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ABSTRACT

A number,of optical communication lines are now in use at the
Kennedy Space Center (KSC) for the transmission of voice, computer
data and video signals. At the present time all of these channels
util ize a single carrier wavelengths centered near 1300 nm or 1550
nm. Engineering tests in the past have given indications of the
growth of systematic and random noise in the RF spectrum ofa fiber
network as the number of connector pairs is increased. This noise
seems to occur when a laser transmitter is utilized instead of a LED.
It has been suggested that the noise is caused by back reflections
created at connector fiber interfaces. Experiments were performed
to explore the effect of reflection on the transmitting laser under
conditions of reflective feedback.. This effort included, computer
integration of some of the instrumentation in the fiber optic
laboratory utilizing the Lab View software recently acquired by the
laboratory group. The main goal was to interface the Anritsu Optical
and RF spectrum analyzers to the Macintosh II computer so that
laser spectra and newtork RF spectra could be simultaneously and
rapi~ly acquired in a form convenient for analysis. Both single and'
mult imode fiber is installed at the Space Center. Since the great
majority is multimode, this effort concentrated on multimode
systems.
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SUMMARY

Anumber of optical communication lines are now in use at the
Kennedy Space Center (KSC) for the transmission of voice, computer
data and video signals. At the present time all of these channels
utilize a single carrier wavelengths centered near 1300 nm or 1550
nm. Engineering tests in the past have given indications of the
growth of systematic and random noise in the RF spectrum of a fiber
network as the number of connector pairs is increased. This noise
seems to occur when a laser transmitter is ut 11 ized instead of a LED.

It has been s.uggested that the noise is caused by back reflections
created at connector fiber interfaces. Experiments were performed
to explore the effect of reflection on the transmitting laser under
conditions of reflective feedback and on the modulatation
transmitted by the fiber optic link.

A major part of this effort included, computer integration of some
of th·e instrumentation in the fiber optic laboratory utilizing the Lab
View software recently acquired by the laboratory group. The main
goal was to interface the Anritsu Optical and RF spectrum analyzers
to the Macintosh Ilx computer so that laser spectra and newtork RF
spectra could be simultaneously and rapidly acquired in a form
convenient for analysis. This goal was achieved. So much data was
accumulated during these experiments that additional work will be
I"equired to do a complete detailed statistical analysis. At this
point, only preliminary qualitative observations can be made through
the use of 3D surface plots of data.

It was confirmed that connector reflections cause the RF spectrum
to become perturbed. The more connectors in a network, the greater
the perturbation. The optical spectrum also seems to be perturbed
but this effect is not as easy to correlate to the connector number
based on a quick look at the data. A more detai led analysis is
required.

Some surprising results were also obtained. These include a chirp in ,
the transm i tter laser spectrum observed by ut 11 i zing a high speed
spectral technique involving the use of a Fabry Perot interferometer.
The success of this experiment suggests an experimental setup
utilizing a boxcar signal averager for future work.
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It was found that low frequency large amplitude motions and
vibrat ions coul dadverse ly affect the opt ica I spectrum and the RF
spectrum. These results have significant implications when
considering the design of any fiber optic system where fiber is
likely to be sUbjected to such mechanical perturbations. For example
in applications where a fiber data transmission link is located in a
Joint that can move while data is transmitted. Also in the case of
large amp I itude vibrat ions that might be encountered in the area of a
launch beyond T + O.

Both single andmultimode fiber is installed at the Space Center.
Since the great majority is multimode, this effort concentrated on
multimode systems.
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LI ST OF ILLUSTRAT IONS

Figure 2.4-1. Concept Drawing Fiber to Free Space to Fiber system
(not to scale and fiber V block detail not shown
here. )

Figure 2.5-1. Concept Drawing Fabry Perot Interferometer system
(not to scale and fiber V block detail not shown
here. )

Figure 2.5-2. Block Diagram Illustrating Method of Utilizing Fabry
Perot Interferometer to Collect Spectrum.

Figure 2.5-3. Fabry Perot Transmission Wavelength vs. Applied
Voltage

Figure3.1.1-1 Transmission Mode Exr;>erimental Setup.

Figure 3.1.2-2 Reflection Mode Experimental Setup

Figure 3.2-1. Free Space Test Link.

Figure 3.2-2. The effects of elements in Free Space Link on RF
Spectrum
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I. INTRODUCTION

A number of optical communication links are now in use at the
Kennedy Space Center (KSC) for the transmission of voice, computer
data andvideo signals. At the present time all of these channels
utilize a single carrier wavelengths centered near 1300 nm or 1550
nm. Engineering tests in the past have given indications of the
growth of systematic and random noise in the RF spectrum of a fiber
network as the number of connector pairs is increased. This noise
seem s to occur w hen a laser transm i tter is ut 11 i zed instead of a LED.
I t has been suggested that the noi se is caused by back refl ect ions
created at connector fi ber interfaces. These perturbat ions may have
both' systematic and non systematic components. Therefore,
repetitive observations must be made. Computer controlled
experiments were performed to explore the effect of reflection on
the transmitting laser under conditions of reflective feedback. The
first step in this effort was to interface the Anritsu Optical and RF
spectrum analyzers to the Macintosh Ilx computer so that laser
spectra and newtork RF spectra could be simultaneously and rapidly
acquired in a form convenient for analysis. Experiments were
conducted using this setup as well as several others. The
experimental configurations and computer integration system is
first presented. A bri ef descript i on of experimenta I condit ions is
given, results and conclusions summarized, and finally data in the
form of graphs are given in Appendices.
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II. INTEGRATED LABORATORY SPECTRAL ANALYSIS SYSTEM

2.1 OPTICAL SPECTRUM ANALYZER

An Anritsu optical spectrum analyzer was available in the
laboratory to be used to perform spectral analysis of coherent and
incoherent sources. This piece of test equipment was equipped with
an IEEE 488 computer interface whl'ch provides for bidirectional
computer communication. A portion ofthe work done under this
research effort was to interface the OSA with a Macintosh Ilx
computer tq enable the efficient collection of spectral data in
machine readable form. It was envisioned that the operator would
manually set up the spectrum analyzer for any given experiment and
when a spectrum was co 11 e.cted, act'ivate the computer interface
system and acquire a sequential data file containing the maximum.
wavelength, the minimum wavelength oJ the scan and 501 data
points of optical spectral power density expressed in dBm or mW
even ly di stri buted over the spectra I i nterva 1.

2.2RF NETWORK/SPECTRUM ANALYZER

An Anritsu radio frequency spectrum/ network analyzer was
avai lable in the laboratory to be used to perform analysis of the
information channel of fiber optic networks. By using a computer to
serve as an integrated data co 11 ect i on system, the RF spectra
generated by this analyzer could be collected almost simultaneously
with the optical spectrum allowing a correlation of data between
the two instruments. The laboratory's Macintosh computer allowed
thi s integrat i on to be accomp 1i shed.

2.3 COMPUTER ANALYSIS AND DATA COLLECTION

2.3.1 THE MACINTOSH IIX COMPUTER

The Macintosh II x Computer ut 11 ized a IEEE .... 488 Nat iona I
Instruments GPIB interface board which permitted the Macintosh
computer to be coupled with the optical spectrum analyzer and the
RF spectrum/network analyzer. Labview software system was
chosen as a medium in which to deve lop an applicat ion program to
integrate the collection of data by these two instruments.
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The program created to connect the Macintosh with the spectrum
analyzers displays one window. The window contains two graphic
elements the permit the real time observation of collected spectra
while an experiment is in progress. Parameter inputs are available
to provide for specifying the numbel'of runs the time in seconds
between runs, the data storage disk name, the file name and
experimental parameter notes to be saved in a text file. When the
program is run, the optical spectrum analyzer and RF
network/spectrum analyzers are triggered. The computer pauses to
wait for data to be collected and spectra are displayed and written
to two data files. The program assumes that experimental
parameters are setup on the front panel of each instrument. Also,
no error checking is performed on the data file name, volume name,
or time between run parameters. Further work would need to be
performed to make a more user friendly interface. Optical power vs
wavelength and RF network transmission in dB vs frequency are
stored on the designated disk for each data run made. The files are
suitable for direct input to spread sheet and graphics programs. A
series of VAx IMSL-based fortran programs have been written to
assist inthe analysis·of multiple data runs. It was found that 15
seconds between runs and 40 total experimental runs would create a
ten minute total test time and alr:nost fill one double density (not
high density) floppy disk with data. A total of 81 files are created,
one not file and 20 files of optical and RFspectra.

2.3.2 VAX COMPUTER DATAANALYSIS

The VAX support group created a set of graphics programs that could
be used to display the data generated using the laboratory computer
in a 3D spectru,m/parameter axis plot. This set of programs can
directly access the data files generated by the Labview application.
In this stage of the analysis of the fiber optic systems, this 3D
technique is used as the primary means of getting a first look at the
data. Most of the conclusions drawn to date are based on this type of
analysis. Further efforts' will permit a more detailed statistical
analys is to be performed, Some di ffiCUlty in preparing the plots
resulted in no axis labels being printed in some cases. A summary of
the experimental parameters for each run presented is given at the
bottom of the plot. This should allow a reasonable interpretation of
the results.

2.4 DESI GN OF FI BER TO FREE SPACE TO FI BER SYSTEM
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In order to provide a means of inserting optical components such as
wave plates, polarizers and a Fabry Perot interferometer into the
optical beam path of a communication system, a means of connecting.
fiber optics to free space optics was required. Such a system was
constructed using fiber holders, SLS-2.0-0.25-1.3GRIN lenses
selected from a laboratory set, precision translation stages to hold
optical fiber and lenses, and an optical table for the assembly of
components. The optical design of one configuration of the system is
show n in the di agram be Iow .

free space optical elements

optical table

GRI N lens

motor driven micrometers

Figure 2.4-1. Concept Drawing Fiber to Free Space to Fiber system
(not to scale and fiber V block detail not shown here. )

Experiments were conducted to determine the attenuation of the
system. It was found that with an air gap spacing of 6.5", sufficient
to permit introduction of the Fabry Perot system. Under these
conditions a 10 dB loss was sustained in going from fiber to air to
fiber.

2.5 Fabry perot interferometer
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A Fabry Perot interferometer was set up to be used to obtain high
resolution spectra as well as allowing the study of transient
spectral phenomena of the laser transmitters. This device consists
of two high quality mirrors having very high reflectivity and held in
stable mounting hardware that includes piezoelectric
electromechanical translators. The mechanical system is shown in
the figure below:

fiber

Fabry Perot Interferometer
in gimbal mount

, ,, ,, ,, ,.-~

• •

GRIN lens

Figure 2.5-1. Concept Drawing Fabry Perot Interferometer system
(not to scale and fiber V block detail not shown here. )
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Figure 2.5-2. Block Diagram Illustrating Method of Utilizing Fabry
Perot Interferometer to Collect Spectrum.

The Fabry Perot was calibrated by using the Anritsu optical
spectrum analyzer as a standard. The results of this calibration are'
shown in the graph that follows. .
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Fabry Perot Interferom eter Cali brat 1on
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'Figure 2.5-3. Fabry Perot Transm issi on Wave1engthvs. App 1i ed
Voltage

A linear least sguares fit to the above data in each of the two
regions yielded the following equations:

L a = 1.2924 (2.92 x 10-6 ) v

L b = 1,3001 (2.70 x 10-6 ) V

Where the wavelength L for the two regions is given in micrometers
and the voltage is given in mV.

The free spectra I range can be obta ined from the above by tak ing the
difference between the y intercepts, This gives a measured free
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spectral range of about 7.7 nm. Close to that calculated from the
manufactures specifications of 8 nm.

The finesse of the system can be rough ly est imated by observing
that two adjacent modes can just be resolved. The laser modes are
separated by 1.0 nm for the laser used in the tests. Thus the finesse
is about 7.7nm/ 1.0nm or about 8. This is 1/5 that the expected
value. This could be caused by modulation on the laser or poor
alignment and filling of the aperture of the Fabry Perot. Additional
time should be spent in resolving this issue.

Because of the limited time available to work with thiS instrument,
the author. was unable to use it to obtain high resolution spectra of
the laser sources. However valuable experiments were undertaken
to observe the temporal behavior of the transmitter sources at fixed
wavelengths. The results of these experiments are discussed in a
1ater sect ion.



III EXPERIMENTS PERFORMED

3.1 BASIC NETWORK CONFIGURATIONS STUDIED

3.1.1 TRANSMISSION MODE

Transmission mode studies analyze the modulation and l.ight spectra·
transm i tted through the test loop. Experi,ments 'were conducted us i ng
a laboratory spool of test fiber, with various numbers of connector
pairs on short jumpers added after the test spool and through one

.and two loop actual data 1inks from the EDL to the CDSC. The
experimental configuration is shown in the Fig. below. Each group
of similar experiments included a base l1ne configuration that only
ut iIi zed the 1 km 1aborato,ry spoo 1of fiber.
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Figure3.1.1-1 Transmission Mode Experimental Setup.

Appendi x A shows se lected output data from TMODE experiments.

3.1.2 REFLECT ION MODE

Reflection mode studies analyze the modulation spectra transmitted
through the test loop and 1i ght spectra co11ected direct 1y at the
laser source .. Experiments were conducted using a laboratory spool
of test fiber, with various numbers of connector pairs on short
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jumpers added after the test spool and ·through one and two loops
actual data links from the EDL to the CDSC. Each group of similar
experiments included a base line configuration that only utilized the
1 km laboratory spool of fiber. The experimental setup is shown in
the Fig. below.

o 4

GPIB

RFoutput

Mac IIx Computer
, "'

/' """

IE~'~"3'1

GPIB

Network Analyzero

Optical Spectrum
Analyzer

o

optical fiber

\

test loop

, ', coupler coupler

....--..... ' \ . '
1--_--11 90/10 :m.-,..-----...---ill·::.--... Laser Receive

L.-.._--' ' .., Module, ', '

J
' ....', '. : J

RF input

LID #01002

Laser
Transmitter
Module

Figure 3.1.2-2 Reflection Mode Experimental Setup

Appendix B shows a selected collection of output data from these
reflection mode experiments.
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3.2 RESULTSOF STUDIES WITH FREE SPACE LINK IN NETWORK

A study was conducted to explore the effects of quarter wave plates
and polarizers in the test link. A test section was constructed that
consisted of a free space link with a polarizer and a quarter wave
plate oriented at 45 degrees to the axis of the polarizer. The basic
setup is shown below:

1/4 wave plate x y z translators

optical table

Glan Taylor
polarizer

GRIN lens

motor driven micrometers

Figure 3.2-1. Free Space Test Link.

RF and opt ica1spectra were co 11 ected with th is free space sect i on
in the optical llnk and with out in order to compare. A sample of a

,spectrum taken with the polarizer and 1/4 wave plate is shown
below. Eighteen connector pairs were utilized in both setups to
create perturbat ions in the netw ark transm iss ion.
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Figure 3.2-2. The effects of elements in Free Space Link on RF
Spectrum

This interesting result is just a preliminary view of the kind of
things that can be accomplished by stUdying the insertion of various
combinations of free space optical elements into a fiber optic link.
It suggests that many further experiments need to be done to try to
optimize link performance and help minimize the adverse effects of
reflections at connectors.

3.3 RESULTS OF STUD IES US ING THE FABRY-PEROT INTERFEROMETER

A limited number of experiments were conducted with the Fabry
Perot interferometer. One signifi cant result was the observat i on of
chirp in the modal frequency of the transmission laser with a
repetition rate equal to the modulation frequency of the laser. This
was observed by setting the Fabry Perot at a fixed transmission
frequency thereby selecting one mode of the transmitter laser.
Graphs taken from the samp 1ing osci lloscope are shown in Appendix
C. The shape of the peak of the modulated waveform could be set by
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changing the bias on the piezoelectric element of the
interferometer. This conclusively proves that a small chirp is /'~

present in the laser output frequency during the time the carrier
pulse is on. an estimate of the magnitude of this chirp could be made
given time for further experiments and analysis.
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I V. CONCLUSIONS

4.0 CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK

This work has both answered questions and suggested new ones. The
experiments performed show conclusively that connectors in a fiber
optic network do effect the performance of the network if a laser
source is ut iIi zed. The perturbat ions increase as more connector
pairs are introduced. Whi Ie a frequency chirp was observed w lth the
Fabry Perot setup, the amount of the chirp is small compared to the
spacing between the modes. This conclusion is supported by the
many spectra collected over time. Laser modes remained locked in
place and modal spacing did not change. Large shifts in energy
distribution between modes was noticed. In some cases this was
seen when a fiber in the test link was moved several centimeters.
Small vibrations did not produce as noticeable an effect. More work
needs to be done to· quant ify these effects especially if fibers are to
be employed in systems SUbject to Vibrations, thermal stress or
large amplitude mechanical mqtion during normal operations,

The presence of optical elements such as polarizers, GRIN lenses and
wave plates can effect both bandw i dth and perturbat ions caused by
connector reflections. Only preliminary experiments have been
conducted in the limited time available. The author recommends
that these experiments be cont inued and theories deve loped to
account for such effects in multimode systems. The results of such
research could.have an impact on the design and implementation of
fiber systems at KSC and for the Space Station Project where It is
anticipated that large diameter optical fiber will be used.

A considerable effort was made during this project to link the
Macintosh Ilx computer to the optical spectrum analyzer and the RF
spectrum analyzer. As a result of the success of this effort a large
amount of data has been collected. More data in fact than can be
completely analyzed in the short period of time available during a
Summer FaCUlty Fellowship. It is therefore recommended that data
analysis be continued so as to develop more quantitative statistical
results of the experiments completed to date.
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Appendix A SELECTED OAT A OUTPUT FROM TMODE EXPERIMENTS
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LSPECTRA2lRFATMODEBASELINE00..-- -,....
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Parameter (File #)

TMODEBASEL INE

Tmode no connector pairs added to system. OSA 500 nW, 1.28-1.3
micrometers span. RF 10Hz to 12.5 MHz. 1 dB/div VBW 300 Hz RBW
100Hz. 35 dB variable ATTENUATOR IN LINE. 15 sec between runs.
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RFATEST
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micrometers span. RF 10Hz to 12.5 MHz .1 dB/div VBW 300 Hz RBW
100Hz. NO ATTENUATOR IN LINE. .
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Appendix B SELECTED OAT A OUTPUT FROM RMODE EXPERIMENTS
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[.RMODE1 LOOPJRFA1 LOOPNETWORK

'-'"

10.0 20.0 30.0 40.0
Parameter (File #)

RMODE 1LOOP

Rmode system 1 loop network CDSC and back. OSA 500nW, 1.28-1.3
micrometers span. RF 10Hz to 12.5 MHz.2 dB/div VBW 300 Hz RBW
100Hz. 15 sec between runs.
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RMODE 1LOOP

Rmode system 1 loop network CDSC and back: OSA 500 nW, 1.28-1.3
micrometers span. RF 10Hz to 12:5 MHz .2 dB/div VBW 300 Hz RBW
100Hz. 15 sec between runs.
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[. RMODE2 LO0 PlRFA2 LOOPNETWORK
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Parameter (File #)

RMODE2LOOP

Rmode system 2 loop network CDSC and back, OSA 500 nW, 1.28-1.3
micrometers span. RF 10Hz to 12,5 MHz .2 dB/div VBW 300 Hz RBW
100Hz. 15 sec between runs. 6-7 13.5 dB and 7-8 12.5 dB attenuation
Iloop run was 6-7 only, RF referenced to short cable.
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RMODE2LOOP

Rmode system 2 loop network CDSC and back. OSA 500 nW, 1,28-1,3
micrometers span. RF 10Hz to 12.5 MHz .2 dB/div VBW 300 Hz RBW
100Hz. 15 sec between runs. 6-7 13.5 dB and 7-8 12.5 dB attenuation
lloop run was 6-7 only.RF referenced to short cable,
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[.RMODE1 LOOPISOURFA1LOOPISOLATOR

---

10.0 20.0 30.0 40.0
Parameter (File #)

1LOOPISOLATOR

Rmode system 1 loop network CDSC and back WITH OPTICAL
ISOLATOR ISOWAVE 113 POZ SIN 0391. AT TX SIDE. OSA 500 nW,
1.28-1.3 micrometers span. RF 10Hz to 12.5 MHz .2 LOOP TOO MUCH
ATTENUATION FOR RX dB/div VBW 300 Hz RBW 100Hz. 15 sec
between runs. 6-7 13.5 dB and 7-8 12.5 dB .2attenuation 1loop run
was 6-7 only. RF referenced to short cable.
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[. rmode 1loopisolJosa 11oopisolator
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1LOOPISOLATOR

Rmode system 1 loop network CDSC and back WITH OPTICAL
ISOLATOR ISOWA VE 113 POZ SIN 0391, AT TX SIDE, OSA sao nW,
1,28-1.3 micrometers span, RF 10Hz to 12.5 MHz .2 LOOP TOO MUCH
ATTENUATION FOR RX dB/div VBW 300 Hz RBW 100Hz. 15 sec
between runs, 6-7 13.5 dB and 7-8 12.5 dB .2attenuation'11oop run
was 6-7 only, RF referenced to short cable,
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~.\p 10.0 20.0. 30.0 40.0
Parameter (File #)

1LOOPLED

LED 01400 . Rmode system 1 loop network CDSC and back one
connector removed in frame room. OSA 1 nW, 1.0-.1.5 micrometers
span. RF1 0 Hz to 12.5 MHz .2 LOOP TOO MUCH ATTENUATION FOR RX
dB/div VBW 300 Hz RBW 100Hz. 15 sec between runs. 6-7 13.5 dB
and 7-8 12.5 dB .2attenuation 1100p run was 6-7orHy. RF referenced
to short cab Ie.
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L rmode 11oopledJosa 1100pled

1LOOPLED

LED 01400 . Rmode system 1 loop network CDSC and back one
connector removed in frame room. OSA 1 nW, 1.0-1.5 micrometers
span. RF 10Hz to 12.5 MHz .2 LOOP TOO MUCH ATTENUATION FOR RX
dB/div VBW 300Hz RBW 100Hz. 15 sec between runs. 6-7 13.5 dB
and 7-8 12.5 dB .2attenuation lloop run was 6-7 only. RF referenced

/'" to short cable,
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LSPECTRASJRFARMODE
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10.0 20.0 30.0 40.0
Parameter (File #)

RMODE

Rmode system 20 extra connectors AS WELL AS 0 dB variable
ATTENUATOR IN LINE. OSA 500 nW, 1.28-1.3 micrometers span. RF 10
Hz to 12.5MHz .1 dB/div VBW 300 Hz RBW 100Hz. 15 sec between
runs.
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[.spectra5Josarmode

RMODE

Rmode system 20 extra connectors AS WELL AS a dB variable
ATTENUATOR IN LINE. OSA 500 nW, 1.28-1.3 micrometers span. RF 10
Hz: to 12.5 MHz. I dB/div VBW 300 Hz RBWI OOHz. 15 sec betweenruns,
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RFARMODEVIBATTX

RMODEVIBATTX

Reflection mode. TX to fiber jumper connected to speaker to 90 10
splitter to 15 dB atten to 1km spoOl to RX . OSA 1.28 micormeters to
1,3 micrometers 500 nW. RFA 100 TO 12.5 MHz..2dB /div RBW 100
VBW 300. Speaker driven 100 Hz + 12dBm.
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OSARMODEVIBATIXj !
I II "---------~
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RMODEVIBATTX

Reflection mode. TX to fiber jumper connected to speaker to 90 10
sp1i tter to 15 dB atten to 1km spoo 1 to RX . OSA 1.28 m icormeters to
1.3 micrometers 500 nW. RF A 100 TO 12.5 MHz..2dB / div RBW' 100
VBW 300. Speaker driven 100 Hz + 12dBm.
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I I RFARMODELARGEVIB
I '-'- -"

RMODELARGEV IB

Reflection mode. Manual vibration (1 0-20cm) of jumper connected
to 90 10 splitter to 15 dB atten to 1km spool to RX . OSA 1.28
m icormeters to 1.3 micrometers 500 nW. RFA 100 TO 12.5 MHz.
0.2dB /div RBW 100 VBW 300.
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RMODELARGEV IB

Reflection mode, Manual vibration (1 0-20cm) of jumper connected
to 90 10 sp 1itter to 15 dB atten to 1km spoo 1 to RX . OSA 1.28
m icormeters to 1.3 micrometers 500 nW, RFA 100 TO 12.5 MHz.

"~" 0.2dB Idiv RBW 100 VBW 300.
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Appendix C

..

HIGH SPEED VARIATIONS IN CARRIER OBSERVED
USI NG FABRY PEROT INTERFEROMETER
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2mV
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11802 DIGITIZING SAMPLING OSCILLOSCOPE
date: 16-AUG-91 time: 14:55:57
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LASER MODULAT ION FABRY PEROT VOLT AGE 3.0201
BASEL INE NETWORK
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o
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LASER MODULAT ION FABRY PEROT VOLTAGE 3.4389 V
BASEL INE NETWORK
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Appendix 0 OTOR OBSERVATIONS OF LINKS USED IN TESTS

113



8 km

A B

4 km 8 k..

I
I

: I : 1 l : I
t I I I I I

.. - oo f"............................. .. -- -- ., l- .. - -.- _.. ., .. - -,.. -_ ..
I I . I I ,
I I I I I
J I I I I

I I I I I I I

: : : 1 : : :.. -- ......"-T--- -_ ... ---1--- .. ---- ... f -- -- .._.._.. ;_ .... - ...........-t---- .... --- .. f- ......_-- --~- ..... _--"-.. --
, J I J I I

: i 1 : ! : i
___ ~-_-_-~ ~-_-_~--- _L ~_---~__ ---

1 I I J t I·
I I I I I ,

: : : 1 : : :
: J : 1 : :.:.. -...-.... -_ .... -... r"" .............r........ -...."---r-- -.... .. .. -1..-- ......- .. - .. r- .. -00 -_'Ow --j--_..._-- .....
: ··"V"\l(f"tv,I"'.'~. : I : : :
I I It: : 1

----- ..---~- .._------ .. ~ ..- -\W:v~IH'MIHlffi~ i"11jItl11t"'~I~' '.... .._~-----_ .. __..
, I ,

: ! :
, I I
, , I

0.0 4,169.9 8,339.9
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A-7B= 2,351.7 m 2-P01NT LOSS: 3.00 dB
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OPTICAL TIME DOMAIN REFLECTOMETRY ON FIBER TEST LINKS USED
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OPTICAL TIME DOMAIN REFLECTOMETRY ON FIBER TEST LINKS USED
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