 2rfr is the

angular frequency of the residual carrier, Da (t) is the data
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with bandwidth B1, and D2(t) is the square-wave subcar-
tier with the frequency, f,c. Without loss of generality,

one assumes the residual carrier phase angle to be zero

(0, = 0) in the discussion that follows.

To keep the residual carrier present after the downcon-

version, the downconverting signal, y(t), needs to be added

to 1, as shown in Fig. 2 (b).

The lowpass filter input can be written as

g2(t) -" x(t)[y(t) -t- 1]

= =(t)y(t) + =(t)

= A sin(wrt) + BDl(t)D2(t) cos(w.t)

+ A sin(w,t)y(t) + BD, (t)D_(t) ¢os(w,t)y(t)

(5)

The first term on the right-hand side of Eq. (5) is the
residual carrier with a very low frequency which will re-

main after low-pass filtering. The second and the third

terms are centered on f0e and fl, respectively. Both f,¢

and fl are much higher than 51f0¢ -fl], which is the high-
est frequency of the desired terms, so the second and the
third terms can be filtered out. The last term is

[BDa(t) cos(w,t)] x [D2(t)y(t)]

Passing D2(t)y(t) through an LPF results in Zl($), as

shown in Section II.A; passing the product through the

LPF will result in BDl(t) cos(wrt)zl(t), since BDI(t) cos×
(w,t) has a narrow bandwidth.

In the overall picture, the resulting LPF output, z2(t),
is

z2(t) = A sin(wrt) + BD, (t) cos(w,t)

1 sin 3(Iw°,- w_Jt+ 0)x [sin(lw°¢-w, lt + e)+

,

+ g s,n5(]_,,,- ,_,]t) + o)] (6)

where 0 = 0_¢ - 01. The obtained output is similar to

the original signal, x(t), except that the fundamental fre-

quency of the subcarrier in z2(t) is much lower than that

in z(t), the phase has been shifted from 0,c to 0,c-01, and

the subcarrier in z2(t) does not have an infinite number of
terms.

C. Conditions on the Down-Mixing Signal Frequency

One condition on the down-mixing-signal frequency, fl,
is

]f,_ - f_l > 21f,I+ B_
2

(7)

where f. is the residual-carrier frequency, f,¢ is the sub-

carrier frequency, and Bx is the data-signal bandwidth, so

that the down-converted signal does not mix up with the
residual carrier.

To properly choose a down-mixing signal frequency, fl,
it is also necessary to find the lowest frequency of the un-

desirable term(s), and choose fl so that the lowest fre-

quency of the undesirable terms is higher than the highest
frequency of the desired terms; so they can be filtered out

or kept, respectively.

From Eq. (3) in Section II.A, it can be seen that if

]0¢ < f_, the lowest undesirable frequency is (2N+ 1)f0¢-
(2N-l)f_- If.l-B_/2, and the highest desired frequency

is (2N - 1)(fl - f,¢) + ]f_[+ B1/2. For there to be no

aliasing between the desired terms and undesirable ones,
it is necessary that

BI

(2N-1)(/2-L¢)+ILI+_ < (2N+I)L¢

- (2N - 1)fl - ILl B_2 (8)

Rearranging Inequality (8) and combining it with Inequal-

ity (7), one has

B1

f,¢+21f, l+_- < fl

2N 1 (__L1)< 21V:1 f'_ 2N- 1 lfi[ + (9)

Similarly, if fs_ > fl, then the lowest undesirable fre-

quency becomes (2N - 1)fl - (2N - 3)f°e -If_l- Bx/2,

and the highest desired frequency, (2N - 1)(f°, - f_) +

[f,[ + B1/2. In this case, the following is required,
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2N f'_ + 2N-----_-I ILl+ < fl

B1

< Lc-21LI 2 (10)

As an example, let N = 3 and fl > f_c, then Inequality

(9) becomes

B1 6f. IIL I 1Ba (11)f,o+2lhl+y < fa < - -

For the signal from Galileo, f_c = 22.5 KHz, and assuming
that the data bandwidth B1 = 1 KiIz, f, = 1 KIIz, then

25KItz < fl < 26.7KHz.

D. Conditions on LPF Cutoff Frequency

The cutoff frequency of the LPF needs to be between

the highest frequency of the desired term and the lowest

frequency of the undesirable term. Assuming that an ideal

LPF is used, the cutoff frequency of the LPF, fL, should
be

B1

(2N- 1)lfl - f,c[ + ILl + -_- < fL

< min{Lc-[f_[- B--L2,A-[f_I}

where f,_ = w,¢/(27r) is the fundamental frequency of the

square-wave subcarrier, D2(t), fl = wl/(2r) is the funda-
mental frequency of the mixing signal, y(t), and N is the
number of harmonics considered for the square wave.

Using the example of the Galileo signal again, if the
cutoff frequency of the lowpass filter, fL < fl = 26 KHz,

then the condition that fL has to be less than 7f, c - 5fl -

If, I - B1/2 = 26 KHz is satisfied, which implies that all
the undesirable terms will be filtered out.

In summary, it is possible to downconvert the subcarrier

to a much lower frequency, which leads to a much lower

sample rate when an ideal lowpass filter is used in the
absence of noise.

III. In the Presence of Noise

Assuming now that the signal is contaminated by an

additive white noise, the input to the downconverter is:

x(t) + n(t), where n(t) is additive white Gaussian noise)
The input to the lowpass filter will be:

[z(/) + n(t)l[Y(t) + 1] = z(t)y(l) + x(t) + n(t)y(t) + n(/)

The third term in the above expression needs to be ex-

panded

n(t)y(t) =n(t)2[cos(wlt + 01)

+ cos 3(wit + Ol) + cos 5(wxt + O1)]

where n(t) is a stationary additive white noise with zero
mean, and autocorrelation

nnn(t + r,t) = %__06(r)

The product of n(t)y(t) results in a stochastic process with
zero mean and autocorrelation [1]

R(t + r,t) = E{n(t + r)n*(t)y(t + r)y*(t)}

= Rnn(r)E{y(t + r)y(t)} (12)

since n(t) and O1 are independent. By expanding the term

y(t + r)y(t), one has

y(t+r)y(t)=4 {cos [wi(t+r)+®l]+cos3[wl(t + 7)+O1]

+ cos5[wx(t+ r) + O1]}[cos@it + O,)

"1- COS 3(0),$ --I- 01) -t- Cos 5(_lt "l- O1)]

= 2 {eos_l_ + cos[_,(2t + r) + 201]

+ cos[w,(-2t + r) - 201] + cos[wl(4t + r) + 40,]

+ eos[wx(-4t + r) - 4Ox] + cos[wa(6t + r) + 60,]

+ cos(wl(2t + 3r) + 201) + cos[wl(4t + 3r) + 40,]

+ coswl(3r) + cos[w1(6t+ 3r) + 6el]

I All random variables and stochastic processes are boldfaced.
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"1- COS[_I (--2t "1- 37") -- 201] "1- COS[_l (St -1- 3T) q'- 801]

+ cos[w, (4i + 5r) + 401] + cos[_l(6t + 5r) + 601]

+ co_[_(2t + 5¢) + 20_] + cos[_l(8t + 5_) + 80_]

+ coswl(5r) + cos[wl(10t + 5r) + 1001]}

By observing y(t + r)y(t), one can see that there are two

types of functions that are adding: cos(pv) and cos(qt +

pr+q01), where p and q are integers that belong to the sets
{1,3, 5} and {-/-2, -t-4, 6, 8, 10), respectively. The first type

of function is deterministic whose expectation is itself. To

evaluate the expectation of the second type of function,
one assumes that O1 is a random variable with uniform

distribution in [-Tr, 7r]. Then the expectation becomes [2].

_T
1 cos(qt + pr + qOi)d01

E{cos(qt + p,- + qO_)} = _ .

1
= _-----[sin(qt + pv + qTr)

zTrq

- sin(q/+ pr - qTr)]

=0

since q is an even number. So the autocorrelation function

of the process n(t)y(t) becomes

R(_) = Y06(r)[cos(_, 7) + cos(3_lr) + ¢o_(5_1_)]

The power spectrum of the process n(t)y(t), S(w), is

the Fourier transform of the autocorre]ation function, R(r)

[2],

s(_) = T{R(_)} = 3N0 (13)

This implies that the noise level will be increased by

about 7.8 dB/Hz after the downconversion, which is not

acceptable. One solution to this problem is to put N + 1

bandpass filters before the downconversion, in order to se-

lect only the residual carrier and the subcarrier harmonics,

as illustrated in Fig. 3.

If three harmonics are considered for the subcarrier,

then four ideal bandpass filters connected in parallel are

needed. The first one is used to keep the residual carrier,

with its center frequency at Ifr 1. The other three filters are

used for the three harmonics of the square-wave subcarrier

and the data signal around them. Their center frequen-

cies should be the appropriate harmonics of the subcarrier

[see Fig. l(a)]. The bandwidth of these harmonic filters,

fB, should be as narrow as possible with the condition

fB >__B1 + 2[fr] so that the data signal is allowed to pass.
However if the bandwidth of the BPF is too narrow, there
will be colored noise after the downconversion. To obtain

the so-called white noise 2 after the downconversion, the

BPF bandwidth should be fB -- (fL -- ILl) N.

Note that the above analysis ignores the noise power of

the output of the bandpass filter for the residual carrier
since its bandwidth is much smaller than that of the data

signal.

IV. Boundaries on Downconversion

The selection of the downconversion circuit and associ-

ated filters must consider the following boundarics to en-

sure no aliasing of spectra. Assuming that all the filters
are ideal, the conditions are summarized ms follows.

The cutoff frequency of the lowpass filter has to be

B1

(2N - 1)l fl -/',el + ILl + -_- < fL

< min(fl-lf, l,Lc-lL[--_-}

The lower bound is to keep the 2N - lth harmonic of the

square wave plus the data around it, and the upper bound
is to eliminate all the other undesirable terms.

The bandwidth of the bandpass filters has to be

fB _ Bx + 2ILl

and

/L -I/_1
fB-- N

to keep the noise level as low as if no downconversion is
ever done.

2 Flat average power spectrum within the considered band.
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The mixing signal can be

V(t) + 1 = 2 sgn (w_ - ¢_1) {cos(wit)

+ cos( lt) + cos(5 10

+ ... + cos[(2N- 1)wit]} + 1

The fundamental frequency of y(t) has to be either

B1
/.+21h[+y <

2N.
< 2N-lhe 2N 11([f_[+-_)

or

2N

B1
< /°e-2[/_[ 2

< L

(14)

(15)

The lower bound in Inequality (14), the upper bound in In-

equality (15), is for the downconverted signal not to over-
lap with the residual carrier and between the harmonics,

and the upper bound in Inequality (14), the lower bound
in Inequality (15), is for the LPF to be able to filter out
the undesirable terms.

As a conclusion, the single-sided bandwidth of the down

converted signal, BW/2, is

BW
- (2N- l)lfo_-f,l+ I:_I+

2 2

and Figs. 4 and 5 illustrate this bandwidth with BI and
fr as variables.

V. Conclusions

This article discussed the possibility of downconverting
the square-wave subcarrier of signals such as those sent

from Galileo. A practical method is given to compress the

bandwidth of the square-wave subcarrier by using a finite

number of harmonics, where most of the received signal
power is located.
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