
ANALYSIS OF ISSUES FOR PROJECT SCHEDUUNG 
BY MULTIPLE, DISPERSED SCHEDULERS 

(DISTRIBUTED SCHEDUUNG) AND REQUIREMENTS 
FOR MANUAL PROTOCOLS AND COMPUTER-BASED SUPPORT 

Final Report 

NASAl ASEE Summer Faculty Fellowship Program-1991 

Prepared By: 

Academic Rank: 

University & Department 

NASA/JSC 

Directorate: 

Division: 

Branch: 

JSC Colleague: 

Date Submitted: 

Contract Number: 

Johnson Space Center 

Stephen F. Richards, Ph.D. 

Associate Professor 

Ambassador College 
Computer Information Systems Department 
Big Sandy, Texas 75755 

Information Systems 

Information Technologies 

Software Technology 

Chris Culbert 

November 18, 1991 

NGT-44-001-800 

19-1 

https://ntrs.nasa.gov/search.jsp?R=19920012062 2020-03-24T07:12:40+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10437247?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ABSTRACT 

Although computerized operations have significant gains realized in many areas, one 
area, scheduling, has enjoyed few benefits from automation. The traditional methods of 
industrial engineering and operations research have not proven robust enough to handle the 
complexities associated with the scheduling of realistic problems. To address this need, 
NASA has developed COMPASS (COMPuter Aided Scheduling System), a sophisticated, 
interactive scheduling tool that is in wide-spread use within NASA and the contractor 
community. Like most existing tools, however, COMPASS addresses only single- user 
applications. COMPASS therefore provides no explicit support for the large class of 
problems in which several people, perhaps at various locations, build separate schedules that 
share a common pool of resources. 

This research examines the issue of distributed scheduling, as applied to application 
domains characterized by the partial ordering of tasks, limited resources, and time 
restrictions. The focus of this research is on identifying issues related to distributed 
scheduling, locating applicable problem domains within NASA, and suggesting areas for on
going research. The issues that this research identifies are goals, rescheduling requirements, 
database support, the need for communication and coordination among individual schedulers, 
the potential for expert system support for scheduling, and the possibility of integrating 
artificially intelligent schedulers into a network of human schedulers. 

19-2 



INTRODUCTION 

Scheduling is the process of assigning resources and times to each activity of a plan 
(or plans) while ensuring that each constraint is obeyed. Optimization criteria can determine 
the relative desirability of two alternate schedules. Although scheduling problems are often 
simple to visualize and express, scheduling is an NP-complete problem, so attempts to apply 
mathematical programming to scheduling have met with very limited success [2, 6]. In fact, 
programming approaches have been limited to very narrow problem domains, especially that 
of the job-shop, in which jobs must be assigned to various machines. 

This research focuses on the class of scheduling problem in which: 
1) activities have precedence relationships (one activity must not begin until another activity 

has completed); 
2) resources are limited; 
3) objectives or optimization criteria exist that may be used to rank competing schedules; and 
4) the time frame in which to complete all activities (or as many activities as possible) is 

limited. 
This class of problem differs from the job-shop problem domain in that a job-shop 

problem assumes an infinite time line in which all activities may complete. In a job-shop 
problem, all activities are scheduled regardless of the total time required. In contrast, in this 
research resources may be over-subscribed, so that even the optimum schedule might not 
accommodate all desired activities within the time limitations. Thus, provision must be made 
for selecting between competing activities (or sets of related activities) where insufficient time 
exists for the completion of all activities. 

To assist users in developing viable schedules NASA has developed COMPASS 
(COMPuter Aided Scheduling System) [3], a computer-based tool that interactively schedules 
activities in a user-specified order. COMPASS provides graphical tools for displaying 
activities, resource availability, and schedules. In COMPASS, activities are partially ordered 
and require resources. A'ctivity attributes supported by COMPASS include priority, required 
resources, duration, earliest permissible start time, latest permissible end time, and state 
conditions. COMPASS has enjoyed wide-spread acceptance within NASA and the contractor 
community. 

NASA has recently proposed enhancing COMPASS to support multi-user or 
distributed scheduling problems. This' research has focused on the issues raised by 
distributed scheduling and on requirements for computerized support of this problem domain. 
The next section of this report defmes distributed scheduling and addresses these issues. 

DISTRmUTED SCHEDULING 

Distributed scheduling consists of those scheduling problems involving several 
schedulers, each of whom is responsible for scheduling activities that are somehow 
interrelated. Typically, the activities will share a common resource pool, but the activities 
also may have precedence requirements, or one activity may establish a state that another 
activity requires, etc. Distributed scheduling problem domains of particular interest to NASA 
include the scheduling of astronomical satellite experiments, personnel training, and space 
mission activities. 

In such problems, the size and complexity of the scheduling task and the limited 
abilities, skills, knowledge, and resources of any individual make the distribution of the 

19-3 



scheduling task a natural and necessary means of developing the required schedule. By 
distributing the work, each scheduler can concentrate on a manageable volume of work in 
a narrow domain. However, the lack of a single point of control increases the complexity 
of the overall scheduling problem (as a result of the necessary communication overhead) and 
raises several issues regarding the interactions of multiple schedulers and the integration of 
their individual schedules. 

The most basic issue is that of goals. What measure of goodness is most appropriate 
in a distributed environment? How do the optimization criteria for a distributed scheduling 
problem differ from those for a non-distributed problem? Variables commonly used for 
scheduling problems include [4, 5]: 
- Completion time: the time at which processing of the last activity completes. 
-- Flow-time: the total time that activities spend in the shop. 
- Lateness: the difference between the completion time of an activity and some pre-specified 

due date associated with that activity. 
-- Tardiness: equal to lateness when lateness is positive, otherwise equal to zero. 

Schedule evaluation criteria typically involve minimizing or maximizing the mean, 
total, minimum, or maximum or one or more of these variables. In a standard job-shop 
problem, these criteria are assumed to be universally agreed upon. However, even in such 
a standard, non-distributed scheduling environment, the various tasks to be scheduled may 
belong to several different customers (perhaps represented by members of the marketing 
staff), each of whom would prefer that his or her tasks be given high priority. Thus, even 
in a non-distributed setting conflicting goals may exist. When conflict exists, the scheduler 
must have some means of determining a set of priorities to be applied to the scheduling task. 
The scheduler may be flexible in his or her choice of priorities, adjusting them to the needs 
of the moment. For example, the scheduler might attempt to mollify a major customer who 
has been slighted by giving preference to that customer's work. Regardless of the conflicting 
demands, however, the optimization requirements are formulated as a single point of control 
and this procedure can 'succeed because the single scheduler (or team of schedulers) who 
develops the optimization criteria also controls the entire resource pool. 

In a distributed schedule, however, uidividual schedulers must share resources, so one 
scheduler optimizing his or her schedule may restrict another scheduler's options, resulting 
in a suboptimal global schedule. The issue of a global measure of goodness becomes more 
important in distributed scheduling than in individual, interactive scheduling. This is true 
because an individual scheduler can accept a schedule even without a specific measure of 
goodness; the schedule may balance several conflicting needs fairly well and "just look 
good." A distributed schedule, in contrast, must "look good" through several sets of eyes. 
When a team of schedulers must continue to work together on future projects, perceptions 
of inequity or misplaced priorities can engender resentments that will poison these on-going 
relationships. Thus, some mechanism for balancing both local and global optimization must 
be provided. The protocol used by the schedulers to coordinate their activities must support 
optimization techniques that are perceived as both equitable and efficient. 

Selecting a desirable scheduling protocol requires balancing several possibly 
conflicting goals, including the following [1]: 
1. The protocol should encourage the development of high quality schedules that score well 

when evaluated by either the global optimization criteria or the optimization criteria of 
individual schedulers. Schedules should also be resilient to unexpected changes. 

2. The protocol should be easy to use. Features enhancing ease of use include ease of 

19-4 



learning; mInimum complexity; informative to the user of the state of activities, 
resources, etc.; and natural representation or concepts. Yet, the process should be 
sufficiently rich in features and notation to encompass a wide range of scheduling 
problems. 

3. The overhead, such as communications requirements, should be kept to a minimum. 
4. The time required to develop schedules should be short, especially in highly dynamic 

environments. 
5. Any computerized support should have a short response time. This requires that 

optimization techniques be computationally simple. 
Several sample scheduling protocols are listed below. For each alternative the issues 

of division of resources, communication, cooperation, and optimality are discussed. 
1. Schedule tasks by priority. This protocol requires that all tasks be known and prioritized 

in advance and then be scheduled in priority sequence. This is really non-distributed 
scheduling, except that we have several schedulers responsible for collecting tasks and 
we may provide improved computer support to enable the individual schedulers to track 
their own set of tasks by viewing only their portion of the schedule. This protocol also 
requires some mechanism for asSigning priorities to tasks (e.g., a central authority or 
a voting scheme). The potential for high quality projects is the same as for non
distributed scheduling. Although an advantage of this method is that participants will 
perceive it as fair, following this method strictly does not allow for compromises, such 
as scheduling two medium priority, low resource intensive tasks instead of one high 
priority, high resource intensive task. 

2. First come, first served. In this approach all schedulers are equal and none has priority 
over the others. Resources are not assigned to individual schedulers, but may be 
reserved by any scheduler. The state of the global schedule must be continuously 
available to all schedulers. No cooperation among schedulers is required. Optimization 
is poor, because there is no attempt to balance the needs of multiple schedulers. There 
is a tendency among schedulers to reserve resources early, even before they know their 
full requirements. This tendency to hoard can result in the allocation of resources to 
low priority taSks. 

3. Divide resources among schedulers in advance. This protocol permanently allocates 
resources to specific schedulers who can use them as they choose. No communication 
or cooperation among schedulers is required. Schedulers need not even know the global 
schedule. This approach is impractical when there is a potential state conflict between 
tasks (e.g., when two schedulers independently schedule a treadmill experiment and aa 
microgravity experiment that requires no vibration). This approach may also yield poor 
schedules when one scheduler assigns resources to low priority tasks or leaves resources 
unused that could be used by another scheduler. In this approach the quality of the 
resulting schedule is limited by the quality of the initial allocation of resources. 

4. Divide resources among schedulers in advance but permit borrowing. This approach 
differs from the previous one by permitting schedulers to negotiate among themselves 
to improve their schedules. There is still no need for global optimization criteria. The 
status and bargaining power of individual schedulers is determined by the initial 
allocation of resources. Communication needs consist of a knowledge of resources 
available to other users. 

5. Sharing of intentions among schedulers. In this protocol schedulers review their 
intentions with their peers and receive feedback before reserving resources and 

19-5 



committing to a particular schedule. While this approach has the potential for producing 
high quality schedules through the sharing of knowledge and expertise, it also imposes 
a heavy communication burden among schedulers that can negate much of the benefit 
resulting from distributing the scheduling task. This approach is also fragile in that its 
success depends on the voluntary cooperation of each scheduler. Where this cooperation 
fails, this protocol can degenerate into a first come, first served system. 

6. Simultaneous iterative scheduling. In this protocol each scheduler devises a schedule 
and shares it with others. Schedulers identify and resolve conflicts by some agreed upon 
method. If unscheduled tasks and unallocated resources remain, another round of 
scheduling follows. In this approach all schedulers must be ready to schedule 
simultaneously. Also, each participant must be provided some incentive to cooperate 
with the others in resolving conflicts. The global schedule must be available to all 
schedulers. 

7. Consecutive iterative scheduling. In this protocol the schedulers are divided into two 
or more groups that alternately devise schedules. This approach is useful when one 
group creates resources required by another. For example, a university administration 
develops a schedule of classes, the students then submit their individual schedule 
requests, and the administration, after analyzing the requests, adds sections to some 
classes and deletes sections from others. The students then request changes to their 
schedules. In principle this cycle can continue for many iterations. This approach 
requires some incentive to cooperate and requires that each scheduler knows the global 
schedule and the state of available resources. 

Any attempt to develop a universal scheduling methodology is doomed to failure 
because of the enormous diversity of scheduling domains. The variety of tasks, resources, 
constraints, and environments is virtually unlimited. The protocols listed above are not 
applicable to all domains but must be selected based on the characteristics of the specific 
domain of interest. 

A second issue identified by this research is the requirement for revising a schedule, 
also termed rescheduling [2]. Several factors can trigger a need to reschedule. A resource 
can become unavailable, making the current schedule unfeasible; a task can take longer than 
expected; or a user can change his or her requirements so as to impose a conflict, exhaust 
a resource needed by a later task, or delete an enabling task that creates a resource or state 
needed subsequently. In addition, rescheduling is desirable, although not required, whenever 
an opportunity arises to improve the schedule by adding previously unscheduled tasks or 
resequencing already scheduled tasks. This can happen, for example, when new resources 
become available or when a task completes early. Differences between scheduling and 
rescheduling include: 1) rescheduling takes place in the context of an existing schedule that 
we may wish to disturb as little as possible; 2) rescheduling must consider work in progress; 
3) rescheduling often must occur quickly, in contrast to the initial scheduling which may be 
performed in a more leisurely manner; and 4) someone other than the original scheduler may 
perform the rescheduling. An important issue for rescheduling in a distributed scheduling 
environment is the need to reduce communication requirements among schedulers to facilitate 
quick rescheduling. Since this may require a return to centralized scheduling, the rescheduler 
must have the appropriate information to make beneficial changes. 

A third issue is that of database support for distributed scheduling. A distributed 
scheduling system requires many of the features of a distributed database management 
system. The system must merge separate databases of tasks, resources, constraints, and 

19-6 



assignments into a single image while retaining the ability to display for individual schedulers 
only those portions of the database under their control. However, since each scheduler has 
a different view of the world (with different time scales, measures of goodness, types of 
constraints, etc.), the system must support different user languages and communicate with 
each scheduler in a natural and helpful way. As our software tools, such as COMPASS, 
address more diverse and complex problem domains, we will require a more comprehensive 
database language for describing scheduling problems. 

A fourth issue is that of communication and coordination among schedulers. At 
present, many of the NASA schedulers who impact one another by their work do not even 
know one another, much less communicate regularly. The people who schedule the Hubble 
telescope and its ground facilities are assigned specific resources that they schedule 
independently of each other. One research question concerns how much of this lack of 
communication is the result of historical developments and how much is intentional on the 
part of schedulers. Do they fail to communicate because they do not perceive a need to 
communicate, or because they feel communication is too time consuming, or because they 
fear loss of control of their environment, or is there some other reason? If independent 
scheduling is a human preferred approach, then it will be important to determine why this 
is true, how we can encourage people to cooperate, and how we can enhance cooperation 
while reducing communication. The mechanisms for communication and coordination (the 
languages, database support, and interaction procedures) appear to be a critical aspect of 
distributed scheduling by human agents. 

A fifth issue involves the introduction of expert system support for scheduling. 
Optimization heuristics have been envisioned for individual scheduling support; some of this 
support is already available on COMPASS. Support for distributed scheduling would focus 
on communication and negotiation. An expert system that monitored the actions of all 
schedulers could infer when one scheduler needed to know of the actions of another. This 
would reduce communications requirements. Also, an expert system could search for 
instances in which it would be mutually advantageous for two schedulers to trade resources 
or to reschedule certain tasks. 

Finally, a sixth issue asks how we can introduce artificially intelligent schedulers into 
the system. The scheduling of certain domains, such as power generation, may be suitable 
for AI approaches. It would be natural to introduce such agents into human scheduling 
systems. How can artificial and human agents best interact? This issue awaits the 
development of suitable AI schedulers for individual scheduling domains. 

CONCLUSIONS 

This research has begun an investigation of the issues of distributed scheduling. This 
report has identified and discussed several issues. These issues will impact both the 
computerized support for distributed scheduling that is envisioned to appear in future versions 
of COMPASS as well as the manual procedures that schedulers will use for cooperating with 
one another. 

During this academic year this researcher will remain in contact with NASA to 
identify members of the NASA community who might benefit from distributed scheduling 
and who are willing to participate in experiments during the coming summer. During the 
summer we will investigate the effects of different optimization criteria and procedures for 
communication and coordination. 

19-7 



REFERENCES 

1. Fox, Mark S., "Constraint-Directed Search: A Case Study of Job Shop Scheduling," 
Ph.D. dissertation, Carnegie-Mellon University, 1983. 

2. Fox, Mark S. and Zweben, Monte, "Knowledge Based Scheduling," Tutorial MA2, 
presented at the Ninth National Conference on Artificial Intelligence, July 15, 1991. 

3. McDonnell Douglas Space Systems Co., "COMPASS 2.0 User's Manual", for 
NASA/Johnson Space Center Software Technology Branch, 1991. 

4.. Ow, Peng Si, "Heuristic Knowledge and Search for Scheduling," Ph.D. dissertation, 
Carnegie-Mellon University, 1984. 

5. Salvador, Michael S., "Scheduling and Sequencing," in HANDBOOK OF 
OPERATIONS RESEARCH, Joseph J. Moder and Salah E. Elmaghraby (Editors), Van 
Nostrand Reinhold, New York, 1978, pp. 268-300. 

6. Unman, J. D. "NP-Complete Scheduling Problems," Journal of Computer and System 
Sciences, Vol. 10, 1975, pp. 384-393. 

19-8 


