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ABSTRACT 

In· this study, CMAC (Cerebellar Model Articulated Controller) neural architectures 
are shown to be viable for the purposes of real-time learning and control. Software tools 
for the exploration of CMAC performance are developed for three hardware platforms, the 
MacIntosh, the IBM PC and the SUN workstation. All algorithm development was done 
using the C programming language. These software tools were then used to implement an 
adaptive critic neuro-control design that learns in real-time how to back up a trailer truck. 
The truck backer-upper experiment is a standard performance measure in the neural 
network literature, but previously the training of the controllers was done off-line. With 
the CMAC neural architectures, it was possible to train the neuro-controllers on-line in 
real-time on a MS-DOS PC 386. 

CMAC neural architectures are also used in conjunction with a hierarchical planning ap­
proach to find collision free paths over two dimensional analog valued obstacle fields. The 
method constructs a coarse resolution version of the original problem and then finds the 
corresponding coarse optimal path using multipass dynamic programming. CMAC artificial 
neural architectures are used to estimate the analog transition costs that dYnamic program­
ming requires. The CMAC architectures are trained in real-time for each obstacle field 
presented. The coarse optimal path is then used as a baseline for the construction of a fine 
scale optimal path through the original obstacle array. 

These results are a very good indication of the potential power of the neural architectures 
in control design. 

In order to reach as wide as audience as possible, we have run a seminar on neuro-control 
that has met once per week since May 20, 1991. This seminar has thoroughly discussed 
the CMAC architecture, relevant portions of classical control, back propaga.tion through 
time and adaptive critrc designs. The attendees included staff members from the Infor­
mation Systems, the Engineering and Life Sciences Directorates and McDonald Douglas 
Corporation. 
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1 INTRODUCTION: 

In this report, we detail our experiences with the design and application of Cerebellar 
Model Articulated Controller (CMAC) neural architectures to problems in path planning 
and control. In order to explore CMAC performance software tools using the C program­
ming language were developed for three hardware platforms, the MacIntosh, the IBM PC 
and the SUN workstation. These software tools were then used to implement an adaptive 
critic neure-control design that learns in real-time how to back up a trailer truck. The 
truck backer-upper experiment is a standard performance measure in the neural network 
literature, but previously the training of the controllers was done off-line. With the CMAC 
neural architectures, it was possible to train the neure-controllers on-line in real-time on a 
MS-DOS PC 386. 

CMAC neural architectures are also used in conjunction with a hierarchical planning 
approach to find collision free paths over two dimensional analog valued obstacle fields. 
The method constructs a coarse resolution version of the original proble~ and then finds 
the corresponding coarse optimal path using multipass dynamic programming. CMAC 
artificial neural architectures are used to estimate the analog transition costs that dynamic 
programming requires. The CMAC architectures are trained in real-time for each obstacle 
field presented. The coarse path is then used as a baseline in the construction of a fine scale 
path through the original obstacle array. 

These results are a very good indication of the potential power of the neural architec­
tures in control design. 

In order to reach as wide as audience as possible, we ran a seminar on neure-control that 
met once per week from May 20 to July 22, 1991. This seminar thoroughly discussed the 
CMAC architecture, relevant portions of classical control, back propagation through time 
and adaptive critic designs. The attendees included staff members from the Information 
Systems, and Life Sciences Directorates and McDonald Douglas Corporation. 

2 CMAC ARCHITECTURES: 

The Cerebellar Model Articulated Controller (CMAC) was first developed and de­
scribed in a series of papers in the 1970's by Albus. 1,2,3 Their use in robotic control was 
further developed by Miller 6, 7, 8 in a series of papers on real time control of robotic arms. 
Essentially, a CMAC architecture maps the input space of the problem into a much larger 
virtual address space via. what can be called coarse encoding. The number of entries 
in the virtual address space is usually quite large, perhaps 106 to 108 in number; clearly far 
too large to used for direct storage of tunable parameters. This large virtual address space 
is drastically reduced in size by hashing the virtual address to a smaller working address. 

The input-output maps we wish the CMAC architectures to "learn" are of the form 
F : [aI, b1] x •.. x [aN, bN] - RM. For convenience of expostion, it is easiest to describe 
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the CMAC architecture for a scalar valued output, ie M = 1; a vector-valued CMAC 
architecture then requires M potentially distinct CMAC structures, one for each ouput 
component. Let's concentrate then on the map F : [al,b1] x ... x [aN,bN] - R. 

The input space for this CMAC is coarse encoded as follows. The ith component of 
the input lives in [ai, bi]. Imagine that we have L levels of overlapping sensors that try 
to locate a given component in [ai,bi]. On level j, each sensor for input component i has 
a receptive field width of Wij. IT the sensor becomes active at position x, then it remains 
active until position min(x + Wij, bi). When the sensor is active, its output is 1 with value 0 
everywhere outside of its region of reception. The starting points of the sensors on a given 
level and input component can be specified by supplying a fixed offset, Oij, which together 
with the sensor field width completely determines the active region of a particular sensor. 
We determine the offset schedule by using an offset base, rh. 

(1) 

For example, assume there were 10 levels, the number of inputs was 16 with each input 
component residing in the interval was [-.1,1.1], the receptive field widths were all .60 and 
the offsets were all .1. This implies there are 2 sensors on level 0, active on the mutually 
disjoint subintervals [0.0,0.60) and [0.60,1.1]; 3 sensors on level 1 active on [0.0,0.072), 
[0.072,0.672) and [0.672,1.1] and so forth. 

Now for a given level j each component Pi of input p lies in a unique subinterval 
component aj. Hence, the N inputs ofpcan be mapped to aN-tuple ofintegers {at, ... ,aN}. 
The virt ual address of p for level j is then 

N 

Vj(P) = EajTj_t. (2) 
j=1 

Tj-l = Ml M2 ... Mj-l. 

where Mj is the number of subintervals the coarse encoding provides on level j and we 
define To = 1. 

The virtual address therefore lies between 0 and M1M2M3 ••• MN. This large collection 
of addresses is called the virtual memory of the CMAC architecture and it is reduced to 
a much smaller sized working memory by hashing the virtual addresses. We construct 
the working address associated with input p by computing Vj(!) mod Hj, where Hj is 
the chosen hash size per level. The input p therefore has an associated working address 
for each level j, Aj(P), each of which addresses one element of the finite set of weights 
{Wl

1
, Wl

2
, ••• , WiL}:Thus, each input is assigned L weights and the working memory 

is organized into a two dimensional array of real numbers of L rows, with the jth row of 
size Hj. The output of the CMAC corresponding to the input p is denoted by g(P) and is 
defined by 
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L 

g(ft) = L W~,. (3) 
j=l 

The standard CMAC learning rule 3, 6 is then applied to the train the CMAC architectures 
to learn the I/O mappings. All of the CMAC architectures are initialized with zero values 
for the weights. Then, if d is the desired output for input ft), as long as the efT'Or, d - g(ft), 
is sufficiently large, the weights W~ _ are updated using as standard delta rule, 

1 

( 
j )new _ ( j )0/0 (d - g(P») 

WA - WA - +,\ L . 
1 1 

(4) 

where .\ is the learning rote, which is generally between 0 and 1. Note that, unlike stan­
dard feed forward architectures which use sigmoid transfer functions and therefore have 
a bounded output typically between 0 and 1, the CMAC output is obtained by summing 
values. Hence, the CMAC output does not necessarily lie between 0 and 1. 

3 TRUCK BACKER-UPPER: 

In this application, we will study the problem of designing a control architecture that 
is capable of learning in real-time to back up a standard trailer truck. This problem has 
become a standard benchmark for the design of self-learning control systems and the success 
of feed forward architectures in the solution of this problem is well documented in Nguyen 
and Widrow. 9 We begin with a short discussion of adaptive control before concluding with 
the truck simulation results. Standard references to the adaptive critic control which we 
use in the truck simulation include Barto" and Werbos. 14, 15 

3.1 Adaptive Control: 

Let's consider a general control problem of the form 

min f:' fo(x(s),8(s» ds 
8 e S (5) 

Subject to: 

x'(t) = f(x(t),8(t» (6) 

x(O) = a (7) 

x(t) e X~'RN (8) 

8(t) e e~RM (9) 
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where x and 0 are the state vector and control vector of the system, respectively; S is the 
space of functions that the control must be chosen from during the minimization process 
and ( 7) - ( 9) give the initialization and constraint conditions that the state and control 
must satisfy. 

We can discretize the problem represented by equations ( 5) - (9) by a variety of means. 
For now, let's use a very simple discretization scheme; replace the differentiations by forward 
differences and the improper integral in ( 5) by a simple Riemann sum evaluated at the 
left-hand endpoints. We will not concern ourselves about the convergence of the resulting 
infinite series at this time. The discretization process leads to the following problem: 

Subject to: 

min Er:o fo (x(kLlt), O(kLlt» ~t 
o E peS) (10) 

x«k+l)Llt) = x(k~t)+f{x{kLlt),O(k~t»~t 

x(O) = a 

x{kLlt) E X ~ nN 

O(kLlt) E e ~ RM 

(11) 

(12) 

(13) 

(14) 

where ~t indicate the size of the discrete time step and the controls 0 must now lie in a space 
of piecewise continuous functions which we will denote by 'P{S). We can further simplify 
the notation by denoting x(kLlt) == Xk, O(k~t) == Ok and F(x, 0) == x + f(x,8)~t. H we 
also assume that between time k~t and (k + I)Llt, the control 8 has only a finite number 
of possible actions, we ·can replace the set e by the set 8 q = {AI,"" Aq}. Note that the 
number of possible control actions q is completely independent of the number of components 
in the control vector M. Finally, we can think of the function value fo{xl.,8k) Llt as 
representing some measure of the worth of our control choice at the k'h time step, a measure 
that can be used to reinforce our belief in the quality of our choices. Hence, we will choose 
the relabeling n (Xk, 8k) = fo (Xk, 8k) ~t and refer to n as the reinforcement function. Also, 
when convenient, we will simply use the notation nk == n (Xk, 8k). This leads to the more 
compact representation of the control problem: 

min 
8k E Aq 

Subject to: 

Xk+1 
x(O) 

Xk 

8k 

Er:o n (Xk, Ok) 

= F(xk,Ok) 

= a 

E x~nN 

E 8 q 
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(15) 

(16) 

(17) 

(18) 

(19) 



~ow assume that we have already collected knowledge of the first L - 1 states, controls 
and reinforcements; hence, Xl, ... ,XL-b (Jt. ... ,OL-l and'R}(xl,Od, ...• 'R. 1(XL-t. OL-d 
are known. The measure of our performance over all future times due to the control actions 
taken at time step k is 

00 

U(x",O,,) = L 'R(Xj,Oj) (20) 
j=,,+1 

and we will identify U" == U( X", 8,,). 

In Adaptive-Critic neural architectures, two separate neural networks are used to­
gether to solve the problem represented by ( 15) - ( 19). We don't know the actual value of 
future performance that is captured in U(x",O,,), so we will try to estimate its value using 
what is called a critic network. The correct value of the control which should be chosen 
to minimize performance over all future times will be estimated by another network called 
the action network. 

The output of the action network will be denoted by .J(W,x,8, 'R), where W indicates 
the parameters that need to be updated via training. We will train the critic network to 
approximate U". A schematic of the learning algorithm for the critic network is given in 
table 1; i is the index for the training set, j is the index for the weight update loop and 
Wj are the values of the weights in the critic network after j update steps. The parameters 
~ and ( are the relative nonnegative weightings attached to the future prediction and the 
current reinforcement. 

T.able 1.- CRITIC LEARNING ALGORITHM 

1 Wo = O,j = 0 
2 ;=1 
3 Increment j 
4 Set Wj = Wj-l 

5 Input X" 0" 'Rt 
6 Using the previous weights, Wj-l 

Calculate the desired target 
Di = ~.J(Wj-l' Xi+b Oi+1> 'R.i+1) + ('R., 

7 Use the delta rule of section ( 2) to update the CMAC weights 

.J(Wj, X" 8" 'Rt) = Di 
8 Increment i 
9 IT i < L - 1 Go To (5); Else Continue 

10 IT Wj :j; Wj-l Go To (2); Else Continue 

It is possible to implement the learning strategy presented in table 1 into an open-ended 
two-cycle algorithm as follows: 

Note that the algorithm in table 2 adapts the critic network indefinitely, essentialy allowing 

17-7 



Table 2.- REAL-TIME LEARNING ALGORITHM 

1 Choose Xo, (Jo 
2 Compute Xl = F(xo, (0 ) 

3 Compute no 
4 Train.1 so that 

~J(W, Xl, 8x. 'Rt} + ('Ro = J(W, Xo, 80 , no) 
5 Set Xo = XI. 00 = 01 
6 Go To 2 

for as large an L as desired. Mter L - 1 states, controls and reinforcements have been 
processed and when the critic weights have converged to W, if all target values are satisfied, 
we have using .1i = J(W, Xi, OJ, 'Ri): 

(21) 

Applying ( 21) recursively, we obtain 

(

L-i-2 ) 
:Ii = ~L-i-1 JL-l + , ~ ~j'Ri+j , 1 $ i $ L - 2. 

J=O 

(22) 

Note that is ~ = 1 and"' = 1, for sufficiently large L, if the infinite series given by ( 20) 
~L-i-2 -n ·U d h converges, L.Jj=O ".Il.i+i ~ i-I an we ave 

(23) 

The control vectors (J that are used in the critic network are obtained by either adapting 
another neural architecture called the action network or by classical techniques. Let's 
assume that a neural architecture whose output is labeled Ak = A(V, Xk, Ok, 'Rk) is used to 
predict the correct control strateg 0k+1 for the next time step. Hence, the predicted value 
of our performance measure, Jk+h suppressing the dependence on W, becomes 

An efficient way of updating the weights in the action network is to compute the rates of 
change of the critic network's output with respect to the weights in the action network, 
8~~+J , for each action weight 1';. This can be done via back-propagation techniques. 

J 
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= (25) 

Once 8'lvtl is available for all i, the weights of the action network at each step k + 1 can 
J 

be updated in the standard way. 

(26) 

where ,\ is a learning rate parameter. 

H a CMAC architecture is used for the action network, the output :Jk+l is not a 
differentiable function of the inputs Ak+l and 'R.k+l and equations ( 25) and ( 26) can not 
be used to determine new values of the action network parameters. Since action networks 
are used in our truck backer-upper simulations, we have chosen to implement the control 
update portion of the adaptive-critic design classically as follows: 

3.2 Truck Results: 

max .1(W,Zk+ha, 'R.(Zk+ha» 
a E 9 q 

(27) 

We will consider the prQblem of forcing a cab and two wheeled trailer to backup up along a 
linear trajectory from a random, sometimes jack-knifed start, while subject to small noise 
disturbances. We use the usual variable formulation of this truck problem: al is the angle 
between the center-line of the cab and the Z axis; a2, the angle between the center-line 
of the trailer and the Z axis; {3, the wheel cut angle or the angle between the front wheel 
direction and the center-line of the cab; (ze, Ye), the coordinates of the center of the front 
edge of the cab and (zt. Yt), the coordinates of the center of the back edge of the trailer. 
The angle between the center-lines of the cab and trailer is T = 11' - (a2 - a}) and the 
cab-trailer combination is considered jacknifed if T < j or a2 - a} > j. 

The state variables for this problem are at, a2, Ze, Ye, Zt and Yt. We choose tan({3) to 
be the control variable. We wish to pick wheel cut angles at each time step so that the 
cab-trailer combination successfully tracks the given linear trajectory. 

The usual truck backer-upper problem discussed in the literature, e.g., Nguyen 9, con­
siders the problem of finding a control strategy which can successfully back up the cab-trailer 
from randomly positioned starts to a given position on a horizontally oriented loading dock. 
Feed forward architectures are trained on progressively more complicated cab-trailer move­
ments using back propagation through time. The simulations are very successful, but the 
training phase required many thousands of runs with correspondingly heavy use of comput­
ing resources. 
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We have used the techniques in section 3.1 to successfully solve our cab-trailer tra­
jectory following problem using a critic network to predict the change in the distance from 
(Xt, ytl to the given trajectory with the controls chosen via ( 27). Our simulations learn to 
follow the desired trajectory in minutes using a standard MS-DOS 386 PC as the hardware 
platform. 

4 PATH PLANNING: 

In this application, we study the problem of finding the optimal path or trajectory 
of a autonomous device through an obstacle field for a given start and goal position. The 
obstacle field is modeled by a finite array of time independent analog valued pixels. It is still 
very difficult to solve this problem efficiently in real world applications. Various algorithms 
have been proposed for calculating collision free paths through obstacle fields of either fixed 
or moving objects. Some fast algorithms rely on an algorithm design that is highly parallel 
in nature so that fine grained multi-processor systems can be used to compute the paths 
quickly, e.g. Hassoun 5. Others such as Zhu 16 solve the planning problem at multiple scales 
of resolution in order to quickly find a reasonable approximate path. 

Here, we discuss approximate optimal paths constructed using hierarchical methods 
which entail constructing a coarse resolution version of the original obstacle array and 
then use multipass dynamic programming to find an optimal coarse path. The dynamic 
programming computational engine requires knowledge of the transition costs associated 
with moving from one node to another. The transition costs associated with the original 
obstacle array are easy to calculate; however, the coarse transition costs associated with 
the coarse obstacle array are difficult to define. They must be calculated in such a manner 
that the correct qualitative information about the fine scale path movements is not lost in 
the coarsening process. 

We have used clustering and filtering algorithms to predict these coarse transition costs, 
Peterson, 10 and feed forward neural architectures; binary obstacle fields are discussed in 
Peterson. 11 and these results are extended in Peterson 12. 13 to calculate an estimated 
analog cost for a given analog valued directional field either via finite sums of weighted 
binary feedforward networks or through feed forward networks trained to assign an analog 
directional cost to a given analog valued directional field. However, these methods are 
calculationally expensive; the training in particular was fairly difficult for these data sets. 

In contrast to the above work, here we model the directional costs using CMAC ar­
chitectures obtaining good qualitative transition cost information with neural architectures 
that are trainable in a matter of minutes to 10-2 or better RMS error. 

4.1 Dynamic Programming: 

Assume we have an obstacle array P of size n x n whose value at row i and column j, Pij, 

can take on any value between 0 and 1. We need to know the cost of moving from a given 
pixel to its surrounding neighbors. The transition cost of moving in any of the directions 
east (E), northeast (NE), north (N), northwest (NW), west (W), southwest (SW), south 
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(5) or southeast (5E) is easy to compute. If we are at interior location (i,j) in P, we 
can denote the surrounding locations by (i + a,j + b), for -1 ~ a,b $ 1, and compute 
the transition cost of moving from position (i,j) to position (i + a,j + b) = (i',j') by 
Tij;i',i' = t (Pii + Pi' ,j') v1 a2 + b2 ). All transition costs that correspond to moves out of the 
P are set to infinity. 

Then, given a start node, S == (i"j,) and a goal node, G == (ig,jg), we want to find the 
minimum cost path through P from 5 to G, CS,G,1'. Dynamic Programming is a technique 
which will calculate CS,G,1' efficiently. For our problem here, we allow movement in eight 
(8) directions which are divided into two distinct classes: 0 1 = {E,NE,N,SE} and 1'h = 
{W, NW, 5, SW}. From our earlier notation conventions, there are associated sets ofindices 
a and b which give rise to these direction sets, II for O}, and 12 for O2 • Let eij denote the 
minimum cost of moving through P from node (i,j) to G with initial values of infinity with 
the exception of the goal cost, C"J, , which is set to zero. For the set 0 1 directions, start 
the calculations in the first row and last column of P. We compute the cost values eij in 
the last column by moving down through the column and applying Bellman's Principle 
of Optimality, equation ( 28), at each node. 

(28) 

Once the last column is finished, we switch to the top of the next to the last column and 
move down it until finished. In this way, the cost of moving through the P from any position 
(i,j) to G is calculated and stored in a cost matrix e. At this point, no directions in 02 
have been used. The next set of directions is implemented similarly. This time, because the 
directions are essentially left and down movements, the process starts in the first column 
and last row position and move upwards through the first column. Upon completion of 
the first column, we switch to the bottom row and second column position and move up 
the second column. The principle of optimality is the same as given in ( 28) except that 
the index set II is replaced by 12 , The Multipass Dynamic Programming algorithm 
combines the operations using the two sets of directions into an iterative procedure in the 
following way: first, compute a pass using direction set 0 1 and second, compute another 
pass using direction set O2 • As long as the costs C are still changing, repeat these two 
passes; otherwise, stop. 

4.2 Coarse Optimal Paths: 

Once a random obstacle field is constructed, 12 we construct the coarse obstacle array by 
overlaying the fine scale array with two additional grids of size ~ X ~ and ~ X i, respectively. 
The coarse obstacle array corresponds to the coarser of these two grids and reduces the 
number of active nodes in the path planning problem from n2 to ~;. The intermediate mesh 
consists of boxes each of which contains four (4) fine scale squares. which are subdivided it 
into eight fine scale triangles or sectors labeled as shown in Figure 4.2. 

Thus, each box in the intermediate grid contains eight fine scale sectors; each block 
in the coarse grid contains four intermediate boxes of eight fine scale sectors each for a 
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~ 
~ 

Figure 1.- Sector Subdivisions 

total of thirty-two individual sectors. The coarse blocks can themselves be subdivided into 
eight sectors; each coarse sector contains four fine scale sectors. Each intermediate box 
can be thought of as a node in an intermediate scale path planning problem by assigning 
to the eight fine scale sectors within the box the pixel values of the fine scale square that 
they lie within. Each sector then corresponds to a triangular pixel whose value is an analog 
height. Further, each coarse sector contains four such intermediate sector values. Now 
each interior coarse block is surrounded by eight other coarse blocks. H we identify each 
block as a coarse node, we can use multipass dynamic programming on the smaller ~ x ~ 
array to find a coarse optimal path as long as we can find a way of assigning a transition 
cost for all eight of the possible directions in the sets fll and fl2. 

For each desired direction in this "coarse" setting, we define direction fields as indicated 
in Figure 4.3 for the specific cases of the east and northeast directions. The E, N, W and 
S direction fields consist of 16 fine scale triangles, while the NE, NW, SW and SE direction 
fields consist of 24 such triangles. 

In Peterson 11, these triangles are binary valued and represent an obstacle of height 
1 or an empty region in the obstacle array. Hence, each fine scale triangle is modeled as 
an on-off event, taking the values 1 or O. The first type of field is called a straight field 
and the second, an angled field. For each straight direction, each fine scale triangle in that 
direction's field is an input. Thus, in the binary case, for each straight direction, we need 
to assign to each ii E 216, one of two possible outcomes; a 1 if there is a path through 
the particular direction field that the ii represents, and a 0, otherwise. There are therefore 
216 possible straight fields for a given straight direction and 224 possible angled fields for a 
given angled direction. On the other hand, in the analog case, we want to assign to each 
ii E [0,1]16 an outcome also in [0,1] which represents the directional cost. 

4.3 Neural Architectures: 

Following Peterson 11, 12, 13, feed forward architectures were designed to "learn" both the 
patterns that correspond to free paths and also, the patterns that correspond to no free 
paths in a given direction. For the straight direction fields, we chose to use a feed forward 
network architecture with 16 input neurons, 9 hidden neurons and 1 output neuron. This 
architecture will be denoted a 16 - 9 - 1 FFN for notational convenience. The angled 
direction fields were modeled using a 24 - 11 - 1 FFN. In the binary case, the 0 or 1 path 
outcomes were determined by visual inspection for 502 examples of each type of direction 
field. This data was then split into 350 training and 152 testing examples or exemplars, 
which consist of pairs of binary direction fields and their associated binary costs. 
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N Field: Cost = 0 W Field: Cost = 1 

Figure 2.- Coarse Transition Cost Fields 

The training results for the eight coarse transition cost feed forward networks for bi­
nary valued direction fields are discussed in Peterson. 11 These binary networks averaged 
96.2% recognition on the 350 elements in the training sets and 80.0% recognition on the 
152 samples in the training sets. 

The cost calculations were extended to the analog case in Peterson. 12 Let 'D be a 
binary valued direction field of N pixels and let f : V - [0,1] be a feed forward network 
of the type discussed above. Then the number of pixels, N, in each direction field is either 
16 or 24 depending on whether 'D represents an angled or straight field and the network f 
tries to assign to each 'D a binary coarse direction cost of 0 or 1. We will use the network 
f to define a coarse transition cost for a direction field E which consists of N analog valued 
pixels, PI, ... ,PN, whose values lie between 0 and 1. 

From the original field E, we can construct approximations, EM, as follows. For a given 
positive integer M, each pixel value Pi will then be in one of the mutually exclusive sets 
[~. ir), 1 $ j $ M"'=' 1 or [¥,1]. Hence, for each M, we can determine approximate 
direction fields, EM. where each pixel value is discretized to lie in one of M+l values. We 
will label the pixel values lying in each EM by pff, where pff E {O, iT, ... , ¥, I}. We 

then construct clipped copies of the direction field EM = {P{M' ... '~NM}, where ptM = 0 if 

pf/ < iT and 1 otherwise. The clipped direction fields Er are binary valued direction fields 
and we can compute f( Ef1) for all j, 1 $ j $ M. Following Peterson 12, the cost assessed 
for an analog valued direction field EM consisting of M discrete levels of pixel values is then 
defined to be 

= E:;'I f(Er) 
M 

(29) 

For a given obstacle array, the associated coarse array contains many nodes which have 
well defined coarse transitions for all or some of the movement directions. The procedure 
outlined above permits us to use equation ( 29) to compute the estimated analog cost for 
each direction field for a given choice of gray scale M. Thus, each random obstacle array 
provides a wealth of training and testing data. There are then three generated paths of 
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interest, each of which is a matrix of O's and 1'5, with a 1 indicating that the path goes 
through that node and a 0, that the node is not in the path. First, P:F, the fine scale 
path; second, P:F.A, the coarse path implied by P:F, where a coarse node is part of this 
path if at least one node in the fine scale path contained in the coarse node and third, 
'P.A, the coarse scale path. The distance between P:F.A and 'P.A indicates how reasonably 
our approximation methods work. We use the following distance measure, where (i,j) and 
(k, m) are the (row,column) indices of the path matrices. 

max 
PitA> 0 

min J(i - k)2 + (j - m)2) 

Pf" > 0 
(30) 

The directional cost information calculated using the method above generates very 
reasonable paths. For a 100 randomly generated 80 x 80 obstacle fields using gray scale 
M = 20, the associated coarse fields were 20 x 20 and the average p(P:F.A, P.A) distance was 
1.69. This indicates that a reasonable corridor can be chosen by using the coarse path as 
a centerline and then padding out a distance of 1 to 2 coarse blocks on either side. This 
removes substantial amounts of the original search space thereby lessening the computa­
tional burden of the obtaining the fine scale multipass dynamic programming solution in 
the corridor; at the same time, we have high confidence that we have successfully identified 
the correct region in the original obstacle array where the fine scale path resides. 

The method outlined above provides a reasonable way to compute an estimate to the 
approximate analog transition costs for the obstacle avoidance problem. However, it is 
fairly ·expensive to perform the calculations suggested by equation (29). In Peterson 13, 

training and testing sets of analog direction fields and their associated analog costs were 
generated using 16 gray scales using the same feed forward architectures as in the binary 
case discussed above. The training results for the eight coarse transition cost feed forward 
networks for analog valued direction fields are summarized in Table 3. Each direction was 
trained using 395 - 445 exemplars and tested on a different set of 50 - 100 exemplars. The 
training and testing sets here consist of pairs of analog direction fields and their associated 
analog costs; the term RMS refers to the Root Mean Square error. 

Table 3.- ANALOG TRANSITION COST FFN's 

RMS Train 
RMS Test 

E W N S NE NW SW 
.04 .07 .05 .06 .05 .05 .05 
.14 .18 .10 .17 .09 .11 .23 

SE 
.06 
.10 

The approximate paths generated via this method were also quite good, in spite of 
the relatively poor RMS errors on the testing sets. However, it was very difficult to train 
this data. In the rest of this work, we explore an alternative neural architecture for leam­
ing the approximate directional cost mappings which has very fast learning and sufficient 
generalization to also provide good performance on path generation. 
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4.4 CMAC Architectures: 

We now use the CMAC architecture as described in 2 to estimate the directional costs 
required for the generation of the coarse obstacle path. The input-output maps we wish 
the CMAC architectures to "learn" are those discussed in section 4.3. For convenience of 
expostion, we will concentrate on the east direction input-output map; the input set here is 
a subset of R I6 and the output set is [0,1]. For these experiments, the underlying direction 
field 1) is represented by a M gray scale approximation, which in the notation of section 
4:3 is labeled EM. Thus, the allowable values of each component of the direction field are 
iT, for 0 ~ i ~ M. The output that is assigned to each such approximate direction field 
is the output calculated by the techniques given in section 4.3. This is precisely the I/O 
map whose training results for a 16 - 9 - 1 east FFN are presented in table 3 for the case 
M = 16. The CMAC architecture for the E direction is identical to that used for the N, S 
and W directions; the NE, NW, SW and SE I/O maps are structured very similarly. 

The input space for the east CMAC was coarse encoded as follows. Each component 
of the input lives in [-.1,1.1]. The offset base /3 was constant for all input components and 
all receptive field widths were fixed at w. The offset base and sensor width used for all of 
the straight, E, N, W, and S, CMAC architectures and those for the angled direction fields, 
NW, NE, SW and SE, are given in table 4. Now pick a given direction field sample. For 
a given level i each component Pi of input p lies in a unique subinterval component aj. 
Hence, the 16 inputs of EM can be mapped to a 16-tuple of integers {Ob •.. ,als}. 

Table 4.- CMAC ARCHITECTURE 

L /3 w 
Straight 10 0.1 0.60 
Angled 20 0.05 0.60 

We chose a uniform hash size of 1024 for all levels. Thus, each input direction field 
is assigned L weights and the working memory is organized into a two dimensional array 
of real numbers of size L x 1024. The output of each CMAC and its training rule were 
implemented as noted in section 2. In the results below, all RMS errors on training are 
based on the raw CMAC outputs, but the CMAC output is clipped to lie in [0,1] before 
being used in path planning calculations. 

4.5 Training Results: 

The following simulation results are from the CMAC simulation code developed at the 
NASA Johnson Space Center. The training samples were obtained from randomly generated 
40 X 40 fine scale arrays with associated 10 X 10 coarse arrays. We obtained 90 samples per 
obstacle array for the straight directions and 81 samples for angled directions. We used a 
gray scale of M = 20. The CMAC architectures were trained on each of these sample sets, 
then a new random obstacle field was generated. This process was run 100 times, giving 

17-15 



a total of 9000 and 8100 potentially different training samples. however, on these runs, we 
typically see about 25% repeats. 

The 89th training run is indicated below in table 5; all runs were limited to 10 training 
updates; l4J and Rl are the initial and final RMS errors and Mo and Ml are the initial and 
final maximum absolute errors. 

Table 5.- CMAC TRAINING 

E N W S NE NW SW SE 
l4J .131 .127 .115 .156 .137 .214 .197 .143 
Rl .0004 .0029 .0008 .002 .0004 .0021 .00084 .0034 
Mo .618 .51 .42 .787 .458 .753 .58 .452 
Ml .0037 .019 .0078 .014 .002 .011 .0049 .03 

The procedure used above to generate training samples was then used to generate 
another 40 sets of directional data; for this set, all the data was saved into one file per 
direction. The straight directional data thus consisted of 3600 samples, 40 runs at 90 
samples per run; the angled data consisted of 3240 samples, 40 runs at 81 samples per run. 
The performance of the trained CMAC's was then checked on these testing sets. These 
results are listed in table 6. 

Table 6.- CMAC TESTING 

E N W S NE NW SW SE 
l4J .305 .259 .387 .312 .199 .387 .261 .185 
Rl .150 .133 .154 .158 .158 .220 .20 .70 
Mo .95 .385 .95 .864 .85 .897 .950 .155 
Ml .84 .806 .91 .981 .863 1.205 .948 .909 

The directional cost information calculated using the CMAC architectures also gen­
erates very reasonable paths. For a 100 randomly generated 80 x 80 obstacle fields, the 
associated coarse fields were 20 x 20 and the average p(P:F"(, P,A) distance was 1.62. The 
approximate paths generated via this method were very good. in spite of the relatively poor 
RMS errors on the testing sets listed in table 6. 
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