- @ https:/intrs.nasa.gov/search.jsp?R=19920016741 2020-03-24T07:13:47+00:00Z

. 3 R

IDEF5 Ontology Description . 3%
Capture Method)
Concept Paper §

Christopher P. Menzel
Richard J. Mayer

Knowledge Based Systems Laboratory
Texas A&M University

(Research

INEFS ONTNLDGY CESCRIPTICON

n
E
]
r=3
]
»-
[74]
c
°
o)
o]
&
L -
uwr ©
QA Y=
< C
1990 a —
-0
a ¢
a7
(8]
z M
Cc
u -
- -
Ka BT B |
Cooperative Agreement NCC 9-16 ¢ C5 f_}
oY O
Research Activity No. IM.06: T
Methodologies for Integrated C{ = ‘5
Information Management Systems D id -
I o
D e
L e
< a2 v
« <4 C ¢
et) DY

NASA Johnson Space Center
Information Systems Directorate
Information Technology Division

/) ©//_\7 @
5 5B

Research Institute for Computing and Information Systems
University of Houston-Clear Lake

TECHNICAL REPORT

The RICIS Concept

The University of Houston-Clear Lake established the Research Institute for
Computing and Information Systems {RICIS) in 1986 to encourage the NASA
Johnson Space Center {JSC) and local industry to actively support research
in the computing and information sciences. As part of this endeavor, UHCL
proposed a partnership with JSC to jointly define and manage an integrated
program of research in advanced data processing technology needed forJSC's
main missions, including administrative, engineering and science responsi-
bilities. JSC agreed and entered into a continuing cooperative agreement
with UHCL beginning in May 1986, to jointly plan and execute such research
through RICIS. Additionally, under Cooperative Agreement NCC 9-16,
computing and educational facilities are shared by the two institutions to
conduct the research.

The UHCL/RICIS mission is to conduct, coordinate, and disseminate research
and professional level education in computing and information systems to
serve the needs of the government, industry, community and academia.
RICIS combines resources of UHCL and its gateway affiliates to research and
develop materials, prototypes and publications on topics of mutual interest
to its sponsors and rescarchers. Within UHCL, the mission is being
tmplemented through interdisciplinary involvement of faculty and students
from each of the four schools: Business and Public Administration, Educa-
tion, Human Sciences and Humanities, and Natural and Applied Sciences.
RICIS also collaborates with industry in a companion program. This program
is focused on serving the research and advanced development needs of
industry.

Moreover, UHCL established relationships with other universities and re-
search organizations, having common research interests, to provide addi-
tional sources of expertise to conduct needed research. For example, UHCL
has entered into a special partnership with Texas A&M Untiversity to help
oversee RICIS research ani education programs, while other research
organizations are involved via the “gateway” concept.

A major role of RICIS then is to find the best match of sponsors, researchers
and research objectives to advance knowledge in the computing and informa-
tion sciences. RICIS, working jointly with its sponsors, advises on research
needs, recommends principals for conducting the research, provides tech-
nical and administrative support to coordinate the research and integrates
technical results into the goals of UHCL, NASA/JSC and industry.

IDEF5 Ontology Description
Capture Method

Concept Paper

RICIS Preface

This research was conducted under auspices of the Research Institute for
Computing and Information Systems by Dr. Christopher P. Menzel and Dr. Richard J.
Mayer of Texas A&M University. Dr. Peter C. Bishop served as RICIS research
coordinator.

Funding has been provided by the Air Force Armstrong Laboratory, Logistics
Research Division, Wright-Patterson Air Force Base via the Information Systems
Directorate, NASA/JSC through Cooperative Agreement NCC 9-16 between the NASA
Johnson Space Center and the University of Houston-Clear Lake. The NASA technical
monitor for this research activity was Robert T. Savely of the Information Technology
Division, NASA/JSC.

The views and conclusions contained in this report are those of the authors and
should not be interpreted as representative of the official policies, either express or
implied, of NASA or the United States Government.

IDEFS Ontology Description
Capture Method

Concept Paper

Christopher P. Menzel
Richard J. Mayer

Knowledge Based Systems Laboratory
Department of Industrial Engineering
Texas A&M University
College Station TX 77843

Reviewed by
Michael K. Painter, Capt, USAF
Armstrong Laboratory
Logistics Research Division
Wright-Patterson Air Force Base, Ohio 45433-6503

This report was prepared under subcontract between the University of Houston - Clear Lake and Texas Engineering
Experiment Station, Texas A&GM, on RICIS Research Activity No. [M.i6. (NASA Cooperative Agreement NCC 9-16).

Copyright © 1990, Texas A&M University

Permission to use, copy, and distribute this document for any purpose and without fee is hereby granted, provided that the
above notice appears in all copies and that both the copyright notice and this permission notice appear in supporting
documentation, and that the name of Texas A&M University not be used in advertising or publicity pertaining to the
distribution of the document without specific, written prior permission.

The information in this document is subject to change without notice, and should not be construed as s commitment by
Texas A&M University. Texas A&M University assumes no responsibility for the use of this information. The views and
conclusions contained in this document are those of the research team, and should not be interpreted as representing the
policies, either expressed or implied, of the United States Air Force, of NASA, nor of the RICIS Program Office.

Preface

This report describes the research accomplished at the Knowledge Based
Systems Laboratory of the Department of Industrial Engineering at Texas
A&M University. Funding for the Laboratory’s research in Integrated
Information System Development Methods and Tools has been provided by
the Air Force Armstrong Laboratory, Logistics Research Division,
AFWAL/LRL, Wright-Patterson Air Force Base, Ohio 45433, under the
technical direction of USAF Captain Michael K. Painter, under subcontract
through the NASA RICIS Program at the University of Houston. The
authors and the design team wish to acknowledge the technical insights and
ideas provided by Captain Painter in the performance of this research as
well as his assistance in the preparation of this report. Special thanks goes
to the IDEFS research team whose names are listed below:

Dr. Christopher P. Menzel
Dr. Richard J. Mayer
Dr. Paula S.D. Mayer

Mike Futrell

Summary

This report presents the results of research towards an ontology capture
method refered to as IDEF5. Viewed simply as the study of what there is
in a domain, ontology is an activity that can be understood to be at work
across the full range of human inquiry prompted by the persistent effort to
understand the world in which it has found itself---and which it has helped
to shape. In the context of information management, ontology is the task
of extracting the structure of a given engineering, manufacturing, business,
or logistical domain and storing it in an usable representational medium. A
key to effective integration is a system ontology that can be accessed and
modified across domains and which captures common features of the
overall system relevant to the goals of the disparate domains. If the focus
is on information integration, then the strongest motivation for ontology
comes from the need to support data sharing and function interoperability.
In the correct architecture, an enterprise ontology base would allow the
construction of an integrated environment in which legacy systems appear
to be open architecture integrated resources. If the focus is on system /
software development, then support for the rapid acquisition of reliable
systems is perhaps the strongest motivation for ontology. Finally,
ontological analysis has been demonstrated to be an effective first step in
the construction of robust knowledge based systems.

An IDEFS description of an ontology is a computationally tractable
representation of what exists in a given domain. IDEFS provides the
means to identify the primary classes, or kinds, of objects there are within
the domain by isolating the properties that define the members of those
kinds, and the characteristic relations that hold between domain objects (see
below). IDEFS allows such representations to be purposely structured in a
way that closely reflects human conceptualization of the domains in
question. In IDEFS, differing perspectives on the same domain (e.g.,
varying levels of granularity) and their interrelations are also supported.
Finally, IDEFS supports the identification of complex kinds (system kinds)
and the properties and relations that characterize members of those kinds.

ker tivation n Informal

Any organized system---a business, a university, a manufacturing plant--
can be thought of as the resultant of three vectors:

(i) the system's ontology, i.e., the basic entities that populate the
system--personnel, equipment, manufacturing systems, etc.;

(ii) the structure those entities jointly exhibit--the relations they bear to
one another; and

(iii) the processes they undergo--the changes that take place in the
organization over time. An accurate representation of such a system
will thus reflect the information within all three vectors.

Currently, existing IDEF methodologies are geared chiefly toward
information of the second and third types: IDEF1 and IDEF1X capture
primarily structural information, IDEFO and IDEF3 various types of
process information. Of course, since both structural information and
process information involve objects in a system, there is the capacity for
limited ontology representation within the existing methodologies. But, as
noted below, there are several important kinds of ontological information
that are not representable in those methodologies. Furthermore, those
methodologies do not include techniques specifically designed for eliciting
and capturing system ontologies. This suggests that there is a need for a
separate methodology. We intend to substantiate this suggestion in this
report and begin laying the groundwork for the needed methodology,
IDEFS.

Like other IDEF methodologies being worked on at the Knowledge Based
Systems Laboratory, IDEF5 will have two components: (1) a rigorous,
formal foundation for the methodology and (2) an accompanying
documented software implementation designed for practical information
capture and information modeling. The software tool is designed for use
by domain experts--people attuned to the way a specific system works. The
basic question faced by any domain expert, or by a knowledge engineer
working with such an expert, is how to describe the things he or she knows
about. A good methodology will reveal the appropriate sorts of general
structures that classify the knowledge being sought smoothly and flexibly--
the formal foundation--and then provide a rich, powerful, user-friendly
environment for eliciting that information from the expert, and which then
stores and integrates the gamered information efficiently and effectively.

In the following sections we describe the nature of ontology and
ontological information, sketch the proposed IDEF5 formal and
methodological foundations for capturing that information, and discuss the
general proposed features of an IDEFS software environment.

1.1 Philosophical Foundations: The Nature of Ontology

In Western thought, ontology has chiefly been thought of as an attempt to
divide the world at its joints. In a word, it can be thought of as the study
of what there is. Historically, ontology arose as the major component of
the branch of philosophy known as metaphysics, which deals with the
nature of reality generally. Metaphysics is perhaps most often associated
with questions typically taken to be beyond the reach of physical science,
such as the nature of the soul or the mind, the existence of God, or whether
or not we have free will.1 However, there is no necessary connection
between ontology and pure, nonempirical philosophical speculation.
Viewed simply as the study of what there is, ontology is an activity that can
be understood to be at work across the full range of human inquiry
prompted by humanity's persistent effort to understand the world in which
it has found itself---and which it has helped to shape.

Natural science, in particular, can be viewed as an example of ontology par
excellence. Perhaps the chief goal of subatomic physics, for example, is to
develop a taxonomy of the most basic kinds of objects that exist within the
natural world--electrons, protons, muons and their fellows. At the other
end of the spectrum, astrophysics, among other things, seeks to discover
the range of objects that exist in its domain: quasars, black holes, gravity
waves, etc. Similarly, the so-called life sciences seek to categorize and
describe the various kinds of living organisms that populate the planet.
Such examples can be multiplied, of course, from geology to psychology,
chemistry to sociolinguistics.

This sort of inquiry is not limited to the natural sciences, however. The
abstract sciences as well---mathematics, in particular---can be thought in
part at least as an attempt to discover and categorize the domain of abstract
objects: prime numbers, transfinite ordinals, Hilbert spaces, continuous
nondifferentiable functions, polynomial algorithms, commutative groups,
and so on.

1 Unfortunately, in contrast to these deep, important--albeit often ultimately unresolvable--questions, in the
popular consciousness the term ‘metaphysics’ has come to be associated with such pseudo-intellectual bilge
as astrology, astral projection, occult “science,” and similar nonsense.

The natural and abstract worlds, however, do not exhaust the applicable
domains of ontology. For there are vast, human designed and engineered
systems---manufacturing plants, businesses, military bases, etc.--in which
the task is just as relevant, and just as pressing. Here, though, the
ontological enterprise is motivated not so much by the search for
knowledge for its own sake, as---ideally---in the natural and abstract
sciences, but by the need to understand, design, engineer, and manage such
systems effectively. '

Ontology, then, is a basic research task common to the natural and abstract
sciences on the one hand, and the information sciences, on the other. In the
next section we lay out the nature of ontological information in greater
detail, and discuss its application to the information sciences.

1.2 Kinds and Instances

Ontology can be understood to involve several subtasks; four are especially
worth discussing here: (i) providing an inventory of the kinds of objects
that exist within a given domain according to our best sources of
information regarding that domain (e.g., a theory or a domain expert), (ii)
for each kind of object, providing a description of the properties that are
common to all and only instances of that kind, (iii) characterizing the
particular objects that in fact instantiate the kinds within a system, and (iv)
providing an inventory of the associations that exist within a given domain
between (and within) kinds of objects.

The first two tasks are common in the physical sciences. Thus, for
example, in microphysics, one finds the subatomic world grouped into
basic kinds---at the grossest level (in the context of subatomic physics!),
leptons and quarks, and beneath them the large variety of subkinds of each
of those overarching kinds. And along with each kind, one finds the
properties common to all and only members of the kind, including the
specific property values of such attributes as mass, charge, spin, and so on
the members all share. Again, in biology, one finds perhaps the foremost
example of classifications into kinds and subkinds and characterizations of
the distinctive properties associated with each kind.

The third task of ontology becomes more relevant in contexts where we
want to be able to characterize specific individual objects, to speak
specifically of them and their properties. A basic metaphysical distinction
is especially useful in this regard, viz., the distinction between essential and

accidental properties. An essential property of an object S is a property
that S could not possibly have lacked. An accidental property of S, by
contrast, is a property that S in fact has, but nonetheless might not have.
For example, the number 17 has the property of being prime essentially; it
could not possibly have been evenly divisible by anything other than 1 and
itself. On the other hand, it has the property of being my favorite natural
number accidentally; if I hadn't existed, or if my affections had been
directed toward the number 43 instead, it would have lacked it (and no
doubt would have been none the worse for it). Again, human beings are
usually thought to have the property of being human essentially -- no one
could have been, say, a donkey or a stone instead of a human. On the other
hand, all of us could have been (and indeed, have been) a different height,
for example, and so one's height is an accidental property.

Now, the usual notion of a kind is that of a class of objects all of which
share a common nature, i.e., a set of properties that belong essentially to all
and only members of the kind. On this conception, then, the properties in
virtue of which a thing is a member of a kind are also those which define
its nature as an entity. This definition is for the most part quite
appropriate in the context of natural science and mathematics. For
example, the most natural properties for delimiting biological kinds
. involve having a certain DNA structure, then clearly, this will also be an
essential property of the animals in question (on the reasonable assumption
that no particular animal could have been a member of a different species).
Similarly, the most natural properties for delimiting kinds of subatomic
particles--e.g., a certain mass, charge, spin, etc.--will be in terms of
analogous underlying structural properties that are essential to the instances
of those kinds.

As we will argue, though, this definition is rather too restrictive for use in
the context of human designed systems. However, there is a closely related
conception--alluded to briefly in the first paragraph in this section--that is
somewhat more flexible and more applicable in the context of information
modeling. On this conception, the properties that define a kind are not
necessarily essential properties of the members of the kind. Rather, the
membership conditions only specify what properties it takes to be an
instance of that kind, irrespective of whether or not those properties are
essential to the members. Thus, on this broader conception, a kind K is a
class of objects consisting of all and only those things that exhibit a certain
set of properties, which we can call the defining properties of K.

An example will help to show how this conception of a kind is the more
useful one in the context of human designed systems, and will also help to
clarify one way in which an ontology might function in the course of
information management. Consider the following representation of the
basic ontology of a manufacturing cell composed of five entities; objects
enter the cell and encounter a cutter, then a drill, an inspection station, and
two cleaners:

KINDS DEFINING PROPERTIES

A: Cutter {Has diamond tool,...}

B: Drill {Has high speed motor,...}

C: Inspector {Has high intensity lens light...}

D: Cleaner and Painter {Has dust filters, high gloss paint,...}
E: Cleaner {Has liquid cleaners,...}

This shows the kinds of objects that populate the system, and lists the
defining properties of each kind; a representative defining property or two
is listed for each kind. It thus provides an abstract representation of the
general structure that the manufacturing cell must exhibit at any given
time. Now, the property having a diamond cutting tool is a defining
property of the kind Cutter. However, suppose the cutter that is in fact
instantiating this kind has the capacity of switching from diamond cutting
" tools to carbide. Then even though having a diamond cutting tool is a
defining property of the kind Cutter, it is nonetheless an accidental
property of the cutter; it would lack the property if someone were to swap
out the diamond tool for a carbide tool.2 The fact that it is a defining
property of the kind thus means only that at any given time, it must be the
case that whatever is playing the role of the cutter in the manufacturing cell

2 There are of course some significant philosophical issues involved in the the nature of artifacts; some
philosophers, for example, argue for the view--known as mereological essentialism--that every part of an
artifact, or physical object generally, is essential 1o it, so that if we swap out one cutting tool for another in
a cutter, the cutter with the replaced tool ceases to be, and a new cutter comes (o exist. The puzzie here
goes back to Greek times in the guise of the Ship of Theseus: if we bit by bit replace the planks of a ship
with new planks, and simultaneously bit by bit build a new ship from the oid planks, then which ship is
which? Is the new ship identical with the original ship because it has the same parts? Or is the rebuilt
ship identical with the original ship because of the insignificance of each plank individually to the identity
of the whole? Thankfully, we needn't address, or at least we needn't answer, such questions. The chief
purpose of ontology modeling, and information modeling generally, is not so much to divide the world at
its ontological joints, to discemn its ultimate nature, but rather simply to categorize it in the most useful
way for the purposes at hand. And the fact is that, in our ordinary ways of thinking about such matters,
ordinary objects do not cease to exist if we change relatively insignificant parts. As a matter of fact,
however, our theory will remain neutral on this question, and will indeed permit, though not require,
mereological essentialism should it prove useful in some contexts, as it conceivably might.

has a diamond cutting tool, irrespective of whether or not the cutter that is
in fact playing the role has a diamond tool essentially or accidentally.

The general point here is that things can belong contingently to important
kinds of objects within human designed systems. The reason for this is that
the kinds within such a system are usually artifacts, human constructions,
and hence it can often turn out that an object of one kind might “mutate”
into an object of another kind simply in virtue of undergoing some
nondestructive change, e.g., the exchange of cutting tools. Compare this
with, e.g., a case in which an electron decays into two pions. This is a case
of destructive change more typical in natural systems; the original object
does not survive, but is rather replaced by two distinct objects of a
different kind.

Put another way, the reason we use the broader notion of a kind is that
when we build an ontology for a certain human designed system we are not
necessarily setting out to discover and classify the world as it is in itself,
but rather to divide up and categorize the objects within the system in
useful and informative ways. An ontology's categorization scheme is
justified only insofar as it is useful to organizing, managing, and
representing information in the system so categorized. If objects of a
certain kind K play a useful role in the system, that is all the justification
one needs for admitting them into the system's ontology, irrespective of
whether or not the defining properties of K are essential to its members.

The third subtask of ontology is operative in the above example as well.
For in addition to listing and characterizing the kinds that define the
manufacturing cell, we have also discussed the natures of some of their
possible instances, e.g., whether or not they have a certain property
essentially, whether or not that property is a part of their nature. This is
no mere philosophical exercise. It might well be crucial to be able to
distinguish the essential from accidental properties. For the essential
properties of a thing S put inviolable bounds on what is possible within a
system containing S. For if S has a property P essentially, it cannot fail to
have it. Hence, for example, a design that specifies a kind that includes a
property that precludes P among its defining properties cannot use S as one
of its instances, regardless of how well it might meet the remaining
specifications.

There is more to characterizing the objects in a system than listing their
properties, though. For in the context of a given system it is equally
important to detail the relations that objects in the system can, and do, bear

to one another. Considerations such as those above lead us to distinguish
system-essential from system-accidental relations. A system-essential
relation relative to two (or more) kinds K1, K2 is a relation that must hold
whenever there are instances of K1 and K2. A system-accidental relation
relative to K1 and K2, by contrast, is one that needn’t hold between all
possible instances of those kinds. For example, the nature of the
manufacturing cell depicted above might require a certain sort of
informational link to be established between the cutter and the drill that
informs the drill of the type of operation the cutter has performed on a
given piece of material. In ontological terms, this would then be
characterized as a system-essential relation relative to the kinds Cutter and
Drill. On the other hand, the spatial relationship between cutter and drill
may well be irrelevant; e.g., the drill might just as well be three feet north
of its actual location in the cell. In this case, we say that the de facto spatial
relationship between cutter and drill is system-accidental. (Though of
course certain facts about the configuration of the drill or cutter could
require that the two be oriented in one and only one way. In this case the
relation would be system-essential. Note that, just as defining properties of
kinds needn’t be essential to their instances, in the same way entities that
stand in system-essential relations don’t necessarily stand in those relations
essentially; though being spatially oriented in a certain way might be
essential within the system, the drill and the cutter don’t necessarily have to
stand in that relation in any possible system in which they might exist.)

An interesting example of a system-essential relation is the part-of relation
that often holds between a complex object and some of its parts. Consider
an engine of a specific design. The engine can itself be viewed as a
complex system, made up of many smaller parts. Each of these parts can
be classified as instances of a kind, as can the engine itself. Call its kind E.
Given some kind of part P that is necessary to the design of the engine,
then, relative to P and E, the part-of relation is system-essential. Note also,
though, that, given an instance e of E and the instance p of P within e, some
other instance p* of P would have done just as well. Hence, the part-of
relation does not hold essentially between the instances p and e.

As this example shows, entire systems can themselves be considered as
further objects in yet larger system, and can be characterized as possessing
certain properties, €.g., in the case of the manufacturing cell, comprising
five machines. This means that an adequate ontology tool will have the
capability of examining and characterizing the system from the coarsest to
the finest levels of detail.

10

1.3 Accumulation of Domain Ontologies

What, exactly, is ontology good for? What role can it play in the design
and development of information systems? In what sorts of information
modeling contexts will it be useful?

One of the most important aspects of the general development and use of
the IDEF5 methodology will be the accumulation of a wide range of
domain ontologies. Among the greatest problems in information
management generally is inefficiency. Redundant effort is expended
capturing or recreating information that has already been recorded
elsewhere. Consider the analogy with programming. Very often the same
kinds of routines, e.g., in the design of user interfaces, are used again and
again in different programs by (in general) different programmers.
Enormous amounts of time and effort have thus gone into reinventing the
wheel over and over again. Recognition of this problem has led to the
development of vast libraries that have been collected over time that
contain often used routines which a programmer can simply call straight
into his or her program, rather than having to duplicate the function of
existing code.

Information management across similar settings faces the same sort of
problem. Manufacturing domains, for example, share many common
features; and the more similar the domains, the more features they share.
Rather than have to encode this information all over again in every new
setting, our idea is to develop an analogue of the concept of a programming
library by collecting this common information into ontology libraries, i.e.,
large revisable databases of structured, domain specific ontological
information where it can be put to several uses in the IDEF5 environment.
We envision numerous advantages to such libraries, two of which
especially stand out. First, domain experts developing an IDEFS ontology
for a specific system will be able to import relevant portions of the general
ontology database for the type of system they are describing directly into
their IDEF5s. This will save them the trouble of having to record the
information directly. This information will of course be malleable, so that
a given expert can modify it in light of features unique to his or her
system. Second, the information can be used to construct general
techniques for aiding the domain expert in extracting domain knowledge.
For example, by isolating and analyzing general patterns or features of
ontologies within certain domains one can develop productive strategies for
eliciting and structuring the sorts of knowledge one is likely to find in

11

those domains. For instance, if a certain common type of machine varies
in certain details from location to location, the background ontology
database can import the common information directly, and then lead the
user through a series of questions to elicit the specifications that are unique
to his domain. Again, an expert may not know how a certain object should
be classified. By searching on a list of essential properties of the object,
the tool could return a set of kinds in which the object would most
naturally be included.

With an array of ontology databases in use across a wide variety of
engineering, manufacturing, business, and logistical systems, the task of
information modeling could be revolutionized. The construction of such
databases, of course, is an enormous--though, we believe, quite realizable--
task. However, there is an even more basic task. Before one can build any
complex physical objects--a bridge, say--there must be an appropriate
methodological and theoretical foundation. This is no less true for abstract
objects like information models. That is, before we can think about the
structure of a domain specific ontology database, we need formal
theoretical foundations for ontology proper---e.g., the appropriate
representational medium---and methodological foundations for the capture
and storage of ontological information. To those issues we now explicitly
turn.

1.4 Ontology and Existing Methodologies

The goal of IDEFS is not to define yet another methodology to do
something a little better or a little different than some other existing
methodology. We have no interest, and see no point, in instigating another
skirmish in the methodology wars. Rather, our goal, first, is to point out a
gap in the existing set of methodologies: there is, we believe, a type of
information--ontological information--that has not been directly targeted
by any existing methodology; our second goal is thus to make some
preliminary suggestions for filling that gap, both theoretically and
practically.

Thus far we have outlined the nature of ontological information. The
importance of this sort of information should be clear. What is perhaps
less clear is the need for a new methodology for capturing this
information. In this section, we take up this issue.

For those familiar with other IDEF methodologies, the idea of capturing
information about kinds and their associated properties will no doubt

12

suggest both IDEF1 and IDEF1X. For a kind has been defined above as a
certain sort of class, and this might then suggest that a kind is like an
IDEF1 entity class or an IDEF1X entity. Furthermore, associated with
each entity class (entity) is a list of associated attributes which assign
property values to the members of the entity class. So perhaps we the
makings of an ontology modeling method is right under our noses in one of
these two methodologies.

Let's begin with IDEF1. Right at the outset we can say that it would be a
serious error to think of IDEF1 as an ontology modeling tool. The central
reason for this is that ontology modeling is real world modeling; that is to
say, the members of kinds are real world objects, the actual instances of
those kinds that exist within the system being modeled. The members of an
IDEF1 entity class, by contrast, are information objects --they are
objectified clusters of information that need to be kept about a system, the
various “information images” of the real world objects within a system.
Such objects are defined by the information they encode. Thus, all the
property values associated with an IDEF1 information object are essential
to that object; altering a value results in a new object.

This view has two consequences relevant to ontology. First, there will in
general not be a one-to-one correspondence between the information
objects within an IDEF1 model and the real world objects being modeled.
For instance, within an IDEF1 model of a certain business there might be
an entity class MANAGER and another entity class EMPLOYEE. These
will be different entity classes since they keep different kinds of
information. An employee of the business who is also a manager would
thus generate two distinct information objects, one for each class--one for
the employee in her role as an employee, and another for that same real
world employee in her role as a manager. It would thus be a confusion to
think of IDEF1 as an ontology modeler; it is simply not designed to
represent that kind of information. Second, since all the properties of an
information object are essential to it, there is no room for the distinction
between essential and accidental properties; that latter have no purchase in
the context.

We can press the issue farther. Suppose, against all better judgment, we
overlook the above problems. Suppose we are determined to use IDEF1 as
an ontology modeling tool and hence to represent kinds as entity classes.
Here then is another difficulty. Suppose that some of the members of a
certain kind of engine widget come with an additional, removable part—a
FRAMMITZ—that, depending on its location on the widget, makes them

13

suitable or not for use in engines of various sizes. Then having a
frammitz, and its being located at a certain place on a given widget, are
accidental properties associated with the kind WIDGET—members can
either have them or lack them, and members that have them can come to
lack them—but nonetheless they are properties of which it is important to
be aware and to keep track. We've already noted that the inapplicability of
the notion of accidental properties in IDEF1. But, further, in IDEFI1, by
the “No Null” rule, every attribute associated with a given entity class must
yield a corresponding value for every member of the entity class. Thus,
returning to the example, location_of_frammitz cannot be a legitimate
attribute in an IDEF1 representation of the kind WIDGET, since not every
widget has a frammitz, i.e., the value of location_of_frammitz for some
widgets is null.

Now, in IDEF1 one can capture the information in question without
violating the No Null Rule by inventing a new class of entity—
WIDGET_WITH_FRAMMITZ. But in the context of ontology there are
several problems with this. First, just as a matter of ontological aesthetics,
to paraphrase Ockham's Razor, one shouldn't be forced to multiply entity
classes beyond necessity; one shouldn't be forced to represent the
information in question by introducing an entirely new entity class. But
second, more importantly, despite the significant degree of freedom one is
allowed in constructing an ontology for a human designed system, one is
still constrained to make natural and useful divisions into kinds. But a class
like WIDGET_WITH_FRAMMITZ does not represent such a division.
From the perspective of ontology, it is an artifact foisted upon the modeler
by the given modeling tool. The information in question is more
accurately and appropriately captured by identifying the class of frammitz
bearing widgets as a mere subclass of widgets whose members belong to
the class contingently, than by identifying a separate, overlapping kind.

One might suppose, then, that we will fare better with IDEF1X. For
although there is some disagreement about the exact semantics of IDEF1X
diagrams, it is clear that the members of an IDEF1X ‘entity’ (IDEF1X's
spectacularly ill-advised term for a class of similar objects in a system) are
to be thought of as real world objects, not information images of those
objects as in IDEF1. Thus, an IDEF1X model of the business in the above
example would be thought of as containing the same real world object in
both the EMPLOYEE and the MANAGER entities. In an ontology model
of the same business, the kind EMPLOYEE and the subkind MANAGER
would be thought of in the same way. Furthermore, with its capacity for
expressing the subclass relation, the recommended analysis of the WIDGET

14

example in the previous paragraph could be expressed in IDEF1X. So
maybe IDEF1X is all we need.

However, there are deeper limitations. Chief among these is that IDEF1
and IDEF1X are purposely designed with certain expressive limitations
built in in order to constrain the structure of the information that they
represent. This makes for very clear, uncluttered, and efficient
information and data models. But it also limits the applicability of IDEFI
and IDEFIX outside of their intended domains. IDEF1’s inability to
distinguish essential from accidental properties was illustrated above. The
problem is shared by IDEF1X. Return to our manufacturing cell example
above. Suppose for security reasons we want it to be impossible to swap
out the diamond tool in the cutter; that is, suppose that we want to specify
in the list of defining properties of the kind Cutter that any instance has to
have a diamond tool essentially. Without the capacity to express modal
information, this is not possible; in particular, it is not possible to express
this in IDEF1X. But as the example illustrates, it may be of singular
importance to be able to express such information.

Further examples abound. For instance, in both IDEF1 and IDEF1X it is
not possible to name individual objects in an ontology and assert things
specifically about them. Rather, one can only say things that hold of every
member of a given class of entities in general. This is a crucial limitation
in cases where there is a distinguished member of a given kind with special
properties. And, more germane to the current context, it effectively rules
out the possibility of carrying out the third task of ontology. If one can’t
say anything about specific objects, one cannot in particular talk about what
properties they have. Again, the two methodologies can express only a
limited variety of general propositions about the structure of the entities
within a given class. For instance, one might want to note that for every
member of class A with property P, there is another member with
property Q. This is a straightforward quantificational statement, easily
expressed, say, in predicate logic; once again, this proposition is beyond the
expressive capabilities of IDEF1 and IDEF1X. But, as with the previous
examples, this is the sort of thing that one might well need to say in giving
a thorough characterization of the nature of the objects within a system.

The overarching point here is that the existing IDEF methodologies were
simply not designed to do ontology modeling; they were designed with
other goals in mind. Granted, especially with IDEF1X, we could probably
nail on an addition here, bang on it until it fits our needs there, ad
infinitum. But what would be the point? Why force a tool designed for

15

one type of job to perform another? Why add such a burden to an already
demanding task? Again, the claim is not that there is something wrong
with or inadequate about the existing IDEFs. They were simply not
designed to be tools for ontology modeling, and hence should not be
expected to meet the requirements of such a tool.

1.5 Increasing Expressive Power

First and foremost among the requirements of an ontology tool, then, is
greater expressive power. This need will be met in the theoretical
foundations of IDEF5 by imbuing its underlying formal knowledge
representation language with the full power of first order modal logic.
The power of first order logic is well known, and greatly exceeds the
expressive power of IDEF1. (Nonmodal first-order logic is developed and
discussed in some detail in the KBSL report [...].) Modal logic extends
first-order logic by introducing modal operators for necessity and
possibility and a corresponding set theoretic semantics. This extension,
among other things, gives one the power to express facts about essential
and accidental properties in a very natural way. An essential property of
x, recall, is a property that x could not fail to have, i.e., a property that is
not possible for x to lack.

The standard set theoretic semantics for modal logic is discussed in terms
of the heuristic concept of a ‘possible world’. The idea goes back to the
philosopher/mathematician Leibniz. Most of us believe that there are many
ways the world could be other than the way it is in fact. These ways the
world could be can be thought of as other possible worlds. One way the
world could be, of course, is the way the world actually is. Thus, the
actual world is one of the possible worlds. Unlike them, though, it is
actual, not merely possible. An object S is said to exist in a possible world
W just in case S would have existed if W had been actual. Now, it was
noted that an essential property of an object S is a property that S couldn't
have lacked. On the possible worlds picture, this can be defined as follows:
property p is essential to S just in case S has p in every possible world in
which S exists. Correspondingly, p is accidental to S if there is some world
in which S exists and fails to have p.

It is often illuminating to think of systems in terms of possible worlds. In
importing the enterprise of ontology into the information modeling
domain, we noted that our concern was not with the world per se, but
rather with the world of an organized system. Accordingly, in this
context, possible worlds should be thought of not as alternative states of the

16

world per se, but rather as alternative states of the system. Thus, a
relational database model could be thought of as modeling in one fell
swoop all the possible states of the database being modeled, all the different
possible relations that could populate the database. Thinking in these terms
often helps one to design more breadth and flexibility into the model in
anticipation of possible but unlikely or previously unconsidered states. In
the context of ontology, in addition to providing a definition of the notion
of essential and accidental properties, the possible worlds picture helps one
to anticipate or consider all possible natural kinds that might appear within
the system, and thus to define a sufficiently broad ontology.

A caveat is in order here to head off a potential misconception. The
intuitive concept of a possible world might suggest the idea of completeness
or totality: a world, after all, is a total system, complete in every detail.
However, the use of worlds in our formal apparatus might suggest that, in
order for us to have an acceptable model of a given system, we must
capture every piece of information within the system down to its last detail.
But then informationally incomplete models like the simple manufacturing
ontology model M above will not be do; we will have to fill in all the
informational details before we have an acceptable model. For example, in
a system represented by M, each machine consists of parts that were not
mentioned explicitly in the model; and each part meets certain
- specifications that were not mentioned, and has a certain origin (e.g., a
particular vendor) that was not mentioned; and so on. But practically
speaking, this descending chain of information is unending. Similarly, any
two objects within the system can in principle be regarded as a further
object. There is often call for such representations -- suppose, for
example, that in a system represented by M the cutter and the drill are
integrated in such a way that it is useful to regard them jointly as a single
object, Yet no such object is represented in M. Hence, the notion of a
world seems to put far too to great a demand on the modeling enterprise.

Fortunately, this is not a genuine problem. The notion of a world should
not be taken too literally. Formally speaking, worlds are just indexed
structures that (in a modeling context) represent possible or successive
states of a system. These structures themselves can be as sparsely or as
richly detailed as the modeler desires, depending on how much detail he or
she wishes to capture. In particular, a formalized version of the model M,
with just that much detail, would be a fully acceptable ‘world’. Since there
is no finite upper bound the amount of detail that can be stored within this
framework, one can add detail or new objects whenever it is deemed
appropriate, and in whatever fashion is deemed appropriate.

17

The efficacy of the framework of possible worlds is witnessed by the fact
that it is more or less the framework chosen by the members of the ISO
working group for characterizing the notion of a conceptual schema: a
conceptual schema consists of all the necessary propositions that hold in a
given system, those that hold in all possible worlds, or all possible states of
the system. Our use of the framework here thus ties in naturally with our
work on the development of the three schema architecture.

2.0 Methodological Foundations

Our methodological experience in ontology development is based on
practical industrial applications with Chrysler, Sematech and our work on
the emerging Air Force IDEFS ontology description capture method.
(IDEFS encapsulates the best practice experience in ontology development
of the information management community at large to date.) The work
with Sematech took place in the manufacturing and engineering domain;
the work with Chrysler was in the product design domain. The
experiences at both companies in developing ontologies was found to be
remarkably similar. The still formative methodology sketched below is
based on this experience. Broadly stated, the procedure consists of the
- following five steps (brief annotations follow the statement of each step):

Step 1 - Scope Domain and Collect Raw Data: This task is
responsible for: 1) determination of the boundaries of a domain, 2)
performing interviews with the domain experts, 3) collecting samples of
data representative of the inputs, controls, policies, knowledge, and
products of the domain.

Step 2 - Development of Initial Proto-kinds: This task is
responsible for the analysis of raw data to generate a tentative relation-
poor ontology of proto-kinds, proto-situations, and proto-situation types.
By a relation-poor ontology we mean that system-essential relations of
kinds are not yet considered in detail at this point (see the annotation to
Step 4 below). By a proto-kind (-situation, -situation type) we mean a
tentative kind (situation, situation type) generated from observation and/or
a cursory analysis of existing sources of information. This provides a very
useful, albeit defeasible, “rough draft” ontology to guide further inquiry
and analysis.

18

Step 3 - Refinement of Initial Analysis: This task is responsible for
the validation of the initial protokinds and the generation of a more stable
(but still relation-poor) ontology from tentative ontology. Further inquiry
and analysis guided by the tentative ontology gradually yields a revised and
more stable ontology. Stability is of course a relative notion. Our
experience confirms, however, that careful analysis can come close to the
ideal.

Step 4 - Addition of Relations: This task is focused explicitly on the
addition of system-essential relations to the ontology. The chief reason for
this is that, if a significant number of relations are introduced into the
tentative ontology, it can become an extremely messy task to untangle,
reassess, and refine the initial relational connections. Furthermore, adding
relations early on can be misleading, since the ostensible occurrence of a
relation involving a nongenuine kind can prejudice a modelers assessment
of the reality of that kind.

Step 5 - Validation of Stable Ontology Using Raw Data: This task
is responsible for validation of the stable ontology by taking the initial raw
data and attempting to “instantiate” it, i.e., model it within the stable
ontology. Where this doesn’t prove possible, or where it proves
inordinately awkward, the ontology is modified appropriately.

At each step in the above described process the results will be distributed to
our coalition for peer review and comment. In our experience, Steps 1, 3,
and 4 were found to work very well in team contexts. Step 2--the move
from a tentative ontology to a stable one, involves some fairly refined
attunement to certain patterns within the system which only seem to appear
when one develops the tentative ontology oneself from the raw data.

3.0 The IDEFS Description Development
Environment

3.1 Levels of Data Entry

First-order logic is powerful and efficient, but it does take a good bit of
experience to master the art of translating ordinary language into it. Thus,
we envision an environment that will permit several levels of data entry.
Those familiar with logic should be able to enter information in that
format directly. A level up from direct entry will be the possibility of
graphical entry. There are several graphical representations of first-order

19

logic that have been developed, several of them explicitly for the end of
knowledge representation [Sowa, NETL, Burch]. We will be drawing on
this work to develop our own graphical representation of first order modal
logic. The modal component in particular will require work beyond what
is currently available. The KBS research team counts modal logic among
its stronger areas of expertise.3

In conjunction with the graphical language, we will also build in a facility
for guided, structured text entry. The form of such entries will be midway
between straight first-order modal logic and unconstrained natural
language. We are fully cognizant of the severe, perhaps intractable,
difficulties of full natural language processing (NLP), and we don't in any
way pretend that we will be able to develop a full blown NLP component
to the IDEFS environment. (Though it will certainly be capable of
incorporating the current state of the art at any point.) However, our own
experience, and the experience of others, in developing constrained natural
language environments has shown that users can with relative ease learn to
express their thoughts within certain syntactic guidelines.4 Developing
such guidelines in the IDEFS environment will then permit entry of data in
a manner that is relatively natural and easy to learn, but which is
immediately processable by the software, or at least easily converted into
processable form. The facility will include online guidance for proper
entry, and an appropriate amount of built in syntax checking so as to assist
the user without confusing or defeating him.

Finally, the IDEFS5 environment will also allow straight text entry for those
unfamiliar with the graphical or first-order languages, and for quick
collection of domain knowledge that can be analyzed more formally at a
later time.

3.2 Hooks to Other Methodologies

Our chief goal in developing and extending the suite of methodologies is
data integration. Thus, we envision the IDEFS environment itself to be
smoothly integrated with the other IDEF methodology tools, as well as

3ct.c Menzel, “The True Modal Logic,” forthcoming in the Journal of Philosophical Logic; also C.
Menzel, “Actualism, Ontological Commitment, and Possible World Semantics,” forthcoming in Synthese.
4ct. p. Mayer, “A Computational Approach for Processing Locative and Temporal Information in Clinical
Medical Records,” unpublished Ph.D. dissertation, Department of Computer Science, Texas A&M
University, 1989; also P. Mayer, et al., “Locative Inferences in Medical Texts,” Journal of Medical
Systems 11, 68-85, (1987).

20

with tools developed for other, related methodologies such as ER and
NIAM. Our efforts are thus geared toward the development of a
comprehensive information modeling/knowledge engineering environment
capable of storing, integrating, and reasoning with information across
various types of domains.

4.0 Formal Foundation

In this section we provide a formal language and model theory for
ontology. We will indicate along the way the roles of the various elements
of the formalization, i.e., to what aspects in the informal development
above they correspond.

4.1 Model Theory

We begin with the notion of a basic ontology model structure (boms). A
boms is a representation of a system ontology (at some level of
development and detail). More precisely, a boms M is an 8-tuple
-D,W,@,d,£K,R,pO, where D and W are mutually disjoint nonempty sets,
@EW, d : W £ Pow(D) (i.e., d is a function from W into the power set
(set of all subsets) of D). Intuitively, D is the set of all possible individuals,
W is the set of all possible worlds or, more relevantly, all possible states of
a given system, and @ is the actual world, or actual system state. d is then
to be thought of as a function which assigns to every possible world wEW
the subset of D that consists of the possible individuals that exist in w. d(w)
is called the domain of w.

The last four elements of M need a little more discussion. First, for all
natural numbers n, let Fn be {f | f : W £ Pow(Dn)}, i.e., the set of all
functions from W into the set of all sets of n-tuples of elements of D. Fn is
the standard possible world semantical definition of the set of all n-place
relations; in particular, F1 is the definition of the set of all properties. The
idea behind this definition is that, whatever properties ultimately are, it is
intuitively clear that corresponding to each property in any given world is
the set of all the things in that world that have the property. Thus, for
example, corresponding to the property redness in the actual world is the
set of all the things that actually are red, and in another world there is a
different set. This suggests, rather than seeking any deeper analysis, that
we simply identify redness with these varying sets, or more precisely, that
we identify it with a function that, in each world w, picks out exactly the
red things in w. To have the property redness in a given world w is thus

21

simply to be in the set of things (the red things, of course) picked out by
the property in w.5

Note that on this account of properties and relations, the function d in M
which assigns a domain of objects to each world w(EW is a property, viz.,
the property existence: it is a function which assigns to each world w the
set of objects that exist in w. Note also that the distinction between
essential and accidental properties is captured straightforwardly in this
framework. As noted above, intuitively, an object has a property p
essentially just in case it has it in every possible world in which it exists,
and it has p accidentally just in case there is some world in which it exists
but lacks p. This translates as follows: an object a has the property pEF1
essentially just in case, for all wEW such that a(Ed(w) (i.e., for all worlds
in which a ““exists’") a(Ep(w); and for relations generally, objects al, ..., an
stand in the relation r(EFn essentially just in case, for all w such that al, ...,
anEd(w), -al, ..., anOEr(w). Similarly, a has the p accidentally just in
case there is a w(EW such that aCEd(w) but acep(w).

Given the definition of the Fn we can specify the character of the
remaining elements of M. First, we stipulate that £(EF2--i.e., that £ is a
two-place relation on possible individuals--and that for each wEW, £(w) is
a reflexive partial ordering on the domain d(w) of w. That is, writing
afwb for -a,bOEL(w), for all aCEd(w), afwa (reflexivity), and for all
a,b,cEd(w), if afwb and bfwc, then afwc (transitivity). Intuitively, £
represents the part-whole relation; thus, for all wEW, £(w) is the set of
pairs -a,bO E d(w) such that a is a part of b in world or system state w.
Thus, afwb can be read asa is a part of b in w. We write a<wb if afwb
and anb, and say that a is a proper part of b in w if a<wb. We also say that
a is simple in, or relative to, w if a has no proper parts in w. If a is not
simple in w, then we say that a is complex, or a system, in w.6

5This is the standard "possible worlds”™ definition of properties and relations. The account has suffered
much criticism from philosophers and linguists of late because it is coarse-grained, i.c., properties and
relations that pick out the same sets in all possible worlds are identical. However, intuitively, the
objection goes, propertics and relations can be necessarily coextensive without being identical, e.g., the
properties triangularity and trilaterality. Though important, it is our belief that these issues to not
typically effect ontology or information modeling generally, and hence the complexities of finer-grained
accounts can be avoided. Cf. e.g., J. Barwise and J. Perry, Situations and Attitudes (Cambridge, MIT
Press/Bradford Books, 1983), ch. 2; G. Bealer, Quality and Concept (Oxford, Oxford University Press,
1980), ch. 2.

©The idea of adding additional algebraic structure on each worlds domain of individuals to capture the part-
whole relation was inspired by the work of Godehard Link on the semantics of plurals. Link imposes a
full-blown boolean algebra on the individuals to provide interpretations for a wide variety of plural
phenomena in natural language, and this seems to be far more structure than is necessary for present

22

As stressed above, part-whole relations are crucial for the accurate
representation of physical systems, especially manufacturing and
engineering systems, and this additional structure imposed on the objects of
each possible world (possible system state) captures those relations in a
simple but powerful way. Note that since the relation is partial, it can be as
elaborate or as sparse as required: everything from the empty relation to a
linear well-ordering counts as a partial ordering. The requirements of
reflexivity and transitivity guarantee only that every object is a part of
itself, and that the parts of the parts of an object a are also parts of a. In
particular, because models needn’t be complete descriptive representations,
the part-whole relations between objects in a model can be as detailed or as
sparse as one desires. This makes for great flexibility in the development
of models, since it allows one to add part-whole information incrementally
in the construction of a model to whatever extent is deemed necessary.
Note also that the part-whole relation needn't hold essentially between two
objects. That is, it is perfectly consistent within a model for a to be a part
ofb in one world w and for a not to be a part of b in another. This
implements the idea discussed above (see footnote ??) that, intuitively, most
complex objects don't have all of their parts essentially.7

The sixth element K € F1 is a set of properties that represent the kinds
within a system, and hence the members of K are called the M-kinds, or the
kinds of M. In our informal development above kinds were identified with
classes, which are usually taken to be collections of some kind. However,
kinds cannot be thought of as mere collections, since they transcend their
members: the nature of a kind is not altered if its instances change. This is
precisely the feature of properties noted above that distinguishes them from
sets. Thus, in our more precise development, kinds are best identified with
certain distinguished properties, and hence K is stipulated to be a subset of
the set of properties F1.

The seventh element R of M represents the system essential relations, and
hence we stipulate that R € »n2 2Fn, i.e., that R is a subset of the set of all
2-or-more-place relations. The final element p is defined to be a function

purposes here. Link also restricts his attention to nonmodal contexts. See G. Link, “The Logical Analysis
of Plurals and Mass Terms: A Lattice Theoretic Approach,” in R. Bauerle et al. (eds), Meaning, Use, and
Inserpretation (Berlin, De Gruyter, 1983).

7 Note, however, that having a filter might be a defining property of the kind cleaner, so that in any state
w of a given system, all cleaners must have filters. We have dwelled on this point already above, but if an
ontology is not to be muddled, it is crucial that the distinction be clear.

23

on K»R such that p : K £ Pow(F1-K), and p : R £ »n22Kn such that for
all n-place relations r(ER (n22), p(rXEKn. The role of p, then, intuitively,
is to map each kind k to the set of its defining properties of k, and to map
each relation r in R to the kinds relative to which r is system-essential in w.
That no kind is the defining property of some other kind (or itself, for that
matter) is ensured by the stipulation that p maps K into Pow(F1-K), rather
than Pow(F1) simpliciter. The stipulation that p be one-to-one assures that
no two distinct kinds have precisely the same defining properties. Note
though that the defining properties of one kind k might constitute a
(proper) subset of the defining properties of another kind k¢, so that every
instance of k¢ is an instance of k. In such a case we say that k¢ is a subkind
of k. One might, for example, wish to define a general kind cutter, and
two separate subkinds diamond-tool cutter and carbide-tool cutter obtained
simply by adding additional properties to the more inclusive kind. By
defining a kind’s defining properties independent of any world, however,
we build in the idea that a kind’s defining properties are essential to it.
One’s conception of a particular kind might change over time, of course,
but this can be represented in terms of a series of several distinct but
related kinds.

Further stipulations about p’s behavior must be made in order to assure
that defining properties and system essential relations are represented
correctly in M. Specifically, we add in addition two conditions on p.
First, if kEK, then for all pEp(k), k(w) < p(w), for all wEW, i.e., in any
world w, every member of the kind k in w must have the property p.
Second, in the same manner, for any n-place relation r(ER such that p(r) =
X1, ..., knQ, for any wEW, if ki(w)rA for all i such that 1£ifn, then there
are al, ..., an@Ed(w), ai(Eki(w), 1£ifn, such that -al, ..., anOGEr(w). What
this condition does is to capture the system-essentiality of system-essential
relations; specifically, the condition says that for any world w, whenever
each of the kinds relative to which r is system essential has at least one
member in the domain of w, then r in fact holds between members of those
kinds in w.

An important relation that can obtain between models is that one can be
embedded in another, in the sense that all the information in one model is
preserved in another model which contains more information. If a model
M is so embedded in another M¢ we say that M is a submodel of M¢ . This
sort of situation can arise in at least two ways. First, it is an essential fact
of the modeling enterprise that models evolve over time. One of the
circumstances under which this happens is when an existing model must be

24

augmented in light of new information. Another is when one might
purposely filter out information in order to obtain a simpler, more
coarsely-grained model--not all available information, after all, is useful in
all contexts; one might thus freely filter the information in a given
comprehensive model in a variety of ways to obtain many different
submodels.

Formally, then, to begin with, say that M = .D,W,@,d,£K,R,pO is a
substructure of M¢ = -D¢,W¢,@¢,d¢.£¢,K¢,R¢,p¢O if and only if D € De,
WS We, @ = @¢, and d(w) = d¢(w)«D, for all w(EW. Suppose then M is
a substructure of M¢, and let rE»nFn, be an n-place relation of M, and r¢
an n-place relation of M¢. Then we say that r is the restriction of r¢ to M,
written r¢#M, just in case, for all wEW, r(w) = r¢(w)«D. M is a
submodel of M¢ just in case M is a substructure of M¢; £ = £¢#M; for each
k(EK there is a k¢(EK¢ such that k = k¢=M (such a k¢ is called a correlate
of k in M, ¢), and similarly for R and R¢; for each k(EK, and for each
PEp(k), there is some p¢gEp¢(k¢) such that p = pg#M, where k¢ is a
correlate of k in Mg; and for each n-place rER, p(r) = kd, ..., kO,
where kd, 1£ifn, is a correlate of k in M¢.

Roughly, then, in English, M is a substructure of M¢ if the individuals
and worlds of Mg include those of M , they share the same actual world,
and the individuals that exist in a world of M are exactly those that
individuals of M that inhabit that world in M¢. Thus, all the individuals
that inhabit that world according to M also inhabit it according to Mg,
though M¢ may include new individuals in that world as well. The
remaining conditions that must be met in order for M to be a full-blown
submodel of M¢ simply spell out the idea that the properties and relations
of M--in particular, the part-whole relations, the kinds, and the system-
essential relations of M--can only change in M¢ in ways that increase
information, i.e., such that none of the information of M is lost. Thus, for
example, if a is a part of b in w relative to M, then a is a part of b in w
relative to M¢--though there may be some part ¢ of a in w relative to M¢
that was not recognized in M because ¢ is not among the individuals M;
this corresponds, e.g., to a situation in which M¢ represents a finer-grained
representation of a system also represented by M. Again, a kind k may
have more defining properties in M¢ than it had in M, but those in M¢ that
have correlates in M will still be true of all the objects in M¢ that they were
true of in M (plus perhaps some that were not among the individuals of M).
It may be, however, that certain defining properties of k in M¢ were not

25

recognized in M because they only appear at a finer level of granularity, or
because of some other shift in perspective not captured by M.

4.2 Languages for Ontology

In this section we present the formal language for ontology and discuss the
development of more user-friendly, graphical languages for use in the
IDEFS description development environment.

As noted the formal IDEFS language L will will be a modal extension of
first-order logic. It will thus consist of the usual possibly infinite store of
individual constants c1, ¢2, ..., individual variables v1, v2, ..., n-place first-

order predicate constants Plll, Przl, ..., and n-place predicate variables Frll,

Fn, ..., for any or all n as desired, though it is required that L at least
contain all variables and the predicates P%, which will ordinarily be written

. 2 . . : .
as =, as well as the predicate P,, which will be written as e. e will express

the part-whole relation in L. In addition, L will contain the standard
logical operators $ (existential quantifier), — (negation), and &
(conjunction), as well as the modal operator { (possibility). L differs from
typical first-order modal languages in that it contains predicate variables as
well as distinguished higher-order predicates KIND, DP, and SERn (n22)
that express the property of being a kind, the relation between a kind and
its defining properties, and the relation between a system-essential relation
and the kinds relative to which it is such, respectively.

Then syntax of the formal language will also be standard, modulo the
special higher-order predicates. Specifically:

o If P is an n-place first-order predicate (constant or variable) and tl,
..., thany n terms (i.e., constants or variables). Then Ptl, ..., tn isa
(first-order atomic) formula (of L).

» If P is a one-place first-order predicate, then KIND(P) is a (second-
order atomic) formula.

26

If P and Q are 1-place first-order predicates, then DP(P,Q) is a
(second-order atomic) formula.

If P is a 2-place first-order predicate and P1, ..., Pn (n22) are 1-place
first-order predicates, then SERn (P,P1, ..., Pn) is a (second-order
atomic) formula.

If j and y are formulas, so are —f, 1f, and (f & y).

If j is a formula and c is any variable (individual or predicate), then
$aj are formulas.

We define the other standard logical operators in the usual way, viz.,

« f/y=df ~(~f& —y),fEy =df ~(f& —y),f y=df CEy) & (y
Ef)

o vaf =df —S$a—f, [If =df —}—f
4.3 Interpretations
- Given a model M and a language L for ontology we now want specify how
L is interpreted in M. This is done in terms of an interpretation function V
which maps elements of L to appropriate semantic objects of M. The
general notion of an interpretation function is discussed at length in the
final technical report for the IISEE project, so we will not dwell on
details.8 That said, an interpretation function V for L and M =
-D,W,@ ,d,£,K,R,pO is a function such that

« Iftis aterm (of L), then V(t) E D;

 If P is n-place first-order predicate (constant or variable), and wEW,

then V(P,w) & V(Dn); in particular, V(P%,w) = {-a,a0 | aGBd(w)},

and V(Pz,w) = £(w). (P2, recall, is to be the identity predicate, and
2 1

P% the predicate that expresses the part-whole relation.)

8C. Menzel and R. Mayer, “Theoretical Foundations for Information Representation and Constraint
Specification,” final technical report, IICEE project, AFHRL/LRL, WPAFB, Ohio, March 1991.

27

 V(KIND) E V(K); V(DP) = {k,pO | k € K and p E p(k)}; and
V(SERn) = {-rkl, ..., knO | k1, ..., knO G p(r)}.

Interpretations for formulas of L will be defined recursively in terms of V
in the usual way. Specifically, we define V" to be a total extension of V
such that V° also maps the formulas of L into the set {T,F} (truth and
falsity) in the following way:

o If j is a first-order atomic formula Ptl, ..., tn , then V°(j,w) = T iff
tl, ..., mO &E V(P,w).

 If j is KIND(P), then V°(j,w) = T iff V(P) E K.

o If j is DP(P,Q), then V°(j,w) = T iff V(P,w) CE K and V(Q,w) E
p(V(P,w)).

« If j is SERn (P,P1, ..., Pn), then V°(j,w) = T iff V(P) (E R and
-V(P1,w), ..., V(Pn,w)O E p(V(P,w)).

e If j is =y, then V°(j,w) = T iff V'(j,w) = F.
o Ifjis (y & q), then V°(j,w) = T iff both V'(y,w) and V'(q,w) = T.

o If j is $ay, then V°(j,w) = T iff there is a total extension V"~ of V
differing from V- at most in what it assigns to a such that V*(y,w) =
T.

o If jis }y, then V°(j,w) = T iff there is a w” (E W such that V'(y,w") =
T.

4.4 Axioms for Ontology

A proper axiomatic basis that captures the logic of our ontology models
will be needed as a basis for developing computational tools with a capacity
for automated reasoning. In this section we will describe an appropriate
axiomatic basis, though we will not explore the issues of computational
implementation, which will be a task for the next phase of IDEFS5
development.

The basis for the system will be a fairly weak second-order logic modal
logic. That is, in addition to the usual basis propositional tautologies, and

28

axioms for quantifiers and identity,9 we also have the usual axioms of the
modal logical system SS:

K: [IG=y)=2L>0y

T j=1

50 3204

and the rule of inference of necessitation:

Nec: If "z j, then “z []j

i.e., if a formula j is provable, then the proposition []j that it is necessary is
also provable. This rule captures the intuition that anything provable is a

truth of logic and hence should be true in all possible worlds, or for all
possible system states.10

The last thing we need are axioms that capture the logical content of the
distinguished predicates of the language of ontology-- i.e., KIND, DP, and
the predicates SERn--that was given them in the definition of an
interpretation above. Thus we have the following:

Ol: DP(F,G) @ (KIND(F) & —-KIND(G))
02: DP(F,G) > vx(Fx > Gx)
03: SERn (F,Fl, ..., Fn) ® (KIND(F1) & ... & KIND(Fn))

O4: SERn (FF1, .., Fn)2 [($xFIx & ... & $xFnx) @ ($x1FIxl & ... &
$xFnxn & Fx1...xn)]

05: DP(F,G) > [IDP(F,G)

9 See again the IISEE report. It should be noted that the logic developed in the latter report is not second-
order; however, the quantifier axioms for the logic in the present report will work in exactly the same way,
regardless of whether the quantified variable is first- or second-order.

is some doubt about the soundness of necessitation as a general modal rule of inference however;
cf. C. Menzel, “The True Modal Logic,” forthcoming in the Journal of Philosophical Logic.

29

06: SERn (F/F1, .., Fn) 2 [JSERn (F,F1, ..., Fn).

O1 says that if the relation DP holds between two properties F and G, then
F must be a kind, and G must not be a kind. This captures the idea that DP
holds between a kind and any of its defining properties, which includes the
idea that no kind is a defining property of any kind. O2 expresses the
thesis that a member of a kind must have all of the defining properties of
the kind--note, however, that it does not say that it must have them
essentially, in line with our earlier discussion of the notion of a kind. O3
captures the idea that system essential relations are such relative to some
finite collection of kinds. O4 expresses the thesis that a system essential
relation must hold between representatives of the kinds it is relative to
whenever those kinds are nonempty. OS5 and O6 capture two important
modal properties of kinds and systems essential relations, viz., that if G is a
defining property of a kind F, then it is necessarily a defining property of
F; and if F is system essential relative to some collection of kinds, then it is
necessarily system essential relative to those kinds. Note that these
properties are enforced in the model theory by the fact the values of the
function p on a member of K or R was defined independent of W. (p,
recall, determines the defining properties of a given kind, and the kinds
relative to which a given relation is system essential.) Note also that few
properties of kinds and system essential relations follow from the
restriction that p be one-to-one; however, these are not expressible in the
language as it stands, since it requires that we be able to express identity
between properties and relations, and this requires a second-order identity
predicate. Addition of such a predicate will be explored in the next phase
of IDEFS development. :

5,0 Bibliography

[Barwise 83] Barwise, J. and Perry, J., Situations and Attitudes, The MIT
Press, Cambridge, 1983.

[Devlin 91] Devlin, K., Logic and Information, Volume I: Situation
Theory, Cambridge University Press.

[Hobbs 87] Hobbs, J., Croft, W., Davies, T., Edwards, D., and Laws, K.,
The TACITUS Commonsense Knowledge Base, Artificial Intelligence
Research Center, SRI International.

30

[Link 83] Link, G., “The Logical Analysis of Plurals and Mass Terms: A
Lattice Theoretic Approach,” in R. Bauerle et al. (eds), Meaning, Use, and
Interpretation, Berlin, De Gruyter, 1983.

[Menzel 90] Menzel, C., “Actualism, Ontological Commitment, and
Possible World Semantics,” Synthese 85 (1990), 355-389

[Menzel 91a] Menzel, C., and R. Mayer, “Theoretical Foundations for
Information Representation and Constraint Specification,” final technical
report, IISEE project, AFHRL/LRL, WPAFB, Ohio, March 1991.

[Menzel 91b] Menzel, C., Mayer, R., and Edwards, D., "IDEF3 Process
Descriptions and Their Semantics,” forthcoming in Kuziak, A., and Dagli,
C., Knowledge Base Systems in Design and Manufacturing, Chapman
Publishing, forthcoming 1991.

[Webster 88] The Merriam-Webster Dictionary, Simon & Schuster, New
York, NY, 1986.

31

