
NEURAL ARCHITECTURES FOR CONTROL

Final Report

N ASAj ASEE Summer Faculty Fellowship Program-1991

Prepared by:

Academic Rank:

University & Department:

NASA JSC
Directorate:

Division:

Branch:

JSC Colleague:

Date Submitted:

Contract Number:

Johnson Space Center

17-1

James K. Peterson, Ph.D.

Assistant Professor

Clemson University
Department of Mathematical Sciences
Clemson, SC 29631-1907

Information Systems

Information Technology

Software Technology

Robert O. Shelton, Ph.D.

July 24, 1991

NGT -44-001-800

https://ntrs.nasa.gov/search.jsp?R=19920012060 2020-03-24T07:12:45+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10437245?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT

In· this study, CMAC (Cerebellar Model Articulated Controller) neural architectures
are shown to be viable for the purposes of real-time learning and control. Software tools
for the exploration of CMAC performance are developed for three hardware platforms, the
MacIntosh, the IBM PC and the SUN workstation. All algorithm development was done
using the C programming language. These software tools were then used to implement an
adaptive critic neuro-control design that learns in real-time how to back up a trailer truck.
The truck backer-upper experiment is a standard performance measure in the neural
network literature, but previously the training of the controllers was done off-line. With
the CMAC neural architectures, it was possible to train the neuro-controllers on-line in
real-time on a MS-DOS PC 386.

CMAC neural architectures are also used in conjunction with a hierarchical planning ap
proach to find collision free paths over two dimensional analog valued obstacle fields. The
method constructs a coarse resolution version of the original problem and then finds the
corresponding coarse optimal path using multipass dynamic programming. CMAC artificial
neural architectures are used to estimate the analog transition costs that dYnamic program
ming requires. The CMAC architectures are trained in real-time for each obstacle field
presented. The coarse optimal path is then used as a baseline for the construction of a fine
scale optimal path through the original obstacle array.

These results are a very good indication of the potential power of the neural architectures
in control design.

In order to reach as wide as audience as possible, we have run a seminar on neuro-control
that has met once per week since May 20, 1991. This seminar has thoroughly discussed
the CMAC architecture, relevant portions of classical control, back propaga.tion through
time and adaptive critrc designs. The attendees included staff members from the Infor
mation Systems, the Engineering and Life Sciences Directorates and McDonald Douglas
Corporation.

17-2

1 INTRODUCTION:

In this report, we detail our experiences with the design and application of Cerebellar
Model Articulated Controller (CMAC) neural architectures to problems in path planning
and control. In order to explore CMAC performance software tools using the C program
ming language were developed for three hardware platforms, the MacIntosh, the IBM PC
and the SUN workstation. These software tools were then used to implement an adaptive
critic neure-control design that learns in real-time how to back up a trailer truck. The
truck backer-upper experiment is a standard performance measure in the neural network
literature, but previously the training of the controllers was done off-line. With the CMAC
neural architectures, it was possible to train the neure-controllers on-line in real-time on a
MS-DOS PC 386.

CMAC neural architectures are also used in conjunction with a hierarchical planning
approach to find collision free paths over two dimensional analog valued obstacle fields.
The method constructs a coarse resolution version of the original proble~ and then finds
the corresponding coarse optimal path using multipass dynamic programming. CMAC
artificial neural architectures are used to estimate the analog transition costs that dynamic
programming requires. The CMAC architectures are trained in real-time for each obstacle
field presented. The coarse path is then used as a baseline in the construction of a fine scale
path through the original obstacle array.

These results are a very good indication of the potential power of the neural architec
tures in control design.

In order to reach as wide as audience as possible, we ran a seminar on neure-control that
met once per week from May 20 to July 22, 1991. This seminar thoroughly discussed the
CMAC architecture, relevant portions of classical control, back propagation through time
and adaptive critic designs. The attendees included staff members from the Information
Systems, and Life Sciences Directorates and McDonald Douglas Corporation.

2 CMAC ARCHITECTURES:

The Cerebellar Model Articulated Controller (CMAC) was first developed and de
scribed in a series of papers in the 1970's by Albus. 1,2,3 Their use in robotic control was
further developed by Miller 6, 7, 8 in a series of papers on real time control of robotic arms.
Essentially, a CMAC architecture maps the input space of the problem into a much larger
virtual address space via. what can be called coarse encoding. The number of entries
in the virtual address space is usually quite large, perhaps 106 to 108 in number; clearly far
too large to used for direct storage of tunable parameters. This large virtual address space
is drastically reduced in size by hashing the virtual address to a smaller working address.

The input-output maps we wish the CMAC architectures to "learn" are of the form
F : [aI, b1] x •.. x [aN, bN] - RM. For convenience of expostion, it is easiest to describe

17-3

the CMAC architecture for a scalar valued output, ie M = 1; a vector-valued CMAC
architecture then requires M potentially distinct CMAC structures, one for each ouput
component. Let's concentrate then on the map F : [al,b1] x ... x [aN,bN] - R.

The input space for this CMAC is coarse encoded as follows. The ith component of
the input lives in [ai, bi]. Imagine that we have L levels of overlapping sensors that try
to locate a given component in [ai,bi]. On level j, each sensor for input component i has
a receptive field width of Wij. IT the sensor becomes active at position x, then it remains
active until position min(x + Wij, bi). When the sensor is active, its output is 1 with value 0
everywhere outside of its region of reception. The starting points of the sensors on a given
level and input component can be specified by supplying a fixed offset, Oij, which together
with the sensor field width completely determines the active region of a particular sensor.
We determine the offset schedule by using an offset base, rh.

(1)

For example, assume there were 10 levels, the number of inputs was 16 with each input
component residing in the interval was [-.1,1.1], the receptive field widths were all .60 and
the offsets were all .1. This implies there are 2 sensors on level 0, active on the mutually
disjoint subintervals [0.0,0.60) and [0.60,1.1]; 3 sensors on level 1 active on [0.0,0.072),
[0.072,0.672) and [0.672,1.1] and so forth.

Now for a given level j each component Pi of input p lies in a unique subinterval
component aj. Hence, the N inputs ofpcan be mapped to aN-tuple ofintegers {at, ... ,aN}.
The virt ual address of p for level j is then

N

Vj(P) = EajTj_t. (2)
j=1

Tj-l = Ml M2 ... Mj-l.

where Mj is the number of subintervals the coarse encoding provides on level j and we
define To = 1.

The virtual address therefore lies between 0 and M1M2M3 ••• MN. This large collection
of addresses is called the virtual memory of the CMAC architecture and it is reduced to
a much smaller sized working memory by hashing the virtual addresses. We construct
the working address associated with input p by computing Vj(!) mod Hj, where Hj is
the chosen hash size per level. The input p therefore has an associated working address
for each level j, Aj(P), each of which addresses one element of the finite set of weights
{Wl

1
, Wl

2
, ••• , WiL}:Thus, each input is assigned L weights and the working memory

is organized into a two dimensional array of real numbers of L rows, with the jth row of
size Hj. The output of the CMAC corresponding to the input p is denoted by g(P) and is
defined by

17-4

L

g(ft) = L W~,. (3)
j=l

The standard CMAC learning rule 3, 6 is then applied to the train the CMAC architectures
to learn the I/O mappings. All of the CMAC architectures are initialized with zero values
for the weights. Then, if d is the desired output for input ft), as long as the efT'Or, d - g(ft),
is sufficiently large, the weights W~ _ are updated using as standard delta rule,

1

(
j)new _ (j)0/0 (d - g(P»)

WA - WA - +,\ L .
1 1

(4)

where .\ is the learning rote, which is generally between 0 and 1. Note that, unlike stan
dard feed forward architectures which use sigmoid transfer functions and therefore have
a bounded output typically between 0 and 1, the CMAC output is obtained by summing
values. Hence, the CMAC output does not necessarily lie between 0 and 1.

3 TRUCK BACKER-UPPER:

In this application, we will study the problem of designing a control architecture that
is capable of learning in real-time to back up a standard trailer truck. This problem has
become a standard benchmark for the design of self-learning control systems and the success
of feed forward architectures in the solution of this problem is well documented in Nguyen
and Widrow. 9 We begin with a short discussion of adaptive control before concluding with
the truck simulation results. Standard references to the adaptive critic control which we
use in the truck simulation include Barto" and Werbos. 14, 15

3.1 Adaptive Control:

Let's consider a general control problem of the form

min f:' fo(x(s),8(s» ds
8 e S (5)

Subject to:

x'(t) = f(x(t),8(t» (6)

x(O) = a (7)

x(t) e X~'RN (8)

8(t) e e~RM (9)

17-5

where x and 0 are the state vector and control vector of the system, respectively; S is the
space of functions that the control must be chosen from during the minimization process
and (7) - (9) give the initialization and constraint conditions that the state and control
must satisfy.

We can discretize the problem represented by equations (5) - (9) by a variety of means.
For now, let's use a very simple discretization scheme; replace the differentiations by forward
differences and the improper integral in (5) by a simple Riemann sum evaluated at the
left-hand endpoints. We will not concern ourselves about the convergence of the resulting
infinite series at this time. The discretization process leads to the following problem:

Subject to:

min Er:o fo (x(kLlt), O(kLlt» ~t
o E peS) (10)

x«k+l)Llt) = x(k~t)+f{x{kLlt),O(k~t»~t

x(O) = a

x{kLlt) E X ~ nN

O(kLlt) E e ~ RM

(11)

(12)

(13)

(14)

where ~t indicate the size of the discrete time step and the controls 0 must now lie in a space
of piecewise continuous functions which we will denote by 'P{S). We can further simplify
the notation by denoting x(kLlt) == Xk, O(k~t) == Ok and F(x, 0) == x + f(x,8)~t. H we
also assume that between time k~t and (k + I)Llt, the control 8 has only a finite number
of possible actions, we ·can replace the set e by the set 8 q = {AI,"" Aq}. Note that the
number of possible control actions q is completely independent of the number of components
in the control vector M. Finally, we can think of the function value fo{xl.,8k) Llt as
representing some measure of the worth of our control choice at the k'h time step, a measure
that can be used to reinforce our belief in the quality of our choices. Hence, we will choose
the relabeling n (Xk, 8k) = fo (Xk, 8k) ~t and refer to n as the reinforcement function. Also,
when convenient, we will simply use the notation nk == n (Xk, 8k). This leads to the more
compact representation of the control problem:

min
8k E Aq

Subject to:

Xk+1
x(O)

Xk

8k

Er:o n (Xk, Ok)

= F(xk,Ok)

= a

E x~nN

E 8 q

17-6

(15)

(16)

(17)

(18)

(19)

~ow assume that we have already collected knowledge of the first L - 1 states, controls
and reinforcements; hence, Xl, ... ,XL-b (Jt. ... ,OL-l and'R}(xl,Od, ...• 'R. 1(XL-t. OL-d
are known. The measure of our performance over all future times due to the control actions
taken at time step k is

00

U(x",O,,) = L 'R(Xj,Oj) (20)
j=,,+1

and we will identify U" == U(X", 8,,).

In Adaptive-Critic neural architectures, two separate neural networks are used to
gether to solve the problem represented by (15) - (19). We don't know the actual value of
future performance that is captured in U(x",O,,), so we will try to estimate its value using
what is called a critic network. The correct value of the control which should be chosen
to minimize performance over all future times will be estimated by another network called
the action network.

The output of the action network will be denoted by .J(W,x,8, 'R), where W indicates
the parameters that need to be updated via training. We will train the critic network to
approximate U". A schematic of the learning algorithm for the critic network is given in
table 1; i is the index for the training set, j is the index for the weight update loop and
Wj are the values of the weights in the critic network after j update steps. The parameters
~ and (are the relative nonnegative weightings attached to the future prediction and the
current reinforcement.

T.able 1.- CRITIC LEARNING ALGORITHM

1 Wo = O,j = 0
2 ;=1
3 Increment j
4 Set Wj = Wj-l

5 Input X" 0" 'Rt
6 Using the previous weights, Wj-l

Calculate the desired target
Di = ~.J(Wj-l' Xi+b Oi+1> 'R.i+1) + ('R.,

7 Use the delta rule of section (2) to update the CMAC weights

.J(Wj, X" 8" 'Rt) = Di
8 Increment i
9 IT i < L - 1 Go To (5); Else Continue

10 IT Wj :j; Wj-l Go To (2); Else Continue

It is possible to implement the learning strategy presented in table 1 into an open-ended
two-cycle algorithm as follows:

Note that the algorithm in table 2 adapts the critic network indefinitely, essentialy allowing

17-7

Table 2.- REAL-TIME LEARNING ALGORITHM

1 Choose Xo, (Jo
2 Compute Xl = F(xo, (0)

3 Compute no
4 Train.1 so that

~J(W, Xl, 8x. 'Rt} + ('Ro = J(W, Xo, 80 , no)
5 Set Xo = XI. 00 = 01
6 Go To 2

for as large an L as desired. Mter L - 1 states, controls and reinforcements have been
processed and when the critic weights have converged to W, if all target values are satisfied,
we have using .1i = J(W, Xi, OJ, 'Ri):

(21)

Applying (21) recursively, we obtain

(

L-i-2)
:Ii = ~L-i-1 JL-l + , ~ ~j'Ri+j , 1 $ i $ L - 2.

J=O

(22)

Note that is ~ = 1 and"' = 1, for sufficiently large L, if the infinite series given by (20)
~L-i-2 -n ·U d h converges, L.Jj=O ".Il.i+i ~ i-I an we ave

(23)

The control vectors (J that are used in the critic network are obtained by either adapting
another neural architecture called the action network or by classical techniques. Let's
assume that a neural architecture whose output is labeled Ak = A(V, Xk, Ok, 'Rk) is used to
predict the correct control strateg 0k+1 for the next time step. Hence, the predicted value
of our performance measure, Jk+h suppressing the dependence on W, becomes

An efficient way of updating the weights in the action network is to compute the rates of
change of the critic network's output with respect to the weights in the action network,
8~~+J , for each action weight 1';. This can be done via back-propagation techniques.

J

17-8

= (25)

Once 8'lvtl is available for all i, the weights of the action network at each step k + 1 can
J

be updated in the standard way.

(26)

where ,\ is a learning rate parameter.

H a CMAC architecture is used for the action network, the output :Jk+l is not a
differentiable function of the inputs Ak+l and 'R.k+l and equations (25) and (26) can not
be used to determine new values of the action network parameters. Since action networks
are used in our truck backer-upper simulations, we have chosen to implement the control
update portion of the adaptive-critic design classically as follows:

3.2 Truck Results:

max .1(W,Zk+ha, 'R.(Zk+ha»
a E 9 q

(27)

We will consider the prQblem of forcing a cab and two wheeled trailer to backup up along a
linear trajectory from a random, sometimes jack-knifed start, while subject to small noise
disturbances. We use the usual variable formulation of this truck problem: al is the angle
between the center-line of the cab and the Z axis; a2, the angle between the center-line
of the trailer and the Z axis; {3, the wheel cut angle or the angle between the front wheel
direction and the center-line of the cab; (ze, Ye), the coordinates of the center of the front
edge of the cab and (zt. Yt), the coordinates of the center of the back edge of the trailer.
The angle between the center-lines of the cab and trailer is T = 11' - (a2 - a}) and the
cab-trailer combination is considered jacknifed if T < j or a2 - a} > j.

The state variables for this problem are at, a2, Ze, Ye, Zt and Yt. We choose tan({3) to
be the control variable. We wish to pick wheel cut angles at each time step so that the
cab-trailer combination successfully tracks the given linear trajectory.

The usual truck backer-upper problem discussed in the literature, e.g., Nguyen 9, con
siders the problem of finding a control strategy which can successfully back up the cab-trailer
from randomly positioned starts to a given position on a horizontally oriented loading dock.
Feed forward architectures are trained on progressively more complicated cab-trailer move
ments using back propagation through time. The simulations are very successful, but the
training phase required many thousands of runs with correspondingly heavy use of comput
ing resources.

17-9

We have used the techniques in section 3.1 to successfully solve our cab-trailer tra
jectory following problem using a critic network to predict the change in the distance from
(Xt, ytl to the given trajectory with the controls chosen via (27). Our simulations learn to
follow the desired trajectory in minutes using a standard MS-DOS 386 PC as the hardware
platform.

4 PATH PLANNING:

In this application, we study the problem of finding the optimal path or trajectory
of a autonomous device through an obstacle field for a given start and goal position. The
obstacle field is modeled by a finite array of time independent analog valued pixels. It is still
very difficult to solve this problem efficiently in real world applications. Various algorithms
have been proposed for calculating collision free paths through obstacle fields of either fixed
or moving objects. Some fast algorithms rely on an algorithm design that is highly parallel
in nature so that fine grained multi-processor systems can be used to compute the paths
quickly, e.g. Hassoun 5. Others such as Zhu 16 solve the planning problem at multiple scales
of resolution in order to quickly find a reasonable approximate path.

Here, we discuss approximate optimal paths constructed using hierarchical methods
which entail constructing a coarse resolution version of the original obstacle array and
then use multipass dynamic programming to find an optimal coarse path. The dynamic
programming computational engine requires knowledge of the transition costs associated
with moving from one node to another. The transition costs associated with the original
obstacle array are easy to calculate; however, the coarse transition costs associated with
the coarse obstacle array are difficult to define. They must be calculated in such a manner
that the correct qualitative information about the fine scale path movements is not lost in
the coarsening process.

We have used clustering and filtering algorithms to predict these coarse transition costs,
Peterson, 10 and feed forward neural architectures; binary obstacle fields are discussed in
Peterson. 11 and these results are extended in Peterson 12. 13 to calculate an estimated
analog cost for a given analog valued directional field either via finite sums of weighted
binary feedforward networks or through feed forward networks trained to assign an analog
directional cost to a given analog valued directional field. However, these methods are
calculationally expensive; the training in particular was fairly difficult for these data sets.

In contrast to the above work, here we model the directional costs using CMAC ar
chitectures obtaining good qualitative transition cost information with neural architectures
that are trainable in a matter of minutes to 10-2 or better RMS error.

4.1 Dynamic Programming:

Assume we have an obstacle array P of size n x n whose value at row i and column j, Pij,

can take on any value between 0 and 1. We need to know the cost of moving from a given
pixel to its surrounding neighbors. The transition cost of moving in any of the directions
east (E), northeast (NE), north (N), northwest (NW), west (W), southwest (SW), south

17-10

(5) or southeast (5E) is easy to compute. If we are at interior location (i,j) in P, we
can denote the surrounding locations by (i + a,j + b), for -1 ~ a,b $ 1, and compute
the transition cost of moving from position (i,j) to position (i + a,j + b) = (i',j') by
Tij;i',i' = t (Pii + Pi' ,j') v1 a2 + b2). All transition costs that correspond to moves out of the
P are set to infinity.

Then, given a start node, S == (i"j,) and a goal node, G == (ig,jg), we want to find the
minimum cost path through P from 5 to G, CS,G,1'. Dynamic Programming is a technique
which will calculate CS,G,1' efficiently. For our problem here, we allow movement in eight
(8) directions which are divided into two distinct classes: 0 1 = {E,NE,N,SE} and 1'h =
{W, NW, 5, SW}. From our earlier notation conventions, there are associated sets ofindices
a and b which give rise to these direction sets, II for O}, and 12 for O2 • Let eij denote the
minimum cost of moving through P from node (i,j) to G with initial values of infinity with
the exception of the goal cost, C"J, , which is set to zero. For the set 0 1 directions, start
the calculations in the first row and last column of P. We compute the cost values eij in
the last column by moving down through the column and applying Bellman's Principle
of Optimality, equation (28), at each node.

(28)

Once the last column is finished, we switch to the top of the next to the last column and
move down it until finished. In this way, the cost of moving through the P from any position
(i,j) to G is calculated and stored in a cost matrix e. At this point, no directions in 02
have been used. The next set of directions is implemented similarly. This time, because the
directions are essentially left and down movements, the process starts in the first column
and last row position and move upwards through the first column. Upon completion of
the first column, we switch to the bottom row and second column position and move up
the second column. The principle of optimality is the same as given in (28) except that
the index set II is replaced by 12 , The Multipass Dynamic Programming algorithm
combines the operations using the two sets of directions into an iterative procedure in the
following way: first, compute a pass using direction set 0 1 and second, compute another
pass using direction set O2 • As long as the costs C are still changing, repeat these two
passes; otherwise, stop.

4.2 Coarse Optimal Paths:

Once a random obstacle field is constructed, 12 we construct the coarse obstacle array by
overlaying the fine scale array with two additional grids of size ~ X ~ and ~ X i, respectively.
The coarse obstacle array corresponds to the coarser of these two grids and reduces the
number of active nodes in the path planning problem from n2 to ~;. The intermediate mesh
consists of boxes each of which contains four (4) fine scale squares. which are subdivided it
into eight fine scale triangles or sectors labeled as shown in Figure 4.2.

Thus, each box in the intermediate grid contains eight fine scale sectors; each block
in the coarse grid contains four intermediate boxes of eight fine scale sectors each for a

17-11

~
~

Figure 1.- Sector Subdivisions

total of thirty-two individual sectors. The coarse blocks can themselves be subdivided into
eight sectors; each coarse sector contains four fine scale sectors. Each intermediate box
can be thought of as a node in an intermediate scale path planning problem by assigning
to the eight fine scale sectors within the box the pixel values of the fine scale square that
they lie within. Each sector then corresponds to a triangular pixel whose value is an analog
height. Further, each coarse sector contains four such intermediate sector values. Now
each interior coarse block is surrounded by eight other coarse blocks. H we identify each
block as a coarse node, we can use multipass dynamic programming on the smaller ~ x ~
array to find a coarse optimal path as long as we can find a way of assigning a transition
cost for all eight of the possible directions in the sets fll and fl2.

For each desired direction in this "coarse" setting, we define direction fields as indicated
in Figure 4.3 for the specific cases of the east and northeast directions. The E, N, W and
S direction fields consist of 16 fine scale triangles, while the NE, NW, SW and SE direction
fields consist of 24 such triangles.

In Peterson 11, these triangles are binary valued and represent an obstacle of height
1 or an empty region in the obstacle array. Hence, each fine scale triangle is modeled as
an on-off event, taking the values 1 or O. The first type of field is called a straight field
and the second, an angled field. For each straight direction, each fine scale triangle in that
direction's field is an input. Thus, in the binary case, for each straight direction, we need
to assign to each ii E 216, one of two possible outcomes; a 1 if there is a path through
the particular direction field that the ii represents, and a 0, otherwise. There are therefore
216 possible straight fields for a given straight direction and 224 possible angled fields for a
given angled direction. On the other hand, in the analog case, we want to assign to each
ii E [0,1]16 an outcome also in [0,1] which represents the directional cost.

4.3 Neural Architectures:

Following Peterson 11, 12, 13, feed forward architectures were designed to "learn" both the
patterns that correspond to free paths and also, the patterns that correspond to no free
paths in a given direction. For the straight direction fields, we chose to use a feed forward
network architecture with 16 input neurons, 9 hidden neurons and 1 output neuron. This
architecture will be denoted a 16 - 9 - 1 FFN for notational convenience. The angled
direction fields were modeled using a 24 - 11 - 1 FFN. In the binary case, the 0 or 1 path
outcomes were determined by visual inspection for 502 examples of each type of direction
field. This data was then split into 350 training and 152 testing examples or exemplars,
which consist of pairs of binary direction fields and their associated binary costs.

17-12

N Field: Cost = 0 W Field: Cost = 1

Figure 2.- Coarse Transition Cost Fields

The training results for the eight coarse transition cost feed forward networks for bi
nary valued direction fields are discussed in Peterson. 11 These binary networks averaged
96.2% recognition on the 350 elements in the training sets and 80.0% recognition on the
152 samples in the training sets.

The cost calculations were extended to the analog case in Peterson. 12 Let 'D be a
binary valued direction field of N pixels and let f : V - [0,1] be a feed forward network
of the type discussed above. Then the number of pixels, N, in each direction field is either
16 or 24 depending on whether 'D represents an angled or straight field and the network f
tries to assign to each 'D a binary coarse direction cost of 0 or 1. We will use the network
f to define a coarse transition cost for a direction field E which consists of N analog valued
pixels, PI, ... ,PN, whose values lie between 0 and 1.

From the original field E, we can construct approximations, EM, as follows. For a given
positive integer M, each pixel value Pi will then be in one of the mutually exclusive sets
[~. ir), 1 $ j $ M"'=' 1 or [¥,1]. Hence, for each M, we can determine approximate
direction fields, EM. where each pixel value is discretized to lie in one of M+l values. We
will label the pixel values lying in each EM by pff, where pff E {O, iT, ... , ¥, I}. We

then construct clipped copies of the direction field EM = {P{M' ... '~NM}, where ptM = 0 if

pf/ < iT and 1 otherwise. The clipped direction fields Er are binary valued direction fields
and we can compute f(Ef1) for all j, 1 $ j $ M. Following Peterson 12, the cost assessed
for an analog valued direction field EM consisting of M discrete levels of pixel values is then
defined to be

= E:;'I f(Er)
M

(29)

For a given obstacle array, the associated coarse array contains many nodes which have
well defined coarse transitions for all or some of the movement directions. The procedure
outlined above permits us to use equation (29) to compute the estimated analog cost for
each direction field for a given choice of gray scale M. Thus, each random obstacle array
provides a wealth of training and testing data. There are then three generated paths of

17-13

interest, each of which is a matrix of O's and 1'5, with a 1 indicating that the path goes
through that node and a 0, that the node is not in the path. First, P:F, the fine scale
path; second, P:F.A, the coarse path implied by P:F, where a coarse node is part of this
path if at least one node in the fine scale path contained in the coarse node and third,
'P.A, the coarse scale path. The distance between P:F.A and 'P.A indicates how reasonably
our approximation methods work. We use the following distance measure, where (i,j) and
(k, m) are the (row,column) indices of the path matrices.

max
PitA> 0

min J(i - k)2 + (j - m)2)

Pf" > 0
(30)

The directional cost information calculated using the method above generates very
reasonable paths. For a 100 randomly generated 80 x 80 obstacle fields using gray scale
M = 20, the associated coarse fields were 20 x 20 and the average p(P:F.A, P.A) distance was
1.69. This indicates that a reasonable corridor can be chosen by using the coarse path as
a centerline and then padding out a distance of 1 to 2 coarse blocks on either side. This
removes substantial amounts of the original search space thereby lessening the computa
tional burden of the obtaining the fine scale multipass dynamic programming solution in
the corridor; at the same time, we have high confidence that we have successfully identified
the correct region in the original obstacle array where the fine scale path resides.

The method outlined above provides a reasonable way to compute an estimate to the
approximate analog transition costs for the obstacle avoidance problem. However, it is
fairly ·expensive to perform the calculations suggested by equation (29). In Peterson 13,

training and testing sets of analog direction fields and their associated analog costs were
generated using 16 gray scales using the same feed forward architectures as in the binary
case discussed above. The training results for the eight coarse transition cost feed forward
networks for analog valued direction fields are summarized in Table 3. Each direction was
trained using 395 - 445 exemplars and tested on a different set of 50 - 100 exemplars. The
training and testing sets here consist of pairs of analog direction fields and their associated
analog costs; the term RMS refers to the Root Mean Square error.

Table 3.- ANALOG TRANSITION COST FFN's

RMS Train
RMS Test

E W N S NE NW SW
.04 .07 .05 .06 .05 .05 .05
.14 .18 .10 .17 .09 .11 .23

SE
.06
.10

The approximate paths generated via this method were also quite good, in spite of
the relatively poor RMS errors on the testing sets. However, it was very difficult to train
this data. In the rest of this work, we explore an alternative neural architecture for leam
ing the approximate directional cost mappings which has very fast learning and sufficient
generalization to also provide good performance on path generation.

17-14

4.4 CMAC Architectures:

We now use the CMAC architecture as described in 2 to estimate the directional costs
required for the generation of the coarse obstacle path. The input-output maps we wish
the CMAC architectures to "learn" are those discussed in section 4.3. For convenience of
expostion, we will concentrate on the east direction input-output map; the input set here is
a subset of R I6 and the output set is [0,1]. For these experiments, the underlying direction
field 1) is represented by a M gray scale approximation, which in the notation of section
4:3 is labeled EM. Thus, the allowable values of each component of the direction field are
iT, for 0 ~ i ~ M. The output that is assigned to each such approximate direction field
is the output calculated by the techniques given in section 4.3. This is precisely the I/O
map whose training results for a 16 - 9 - 1 east FFN are presented in table 3 for the case
M = 16. The CMAC architecture for the E direction is identical to that used for the N, S
and W directions; the NE, NW, SW and SE I/O maps are structured very similarly.

The input space for the east CMAC was coarse encoded as follows. Each component
of the input lives in [-.1,1.1]. The offset base /3 was constant for all input components and
all receptive field widths were fixed at w. The offset base and sensor width used for all of
the straight, E, N, W, and S, CMAC architectures and those for the angled direction fields,
NW, NE, SW and SE, are given in table 4. Now pick a given direction field sample. For
a given level i each component Pi of input p lies in a unique subinterval component aj.
Hence, the 16 inputs of EM can be mapped to a 16-tuple of integers {Ob •.. ,als}.

Table 4.- CMAC ARCHITECTURE

L /3 w
Straight 10 0.1 0.60
Angled 20 0.05 0.60

We chose a uniform hash size of 1024 for all levels. Thus, each input direction field
is assigned L weights and the working memory is organized into a two dimensional array
of real numbers of size L x 1024. The output of each CMAC and its training rule were
implemented as noted in section 2. In the results below, all RMS errors on training are
based on the raw CMAC outputs, but the CMAC output is clipped to lie in [0,1] before
being used in path planning calculations.

4.5 Training Results:

The following simulation results are from the CMAC simulation code developed at the
NASA Johnson Space Center. The training samples were obtained from randomly generated
40 X 40 fine scale arrays with associated 10 X 10 coarse arrays. We obtained 90 samples per
obstacle array for the straight directions and 81 samples for angled directions. We used a
gray scale of M = 20. The CMAC architectures were trained on each of these sample sets,
then a new random obstacle field was generated. This process was run 100 times, giving

17-15

a total of 9000 and 8100 potentially different training samples. however, on these runs, we
typically see about 25% repeats.

The 89th training run is indicated below in table 5; all runs were limited to 10 training
updates; l4J and Rl are the initial and final RMS errors and Mo and Ml are the initial and
final maximum absolute errors.

Table 5.- CMAC TRAINING

E N W S NE NW SW SE
l4J .131 .127 .115 .156 .137 .214 .197 .143
Rl .0004 .0029 .0008 .002 .0004 .0021 .00084 .0034
Mo .618 .51 .42 .787 .458 .753 .58 .452
Ml .0037 .019 .0078 .014 .002 .011 .0049 .03

The procedure used above to generate training samples was then used to generate
another 40 sets of directional data; for this set, all the data was saved into one file per
direction. The straight directional data thus consisted of 3600 samples, 40 runs at 90
samples per run; the angled data consisted of 3240 samples, 40 runs at 81 samples per run.
The performance of the trained CMAC's was then checked on these testing sets. These
results are listed in table 6.

Table 6.- CMAC TESTING

E N W S NE NW SW SE
l4J .305 .259 .387 .312 .199 .387 .261 .185
Rl .150 .133 .154 .158 .158 .220 .20 .70
Mo .95 .385 .95 .864 .85 .897 .950 .155
Ml .84 .806 .91 .981 .863 1.205 .948 .909

The directional cost information calculated using the CMAC architectures also gen
erates very reasonable paths. For a 100 randomly generated 80 x 80 obstacle fields, the
associated coarse fields were 20 x 20 and the average p(P:F"(, P,A) distance was 1.62. The
approximate paths generated via this method were very good. in spite of the relatively poor
RMS errors on the testing sets listed in table 6.

5 REFERENCES:

1. Albus, J. 1975. "A New Approach to Manipulator Control: The Cerebellar Model
Articulation Controller (CMAC)." J. Dynamic Systems, Measurement and Control,
220- 227.

2. Albus, J. 1975. "Data Storage in the Cerebellar Model Articulation Controller (CMAC)."
J. Dynamic Systems, Measurement and Control, 228 - 233.

17-16

3. Albus, J. 1979. "Mechanisms of Planning and Problem Solving in the Brain." Math.
Biosciences, Vol. 45, 247 - 293.

4. Barto, A., R. Sutton and C. Anderson. 1983. "Neuronlike Adaptive Elements That
Can Solve Difficult Learning Control Problems." IEEE Trans. Systems, Man and
Cybernetics, Vol. SMC-13, No.5, 834 - 846.

5. Hassoun, M. H. and A. Sanghvi. 1990. "Fast Computation of Optimal Paths in Two
and Higher Dimensional Maps", Neural Networks, Vol. 3: 355 - 363.

6. Miller, W. 1987. "Sensor-Based Control of Robotic Manipulators Using as General
Learning Algorithm." IEEE J. Robot. Automat., Vol RA-3, No.2, 157 - 165

7. Miller, W. 1989. "Real Time Application of Neural Networks for Sensor Based Control
of Robots with Vision." IEEE Systems, Man and Cybernetics, Vol. 19,825 - 831.

8. Miller, W., F. Glanz and L. Kraft, III. 1990. "CMAC: An Associative Neural Network
Alternative to Backpropagation." Proceedings of the IEEE, Vol. 78, No. 10, 1561 -
1567.

9. Nguyen, D. and B. Widrow. 1990. "Neural Networks for Self-Learning Control Sys
tems", IEEE Control Systems Magazine, Vol. 10, No.3, 18 - 23.

10. Peterson, J. 1991. "Obstacle Avoidance Using Hierarchical Dynamic Programming.",
The Proceedings of the 23rd Southeastern Symposium on System Theory, March 1991.

11. Peterson, J. 1991. "Obstacle Avoidance Using Neural Networks and Hierarchical
Dynamic Programming." ,Proceedings of the 2nd Workshop on Neural Networks:
Academic/Industrjal/NASA/Defense, Society for Computer Simulation.

12. Peterson, J. 1991. "Path Planning in Analog Valued Obstacle Arrays Using Hierar
chical Dynamic Programming and Neural Networks", submitted to Artificial Neural
Networks in Engineering and Science, to be held St. Louis, Missouri, November 1991.

13. Peterson, J. 1991. "Estimating Directional Cost Information in Analog Obstacle
Fields Using a Single Neural Network", submitted to Neural Information Processing
Systems, to be held Denver, CO, December 1991.

14. Werbos, P. 1990. "Consistency of HDP Applied to a Simple Reinforcement Learning
Problem", Neural Networks, Vol. 3,179 - 189.

15. Werbos, P. 1990. "A Menu of Designs for Reinforcement Learning Over Time", in
Neural Networks for Control, ed. Miller, Sutton and Werbos, 67 - 96.

16. Zhu, D. and J. Latombe. 1991. "New Heuristic Algorithms for Efficient Hierarchical
Path Planning." IEEE Trans. Robotics and Automation, Vol. 7, No.1, 9 - 20.

17-17

