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ABSTRACT

The inspection of an orbiter radiator panel is a time intensive
tedious chore. The Automatic Radiator Inspection Device (ARID) is a
system aimed at automating this procedure. The ARID must have the
ability to aim a camera accurately at the desired inspection points
which is in the order of 13000. The ideal inspection points are
known. The panel may, however, be relocated due to inaccurate
parking and warpage. A method of determining the mathematical
description of a translated as well as warped surface by accurate
measurement of only a few points on this surface is developed here.

The method developed uses a linear warp modal whose effect is
superimposed on the rigid body translation. Due to the angles
involved, small angle approximations are possible which greatly
reduces the computational complexity. Given an accurate linear
warp model, all the desired translation and warp parameters can be
obtained by knowledge of the ideal locations of four fiducial points
and the corresponding measurements of these points on the actual
radiator surface. The method uses three of the fiducials to define a
plane and the fourth to define the warp. Given this information, it is
possible to determine a transformation that will enable the ARID
system to translate any desired inspection point on the ideal surface
to its corresponding value on the actual surface.
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SUMMARY

The orbiter radiators which are located on the inner surfaces of the
payload doors need to be inspected for damage just before and just
after each flight. This is a very time consuming, tedious and boring
task which makes it an ideal application for a robot system. The
Automatic Radiator Inspection Device (ARID) is a robot system being
developed by NASA to address this prbblem. The device is a
computer controlled four degree of freedom robot with a camera. It
is designed to greatly reduce the inspection time and manpower
needed. In addition it will improve the accuracy of data collection
and processing.

To be effective, the robot must be capable of accurately positioning
the camera relative to desired inspection points on the radiator
panel. The system is to operate open loop, so it is essential that it
knows precisely the positioning and orientation of the panel being
inspected. Although the ideal position is known, the orbiter will not
always be parked the same way and the door panel may not be open
the same amount. Even though they are mechanically constrained,
the doors may be warped. It was therefore essential to develop a
method to deal with this problem.

The main objectives of this project were to evaluate methods under
consideration and, if necessary, develop one capable of meeting the
rigid constraints. To meet these constraints, it seemed necessary
to develop an accurate warp model. Without a valid warp model it
seems impractical to operate the system open loop. Warp was
measured to be ~n the order of 2 inches over a 15 foot run. The warp
needed to be mathematically descrivable. A first order warp
approximation was assumed. Assuming that this model is true, it is
possible to know the orientation and warpage of any panel by simply
measuring four points whose ideal positions are known and their
position independently verified (these points are called fiducials).

If a higher order warp modeling is needed, the procedure works, but
requires that at least n+1 fiducial points be measured. A positive
verification of the order needed for an acceptable model requires
that more data be collected and evaluated. The data collected so far
seems to indicate that a linear warp model will suffice to meet the
requirements. If the warp is actuallu random the system may not be /~'\

able to be operated in open loop.
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I. INTRODUCTION

The Automatic Radiator Inspection Device (ARID) is a robot system
that will be used in the inspection of the orbiter radiator panels for
mission damage and for pre flight inspection. The data collected is
to be stored so that comparisons between present and prevous data
can be made for damage assessment. For inspection purposes each
panel is subdivided into a tiling of four inch square sections. The
center of these squares defines an inspection point. These points
are known in some xyz coordinate system, but there are no visual
clues of these on the panel surfaces.

The robot will have within its memory the ideal xyz coordinates of
all the desired inspection points but no means of feedback to verify
these during normal operation. The ideal position of each inspection
point is known to the robot but the actual xyz coordinate of the point
on the actual surface must be determined. The robot will move a
camera that is to take photographs of the entire radiator surface by
taking a series of 4 in. by 4 in. pictures. The center of each of these
pictures is an inspection point. The data obtained at these points
may then be compared to data obtained from previous inspections. In
this way any new damage wether it be from flight or handling can be
determined.

In order to make a proper assessment, the position and orientation
of each inspection point must be known accurately. If the orbiter
is parked with a different attitude and the doors are open different
amounts at each inspection accurate comparisons cannot be made
without complex image processing capabilities. The difference in
parking attitude, door opening angle and warpage in the doors needs
to be known precisely so that the robot can locate the intended
inspection points accurately in order to position the camera at the
proper focal distance.

To this end a method was needed which would provide the necessary
information to the ARID system so that it could make the proper
adjustments to compensate for inaccurate parking. Rigid body
translation, also known as frame shift is a well known way of
handling such a problem. The ideal as well as actual positions of
points whose coordinates are known and whose position can be
separately verified (these will be referred to as the fiducial points)
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must be provided to the ARID system. If the panel is rigid, three
points whose ideal and their corresponding measured points are
known, suffice to accurately determine all six values of rotation and
tranlation. It was found, however, that the panels could not be
assumed rigid. In an effort to solve this problem a variety of
methods and models were being considered.

There was one that was already being developed by Boeing. Part of
the task was to evaluate the merits and accuracy of the method
under consideration as well as develop a better one if needed. It
should be noted that there are only twelve fiducial points· on each of
the four aft panels and only eight on the four fore panels. Any
solution to this problem while maintaining the open loop option
could only rely on these and no other points on the panels.
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II. THE ARID SYSTEM

2.1 THE RADIATOR PANELS

The orbiter payload bay is enclosed by eight doors arranged in four
groups of two. The inner side of these doors have radiator panels
used to cool the on board electronics. Each panel is a smooth
surface with eight bolts for each of the forward doors and twelve
bolts for each of the aft doors (See Figure 2-1.). These are the only
clearly distinguishing marks on the otherwise smooth surface of the
radiators. These points will be referred to as fiducials.

Each radiator is inspected by the robot in 4 in. by 4 in. squares. This
translates into over 1600. inspection points per panel or almost
13000 total points. It is therefore clear that visual feedback would
be quite difficult as well as computationally taxing on the system.
The doors were designed to operate in space at zero g's, therefore in
the one g environment on earth they are supported by a structure
called the strongback. These supports make the door more rigid but
may at the same time introduce some unexpected warp.

The radiator panels have some complex curves to conform with the
orbiter shape. The two forward panels have the most difficult
curves for ARID to negotiate, but even the aft six doors require the
use of a multidegree of freedom robot for proper camera placement
and orientation. The panels are hinged to the orbiter and at this edge
are quite straight. At other points a noticeable warp was detected.
For a 15 foot door panel, with three corners properly located, the
fourth was found to differ in placement by as much as 2 inches.

Restrictions on focal distance of the camera state that the distance
from the panel surface must be 24 inches with a plus or minus 0.125
inches. Although a 2 inch warp on a 15 foot run may be considered
small, it is sixteen times too large for the ARID system to tolerate.

2.2 THE ARID ROBOT

The ARID robot, see Figure 2-2, is a four degree of freedom device.
It has one prismatic and three revolute joints. this robot will be
mounted in the Orbiter Processing Facility (OPF) on a track parallel
to the longitudinal axis of the orbiter. Ideally, the robot will use its
revolute joints to position and aim the camera at the panel,
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Figure 2-1 Fiducial Points ,on the Radiator Panels
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Figure 2-2 The ARID Robot With Radiator Panels
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perpendicular to the surface, near one end of the track. It will then
use the prismatic joint to move in a path parallel to a long series of
inspection points and photograph them. At the end of one such
inspection, at the end of the track, the revolute joints adjust to
reposition the camera to the next inspection row. The robot then
reverses didrection and repeats the procedure in the opposite
direction.

It is in fact not possible to do this since the orbiter may be parked
in a slightly different attitude every. time. To make things even
worse, the panels may be warped. The robot must be able to
compensate for these and guide the camera accurately therefore
must articulate the revolute joints as well as the prismatic one.
Compensation can be accomplished if the panel shape can be
effectively reported to the robot without the need to identify every
inspection point. It is therefore necessary to be able to
mathematically define the position of the fiducial points on the
panel under test as Well as their ideal locations.

With this information the robot would have to be able to generate a
transfer function. This function Would enable the robot to find the
actual location of each inspection point given its ideal location.
Since there are only a limited number of fiducial points, any method
which is to be viable for an open loop solution, must do it reliably
with these. If the order of the model exceeds the minimum number
of fiducials needed, another method or a dosed loop solution must
be found.
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III. THE FRAME SHIFTtWARP COMPENSATION PROBLEM

3.1 METHOD TO BE EVALUATED

Boeing was working on the frame shift/warp compensation problem
and identified a method which showed promise. The method utilized
two coordinate systems to identify the inspection points in
redundant fashion. The method is described in greater detail in
Appendix A.

IThe method employs the use of two coordinate systems each having
a complete set of inspection points defined relative to· its
coordinate axes. It then generates two vectors, from the robot
origin to the origins of the two coordinate axes. The relative
orientations of the coordinate systems and the robot origin can and
must be determined. The vector used for inspection is composed of
the average of the two different vectors, from the robot origin, used
to identify the inspection point.

In al1 unwarped system, the average vector will point to the exact
inspection point since both vectors identify the point exactly. In a
warped system it is hoped that the average, or weighted average of
the vectors, gives a close approximation of the exact inspection
point. The method requires the selection of four fiducial points
(points whose coordinate positions can be verified) located in a
rectangular layout on the radiator surface. Two dimetrically
opposed points will be used as the origins of the two coordinate
systems.

Each of the coordinate systems is defined by a vector from the
origin to one of the adjacent points and another vector, also
beginning at the origin, perpendicular to the first and pointing in the
direction of the other adjacent point. The third coordinate is
defined by the cross product of the two vectors. Each of these two
coordinate systems must relate to the robot origin. Handling this
step, especially in view of the fact that it must be done twice for
every inspection point, will require a considerable amount of
computing.

Every inspection point in the unwarped surface is known in terms of
the two coordinate systems. It is therefore necessary to store two
different values for each inspection point. The two different
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vectors needed to define each inspection point must be known to the
robot. When the surface is warped, two new vectors from the robot
origin to the origins of the two coordinate systems must be known.
The inspection point location is approximated by using the aver/age
of the two different vectors defining the point through the two
coordinate systems. The procedure was being evaluated by
considering it as it applied to the actual radiator panel. This
approach proved too cumbersome to give any useful results.

To evaluate and determine if the method is viable a simple method
that gave absolute results was needed. As part of the project we
were asked to develop a way of verifying or rejecting the method.
The method was evaluated for a simplified surface (see Appendix A)
and was found to have errors as large as half the maximum induced
warp. That is to say that if one corner of a linearly warped panel is
displaced from ideal by some value W it is possible to have errors as
great as W/2. Since it is essential to keep absolute error to less
than 0.125 inches, W could not be allowed to exceed 0.25 inches.

Empirical measurements show that W is in fact in the order of
inches. There is no reason to assume that the method is more
applicable to curved surfaces, it was, therefore, concluded that a
more accurate method was needed.

3.2 CURVE FITTING

If two non coincident points are on the xy plane, a unique line
y=mx + b can be drawn through them. For three points in the xy
plane, a continuous function y = ax2 + bx + c can be found to exactly
go through these points (assuming every x has only one y value). It
is well know that in general,· an nth order function can be uniquely
found for any n+1 points.

It therefore may seem reasonable to sample all the fiducials and use
the displacements of each from its ideal position to find the warp of
the radiator surface. It also may seem reasonable to sample more
points in order to get a "better model". This, however, is not so. The
sampling of many points is useful in verifying a model. A model may
be developed from the statistics obtained from the sampling of a
very large number of points. When only a small number of points is
available, it is essential to know what kind of warping the panel
may undergo. If warp is truly linear, sampling more than two points
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and computing their displacement from ideal should result in a
linear progression of error values.

If the ideal xyz locations of three colinear points is known and the
actual positions are measured there may be some error in all the
readings. A best fit line may be drawn using these points to help
minimize this error. If frame shift was already taken into account,
and measurements are accurate, the only discrepancy is due to warp.
Warp can be measured by aligning one of the ideal end points with
the corresponding measured point. All the other points must then be
translated by the same vector. This results in an error vector of
zero length for one point. Finding the error vector for the other
points should result in a monotonically increasing error function as
the measurements are taken farther from the first point.

If the points are equally spaced, the error vector should have
approximate lengths I, 2*1, 3*1 etc. If the plotting of the vector
length versus distance is not a straight line it will be necessary to
decide how to proceed. If a linear model is valid, a straight line
best fit should be used. Trying to use all the points and fitting a
curve to them will result in the problem of oversampling.
Oversampling is the condition where a curve is assumed higher order
than it actually is. The order of the curve should not be based solely
on the samples taken. If a line is expected, when points are read
with a certain degree of error, then fitting a straight line in
conjunction with these points is the way to proceed. Fitting a
second order curve to fit these points will not accurately depict
what is actually occurring even if the curve seems to fit better.

It must be stressed that the model should dictate the order of the
polynomial and not the number of points being considered. If more
points are collected the negative effects of noisy readings will be
filtered out when some method of curve fitting is applied. It should
therefore be stressed that if the method used bases all the
calculations on only four fiducials, these must be read as accurately
as possible. Additional points may be read to reduce the effects of
noisy readings but the order of the curve must be kept fixed. In
order to have confidence in the model selected, data must be taken
on orbiter panels (or accurate mock-Ups) and based on these data,
select a suitable model.

Some examples are illustrated in Figure 3-1. The first case shows
two points. There is only one way of drawing a line through these.
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Line defined by 2 points

"Best fit" line through 3 points

Second order curve through 3 points C)

©
Third order curve through 4 p_

Third order curve through 4 points

"Best fit" line throug[_ 4 points

Figure 3-1 Curve Fitting Examples
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the second and third show three points each. If it is known that the
actual curve is a line, a best fit must be tried. If, however, the
points are known to be exact, the curve must be of at least second
order. The bottom two illustrate how with four points, a third order
curve can be determined, for second or first order, some curve
fitting is necessary.
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3.3 METHOD DEVELOPED

Before and after each mission, the orbiter will be parked and
inspected. The orbiter may be totated and translated about three
axes, the doors might be open at different angles and be warped as
well. The rotation, translation and warp are relatively small in
terms of radiator dimensions, but unacceptably large fot accurate
robotic inspection especially when the system' is to operate in open
loop. Several methods were considered for solving the warping
problem including a variety of curve fitting approaches. All methods
that were tried had a variety of shortcomings therefore it was
decided to develop a totally new method.

The ARID system knows the ideal xyz coordinates of each inspection
point. The actual inspection point is at some location x'y'z'. To
inspect this point, it must be given information about the orbiter
orientation and panel warp. It is desired to have an effective,
accurate way of performing the proper conversion from an ideal
inspection point to the actual orbiter surface. The radiators ate
effectively straight and rigid along the hinge line. If the edge
farthest from the hinges is also found to be straight, the linear warp ~\
model seems reasonable.

If warp can be modeled, then it is possible to obtain the exact
mathematical equations that govern the effects of translation,
rotation and warp. By assuming that superposition holds and that
warp is linear, it is possible to consider warp and translation
separately then combine their effects. Translation includes rotation
about the three .axes. The problem is thus greatly simplified by
separately considering the rigid body rotation, translation then the
effects of warp. Without warp, knowing the ideal as well as
displaced coordinates of three fiducials, displacements and angular
rotations can be determined. This is true since it is simply the
displacement of a rigid body in, space.

By using only three points to determine a surface, noise in the
readings could cause problems. To avoid this, it may be desirable to
measure various points and use a curve fitting tecnique to make a
best fit. Answers to these questions are, however, not within the
scope of this report. It will be assumed that the fiducials are
precisely located, are read accurately, and the linear warp model
accurately defines the surface in question. The measured angles of
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rotation were found to be less than one degree around any axis.
Based on empirical data, warp of the doors is of the order of 2
inches for a linear distance of 15 feet. This is a small angle and
permits the use of several approximations which greatly reduces
necessary computations.

As an example, a system of four points will be used to illustrate the
linear warp model method, see Figure 3-2. The points are considered
to be at the corners of a rectangle, and reside on the xz plane. These
simplifications make the method easier to understand and do not
invalidate the fact that it works with some restrictions in a non
coplanar point system.

Computer programs were written to evaluate the effectiveness of
the procedure. A computer program was written in C++ to take a
point in an xyz coordinate system, rotate and translate it. This and
other programs were used as tools to make qualitative and
quantitative measurements on the effects of small angle
approximations on the error. It was found that first order
approximations were accurate to much less than 1% error for values
being considered. This allowed for many simplification to be used
while keeping the results very accurate.

Theoretically, if the shape of the orbiter door is known, an accurate
model for warpage is known and information about four of the ideal
and actual fiducial points is known, the rotation translation and
warpage can be obtained. For simplicity of explanation of the
procedure, warpage has been assumed linear. Higher order warp can
be handled in similar fashion, but will not be discussed here since
the need has not been shown. The method will, however, be equally
valid for more complex warp models provided that they are accurate
representations of reality, there are a sufficent number of fiducials
and superposition holds. This assumption is valid if the warp can be
linearly superimposed on a surface of any shape.

This is not exactly correct, however, it is very close and well within
our acceptable tolerances. Linear warp will be considered
throughout this report unless it is otherwise stated.

EXAMPLE: Refer to Figure 3-2. Consider a rectangle in the xz plane.
If the corner farthest from the origin is lifted in the z direction by a
small amount, and if linearity is asssumed, the vertical
displacem~nt of any point on the surface may be calculated. The
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Figure 3-2 Planar Surface With Linear Warp
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angle of any line formed by the intersection of the surface and a
plane parallel to the xy plane is also easily determined. Assuming
the four points in the xyz coordinate system are: (0,0,0), (X,O,O),
(X,Y,O), and (O,Y,O). For this example the points are all coplanar.

Warping may be modeled by the lifting of one of the corners in the
positive z direction, say delta z. Appllying it at the (X,Y,O) corner,
moves the point to (X,Y,delta z). Actually if a corner is lifted the
effected sides actually rotate, .however, since the rotation is so
slight, typically less than one degree, it may be modeled as a linear
translation perpendicular to the xz plane. Given the linear warp
assumption, the vertical displacement at any point (x,y) is:

Z(x,y) = (x/X)*(y/Y)*(delta z)

Therefore given four points allows the calculation of the vertical
displacement at any point

3.4 LINEAR WARP

The assumptions are that with this warp, all planes parallel to the
xz planes that intersect the warped surface are straight lines. The
same is true for planes parallel to the yz plane. To define the
warped surface it suffices to define the plane and the displacement
at one corner. For the previous example three points are on the xz
plane. The fourth corner is lifted by some value delta z.hat is if
three points define the plane, finding how high above the plane the
fourth point is defines the warp.

Given the same .linear warp assumptions on any curved surface the
same principle may be applied. Three of the fiducial points are used
for defining a plane, then the height above (or below) the plane is
established for the unwarped surface. With warp, the same plane is
defined and the new displacement is obtained. The difference in the
two numbers in conjunction with distance between the "warped"
point and the fiducial is the warp.

The intersection of a plane perpendicular to the defined plane and
parallel to one of the vectors (see Fig. 3~3) shows that the
intersection of the surface is an undistorted curve that is rotated.
Since warp is considred linear, the "angle of warp" is approximated
by the inverse tangent of the warp divided by the linear dimension
(call this theta). With this assumption, the angle of rotation of the
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Figure 3-3 Warping With No Distortion
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curve in question is theta at one extreme, 0 at the other and
theta*x/X in between.

It should be stressed that as long as linear warp is assumed any
shape surface can be handled this way with minimal amout of math
necessary for the location of the inspection points. If linear warp
cannot be assumed, a model must be selected that accurately defines
the warping. This could be a second, third or some higher order
system. the priciple should still. hold.

3.5 COORDINATE TRANSFORMATION

When considering different coordinates to identify a given point in
space it is often essential to convert between the two systems.
Although most texts dealing with introductory robotics topics cover
this in detail, a brief description is included here for convenience.

Given a point described in a rectangular coordinate system, the point
may be displaced along the three axes or rotated about them. The
order that these operations are performed matters, as well as to
know relative to which system the operations are being performed.
Given a general point P in space xyz, translating this point by some
vector v then rotating the new point by some angles thetax, thetay
and thetaz about the thee coordinate axes in turn, becomes a new
point P'. To return to the original point, P' must first be rotated by
minus thetaz, minus thetay, minus thetax, then translated by minus
v in that order. For very small angles and an approximate solution,
the order of angular rotations is unimportant.

To translate any. arbitrary point Pi = (x, y, z) by an arbitrary vector
v = ai + bj + ck results in a new point Pi' = (x+a, y+b, z+c).
Let Vi = [x Y z]T be the vectorial representation of point Pi
Rotating Pi about the x axis by angle a is accomplished by
multiplying Vi by Rot(x,a)

Where Rot(x,a) = [~ c~s a -s7n a J
o Sin a Cos a

Similarly

Rot(y,a) =
[

Cos a 0

~in a 0
1

~93

Si~.a ]

Cos a



Rot(z,a) =
(.

•. Cos a -Sin a
Sina Cosa
00

By using these matrices' it is possible to' move any arbitrary point
Pi, represented by vector Vi, by two distinct rotations so that the
vector will point in any desired direction. Figure 3-4 depicts an
arbitrary vector in space with convention of positive angle
rotations. Similarly three rotations about the three axes can align
any arbitary plane into one parallel to any desired orientation.
Figure 3-5 illustrates how a rectangle in the xy plane can be rotated
into any arbitrary orientation. Reversing the steps can take a
rectangle, with one corner at the origin, and rotate it into any
desired plane.
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IV. CONCLUSIONS

It was the purpose of this study to evaluate a method which was.
under consideration for use in compensating for rotation, translation
and warp. The findings were that the method could not satisfy the
stringent requirements. It therefore was necessary to develop a
more reliable, accu~ate method.

Given information about the position and warp of the radiator
panels, the ARID system would be able to make adjustments for
inexact parking attitude, door opening angle and warpage. This
information was to be used to allow the ARID system to compensate
for these inaccuracies and to locate the desired inspection points.
The method described in the report proved to be easy to implement
and accurate to within a fraction of a degree and small fraction of
an inch. The procedure is based on a linear warp model.

The method is also applicable to higher order warp. The procedure
needs accurate measurements of only four fiducial points and
knowledge of their ideal placement for the linear warp model. It is
possible to simplify the complex trigonometry needed to solve this
problem by the fact that the actual rotation angles and warpage are
small. The small angle approximations were evaluated for the
expected angles. It was found that small angle approximations could
often be used. This replaces the computing of trigonometric
functions with simple numbers. This will greatly reduce the
computational demands on the computer.

The measurement of the four fiducial points is sufficient data to
allow the method to compute the displacement in the three axes, the
rotations about the three axes and the amount of linear warp. When
the ARID system needs to inspect a point whose coordinates are in
its memory it must be able to make the adjustments from ideal to
actual. The inspection point is read from memory then compensated
for the warp, rotation and translation. The ARID system then has the
exact location of the desired inspection point. It should be
mentioned that the application of this procedure with the ARID
system may require some changes in the radiator panels alignment
procedure.
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APPENDIX A

THE BOEING FRAME SHIFTIWARP COMPENSATION METHOD

The procedure devised by Boeing, was intended to automatically deal
with both the problem of frame shift and warp at the same time.
The method will be described in conjunction with Figure A-1. Given
the ARID system has its origin at x,y,z == 0,0,0. In this system there
are four Fiducial points labeled F1, F2, F3 and F4. No three of these
points may be colinear.

Two coordinate systems are constructed at dimetrically opposed
fiducials, Le. F1 and F3. The origin of the u1,u2,u3 coordinate
system is at F1. u1 is defined as the unit vector pointing from F1 to
F2. u2 is defined as the unit vector perpendicular to u1 in the plane
defined by u1 and fiducial F4. u2 is arbitrarily selected to point in
the general direction of F4. u3 is defined as the cross product of u1
and u2 using the right hand rule. v1, v2 and v3 are similarly defined
using fiducials F3, F2 and F4. Every inspection point Pi is defined in
the two coordinate systems. Pi is vector u when seen from u1, u2,
u3, and v if seen from the v1, v2, v3 coordinate system. When the
surface is displaced, rotated and warped every point Pi becomes
some Pi'.

To find this point, the ARID system must, based on the new fiducial
points F1', F2' F3' and F4', construct the new u and v coordinate
systems. Since all fiducials are known to ARID, the origins of the
two coordinate systems is known. Using the old (pre warp) values
for vector u, within the new coordinate system some point in space
is identified. This does not coincide with Pi' because of warp.
Repeating the process, this time with vector v again fails to locate
Pi'. It was hoped that the average or weighted average of these two
vectors would be close to the true value of Pi'. The evaluation of the
procedure was done by applying it to a rectangualr planar surface
like that in Figure 3-2 and determine what error values resulted.

Applying a linear warp approximation to a rectangular surface with
one corner lifted by some small value W resulted in errors of
magnitude W/2. Since it is known that W may be in the order of
inches while tolerances are in the order of 0.125 inches the method
was discarded. It was also concluded that attempts to weight the
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two vectors were doomed to failure since, for this example at least,
all errors were of the same sign.
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APPENDIXB

SOFTWARE

Some brief programs were written in Turbo C++ during the
course of this project. The first one, called WARP1.C, was used to
generate synthetic data for the evaluation of the Boeing Frame
ShiftlWarp Compensation method. This program was based on the
vertical displacement approximation. It applied the method to a
rectangular plane which was "lifted" at one corner to simulate a
linear warp of the surface. The exact vertical displacement of the
surface at each xy location can be calculated given the linear warp
a.ssumption. The program also located the exact displacements as
calculated by the two separate coordinate systems. The results
showed that the error was one half the maximum warp displacement.
The method is also dependent on which fiducials are selectd as the
two coordinate origins. It was based on these findings that the
method was rejected as a viable alternative.

CARL1.C is a program which takes four points in space, rotates
and translates them to locate the new points. This computes the
"exact" positions of the translated surface.

The third program, FRAMESHI.C, uses two sets of points, the
original and shifted ones. Based on this data the warpage is
approximated by the linearized approach developed in the report.

201



1* Program Name: 1## WARPI #11 June 10, 1991 update 7/3/91 *1
1 * 'fhis program computes the vertica 1 displacement s f rom a fixed * 1
1* plane to the corresponding point on a warped surface. The actual *1
1* displacement is calculated then compared to the value obtained by *1
1* the method suggested by Alex Ladd. *}
1* The program writes the data into a file named trash.dat. To *1
1* view the data exit to the DOS shell and do a TYPE trash.dat. For *1
1* a hard copy, redirect the output t.o the printer. *1
1* *1

linclude <stdio.h>
#include <conio.h>

int main ( )

FILE *fp;
int X,y,DZ;
floatxl,yl,za,vd,ud,avg;
fp= fopen( "trash.dat","wt" );
DZ=2; 1* Displacement of corner (X,Y) in inches *1
fprintf(fp, "\n Disp.(in inches) of corner (X,Y) is %4d ",DZ);
fprintf(fp, "\n Xdisp Ydisp AeL:l'ii'll DispV DispU AvgllV Error \n");
X=16*12; 1* Size of panel in inc.'hes X dimension *1
Y=12*12; 1* Size of panel in inches Y dimension *1
for (yl = 0; yl <= Y; yl = yl .24)

{

for (xl = 0; xl <= X; xl = xl+24)
{

za=(xl/X)*(yl/Y)*DZ;
vd=(yI/Y)*DZ;
ud=(xl/X)*nZ;
avg=(vd+ud)/2;
fprintf(fp, "\n %3.0£ %3.0£ %3.3£ %3.3£ %3.3f ",xl,yl,za,vd~uDI

fprintf(fp, "%3.3f ?'63.3f ",avg,za-avg);
J

I
fprintf(fp, "\n H);

fclose( fp );
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In this program uses four ori9inal points. It rotates and
shifs them into four new points. Each of the four point systems use
three points to define a plane and the fourth to define warp.

The two planes are defined by taking the cross product of two
vectors <which are defined by the three points). The output is the
x, y and z components of the resultant vector as well as the square
of the magnitude of the cross product vector.

This program conver"ts four 3 X 1 vectors (iv[3][4J), in the xyz
coordinate system into four that arc rotated in the Uu"ee axes then
translated to be~ome zzI31[41.

The rotation is first about the x axis, the y axis the z axis
and finally translated by a vector.

To run this program, it must be edited to define angles thx,
thy, thz and vector xyz.

To reverse this effect, the operations must be taken in'reversb
order. The vector must be the negative of the original vector and
the rotation angles the negative of the original angles).

1.1*
/*
/*
1*

('--~'/ *
I, 1*

1*
/*
1*
/*
/*
1*
/*
1*
1*
1*
1*
1*
1*
1*

Program name ." CAHLI #1# ,July 3,1991 11:24 A.M. */
*!
*/
*1
*1
*1
*1
*1
*1
*1
*!
*1
*1
*1
*/
*!
*1
*/
~/

"'I

#include <stdio.h>
'include <conio.h>
'include <math.h>

1* Rotation angles about the three coordinate axes *1

'define thx 90*3.141592654/180
'define thy 0*3.141592654/180
'define thz 0*3.141592654/180

'~nt main <)
I

int N,x,y,k;
double rotxI31[31=1
11, 0, 01,
10, 1, 0 I ,
10,0, II
I ;
double roty[3)13)=1
11,0,01,
10,1,01,
10, 0, 11
I;
double rolz[31[31=1
11,0,01,
to, 1, OJ,
to, 0, 11
I ;

1* Theta is in radians i.e. 5 deg */
/* Theta y in radians or 10 degrees */
/* Theta z in radi~ns or 15 degrees *1

1* Input vectors are called iv[ )[l. output vectors zz[ )[].

double v[31,w[31,xx[31,yy[31,zz[31[41,I,J,K,LSQ1
double iv[3][41=1
to, 10, 10,01,
to, 0, 5,51,
to, 0, 0, 01
I ;
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/*

/*

The displacement vector
double xyzl31 = 11, 11, 31;

rotxllJ£IJ=cos(thx);
rotxllJl2J==-Hin(thx);
rotx£2JlIJ==sin(thx);
rotx[2][21=cos(thx);

roty[O][OJ=cos(thy);
roty£OJ[2J=sin(thy);
rotyI2JIOJ=-sin(thy);
roty£2l£2l==cos(thy);

rotz£Ol£OJ=cos(thz);
rotzlOJll1=-sin(thz);
rotz£lJIOJ=sin(thz);
rotzllJ[lJ=cos(thz);

the four vectors are already defined

for (k==O;k<4;k++)
{

*/

*/

/* Rotate about x axis */
/* printf("\n The vector rotated about the x axis is":\n");*/

for (x==O;x<3;x++)
I vlxl == 0;

for (y=0;y<3;y++)
{

v£xJ=vIxJ + rotxlxJlyJ * iv[yJIkJ;
}

/* rotate about y axis */
/* printf("\n The vector rotated about the yaxis is:\ll");*!

for (x=O;x<3;x++)
{ w£xJ = 0;

for (y=0;y<3;y++)
{

wIxJ=w£xJ + roty£xJ£yJ * v£yJ;
I

/*

/*

rotate about z axis

for (x=O;x<3;x++)
I xxIxJ = 0;

for (y=0;y<3;y++)
{

xxIxJ=xxIxJ + rotzlxJ{y] * wIyJ;
I

Translate in xyz coordinates
printf(" The translated vector is:\n");
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for (x=O;x<3;x+~)

I
yy [ X ) = x x I x) + x y z I x J ;
z z [ x ) [ k ) =yy I x ) ;
printf("%8.Ue\n",zz[xllkl);
I

/* Get the xyz compunents of t.he two input vecb>rs that will be used in the
cross product calculation. v[O.l is the x component, v[J.], the y component
and v[2] the z component ov vector v. Similarly for vector w. */

for (x=O;x<3;xtt)
{

v[x)=iv[x][l)-iv[x][O];
w[x]=iv[xI13.1-iv[x)[OJ;
prinLf("\n v[xl w[x) %8.8£ %U.8£",v[x],w[x);
J

/* This portion takes the two vectors V and wand computes their cross
product. I is the x componerit: of resul Ling vector, J the y component
andK the z component. */

I=v[l]*w[2]-v[2J*w[I);
J=-(v[O)*w[2]-vI2)*w[OJ);
K=vIOJ*w[l)-v[lJ*w[O);

LSQ' 1* 1 +J *,J oj K *1<; / * LENC;TB S~~lJAREIJ * /
printf("\n Plane defined by the input vectors");
pr i n t f ( " \ n 1. J I', LS Q :'d3. 0 f ~'c, U. 8 [ ,\; 8 • 8 £ 0<.0. Hf \ n" , 1., J, K, LSQ) ;

for(x""O;x~3;XII)

I
for(y=O;y'4;Y+t)

I
printf(" '';;J.3f 0,,3.3£ ",iy[xJlyl,7,7.lxl[yl);
.I
printf("\n");

1* Get the xyz components of the two output v(~ctors that will be used in the
cross product calculation. v[ () J is the x C(lm}--mnent, vII J, the y component
and v[2Jthe z compo~ent ov vector v. Similarly for vector w. */

for (x=O;x<3;x++)
{

v[ x J =zz [x) [J J -zz I x) [01;
w[x)=zz[x)[3J-zz[xJ[O);
printfC"\n v[x] w[xl %8.8f %8.8f",v[xl,wlx);
}

/* This portion takes the two vect.ors v and wand comput.es their cross
product. I is the x compon~nt of resulting vector, J the y component
and K the z component. */

I=v[l]*wI2J-v[2J*w[l);
J=-(v[Ol*w[21-vI2J*w[O]);
K=vIOl*w[l)-v[ll*w[Ol;'
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LSQ=I*I+J*J+K*K; /* LENGTH SQUARED */
printf("\n Plane defin0d ~y the rotated vectors");
printf("\n I J K LSQ %O.Of %0.8£ ~"O.8£ %8.8f \n",I, J, K, LSQ);

for(x=O;x<3;x++)
I
for(y=O;y<4;y++)

I
printf(" 9;;3.3£ %3.3£ ",ivfx](y],zz[xl(yJ);
}

print£("\n");
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July 10,1991 4:50 P.M.*/
The rotated and ./
point systems use */
define warp. */

/* Program name tt' FRAMESHICFT).C tt'
/* In this program uses four original points~

/* shifted po~ntsare also known. Each of the four
1* three po~nts to define a plane and the fourth to

#include <stdio.h>
'include <conio.h>
'include <math.h>

int main C)
{

int x,y;

/* tv[3][4] .is temporary vectors, dsp[3] is displacement vector
1* tx is x displacement, ty and tz are y and z displacements

double tv[3]141,dsp[3J,tx,ty,tz,w;

*/
*/

/* ovI3]14] is original vectors Cor points), dv[3)[4J is displaced vect.*/
/* ov[x,y,zJ[vect.#-IJ. Le. ov[l1l3) is the y compo of vector 4 */

double ov[3][4)={
fO, 180, 180, 01,
10, 0, 144, 1441,
10, 0, 0, O}
} ;

/* The following assumes that X=180,Y=144,tx=.Ol,ty=.015,tz=.02
W=4, dx=l, dy=3 and dz=5 */

double dv[3J[4]={
11, 181, 181, 2.121,
{3 , '6 • 6 , 1 4 7, 1 4 9 I ,
15, 7.7, 7.74, 6.441
} ;

/* Pl=CO,O,O) PD1=Cdx,dy,dz)
P2=CX,O,0) PD2=(X+dx,X*tz+dy,-X*ty+dz)
P3=(X,Y,O) PD3=(X+dx,Y+dy,Y*tx-X*ty+dz+W)
P4=CO,Y,O) PD4=(-Y*tz+dx,Y+dy,Y*tx+dz)
where dx, dy and dz are linear displacements in the x, y andz dire
tx, ty and tz are angular rotations about the x, y and z axes using
the right hand rul~. W is the warp value.

*/

/* Update each point by the displacement Cdx,dY,dz) */

for (y=0;y<4;y++)
{

for (x=0;x<3;x++)
I

tv [ x ) [ Y] =dv [ x ] [ y J-dv [ x J [ 0 l;
printf C"\n x, y, tvlxllyJ ?63d %3d 963.8£",x,y,tvlxJ[yJ);

I
printf ("\n");

/* Calculate theta z (tz) I PD2y-P2y = X*tzJ */
tz=(tvlll[lJ-ov[llllJ)/ovIOll1J;
printf ("\n Theta z in radians is = %3.6f",tz);
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/* Calculate theta y (ty) -[PD2z-P2z = x*tyJ */
ty=(tv[2)[1)-ov[2)[1])/ov[O)[1);
printf i"\n Theta y in radians is = %3.6f",ty);

/* Calculate theta x (tx) -[PD4z-P4z = y*txJ */
tx=(tv[2)[3)-ov[2)13J)/ov[lJ[3J;
printf ("\n Theta x in radians is = %3.6f",tx);

/* Calculate the warp W. y*tx-X*ty+W = PD3z */
W=(tv[2J£2]-tv[2][3]+tv[O][1]*ty);
printf ("\n The warp value W is = %3.6f",W);
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