
- 1 -

iV92

A CEREBELLAR-MODEL ASSOCIATIVE MEMORY AS A GENERALIZED RANDOM-ACCESS MEMORY

Pentti Kanerva

Research Institute for Advanced Computer Science
NASA Ames Research Center, M/S 230-5

Moffett Field, CA 94035

ABSTRACT

A versatile neural-net model is explained
in terms familiar to computer scientists and
engineers. It is called the sparse distributed
memory, and it is a random-access memory for
very long words (for patterns with thousands
of bits). Its potential utility is the result
of several factors: (1) A large pattern
representing an object or a scene or a moment
can encode a large amount of information about
what it represents. (2) This information can
serve as an address to the memory, and it can
also serve as data. (3) The memory is noise
tolerant--the information need not be exact.
(4) The memory can be made arbitrarily large
and hence an arbitrary amount of information
can be stored in it. (5) The architecture is
inherently parallel, allowing large memories
to be fast. Such memories can become important
components of future computers.

Introduction

This paper deals with neurally motivated
associative memory, which is a basic component
of neurocomputing. One specific cerebellar-
model associative memory is discussed. It is
called the sparse distributed memory or SDM
[1], and it is described here by comparing it
to the ordinary random-access memory (RAM) of
a computer. Many of its properties are shared
by most neural models, but some are specific
to cerebellar models and to the sparse
distributed memory in particular. The two
cerebellar models that predate the sparse
distributed memory and that resemble it the
most were developed by David Marr [2] and by
James Albus [3, 4] .

Description of the Memory

Overview

An ordinary computer memory is a memory for
short strings of bits, typically 8, 16, 32, or
64 bits. The bit strings are often thought of
as binary numbers or "words," but, in general,
they are just small patterns of bits. The
memory stores them in addressable locations.
The addresses to the memory also are short
strings of bits. For example, 20 bits will
address a memory with one million locations.

'- The sparse distributed memory is likewise
a memory for strings of bits, except that the
strings can be hundreds or..thousands of bits
long. Because the strings are so long, they
are best thought of as large patterns. The
addresses to the memory also are long strings
of bits, or large patterns. In an important
class of these memories, the address and data
patterns are of equal size. In the examples
in this paper the patterns are rather small;
they have 256 bits.

Behavior

The behavior of an ordinary computer memory can
be described as follows: If the word W has
been written with address A, then W can be
read back by addressing the memory with A, and
we say that A points to W. The condition
for this is, of course, that no other word has
been written with address A in the meantime.

The sparse distributed memory has like
behavior: If the pattern W has been written
with pattern A as the address, then W can
be read back by addressing the memory with A,
and we say that A points to W. However,'
the conditions for this are more restrictive
than they are with ordinary computer memories,
namely, that no other pattern has been written
before or since with address A or with an
address that is similar to A.

The added restrictions pay off in noise
tolerance in two ways: To read the pattern W
from a sparse distributed memory, the address
pattern need not be exactly A (in ordinary
RAM, the exact address A must be used to read
W). This means that the memory can tolerate
a noisy reference address; it can respond to
a partial or incomplete cue. Tolerance for
noisy data shows up as follows: If many, noisy
versions of the same target pattern have been
written into the memory, a (nearly) noiseless
target pattern can be read back.

Figure 1 illustrates the memory's tolerance
for noise. This memory works with 256-bit
patterns. For ease of comparing patterns with
each other, they are displayed on a 16 x 16
grid with 1-bits shown in black. The nine
patterns in the upper part of the figure were
gotten by taking a circular pattern and
changing 20 percent of the bits at random.
Each of the patterns was written into the
memory with itself as the address. The noisy
tenth pattern was then used as the address for
reading from the memory, and the relatively

(c; 1989 IEEE. Reprinted, with permission, from Proceedings of the S4tk IEEE computer Society International Confer-
ence. San Francisco, CA, Feb. 27 - Mar. 3, 1989.

https://ntrs.nasa.gov/search.jsp?R=19920005477 2020-03-24T07:06:57+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10437088?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

- 2 -

noise-free eleventh pattern was retrieved.
When that pattern was used as the next read
address, the final, nearly noise-free pattern
was retrieved. Worth special notice is that
the noise-free circular pattern was never used
as the write address nor was it ever written
into the memory <i.e., the memory had never
"seen" the ideal pattern; it created it from
the noisy versions it had seen).

The method of storage in which each pattern
is written into memory with itself as the
address, as illustrated in Figure 1, is called
autoassociative. With autoassociative storage,
the memory behaves like a content-addressable
memory in the following sense: It allows a
stored pattern to be retrieved if enough of its
components are known.

A more general method of storage in which
an address pattern and the associated data
pattern are different is called hetero-
associative. Figure 2 illustrates its use in
storing a sequence of patterns. The sequence
is stored as a pointer chain, with the first
pattern pointing to the second, the second to
the third, and so forth. Any pattern in the
sequence can then be used to read out the rest
of the sequence simply by following the pointer
Chain. Furthermore, the cue for retrieving the
sequence can be noisy, as shown in Figure 3, in
which a noisy third pattern retrieves a less
noisy fourth, which in turn retrieves an almost
noiseless fifth pattern, and the sixth pattern
retrieved is perfect. If the memory's address
and data patterns are of different size, only
heteroassociative storage is possible, although
it is not possible to store pattern sequences
as pointer chains.

The term 'associative memory' refers in
neurocomputing to this very general property of
linking one pattern to another, or forming an

. r •:::;

association, the linkage being the association.
In that broad sense, even the ordinary random-
access memory is associative. However, the
term is more specific in computer-engineering
usage and is usually synonymous with 'content-
addressable memory', which, in turn, is a
tighter concept in computer engineering than
in neurocomputing or psychology. As a neuro-
computing term, associative memory implies also
noise tolerance as illustrated in the examples
above.

Construction

The ordinary computer memory is an array of
addressable registers or memory locations.
The locations are numbered sequentially, and
the sequence number is the location's address.
A memory with a thousand locations will
therefore need ten-bit addresses. If the
memory is built for eight-bit words, each
location will have eight one-bit storage bins
or flip-flops. This organization of the memory
is shown in Figure 4. Each row in the figure
is one memory location, with its address shown
on the left and the storage bins on .the right.
In this figure, the memory's contents (the
storage bins) have been set at random.

The sparse distributed memory also is an

FIGURE 2. A sequence of patterns that is
stored as a pointer chain.

FIGURE 1. The sparse distributed memory's
tolerance for noise.

FIGURE 3. Iterated reading starting with a
noisy third pattern.

- 3 -

array of addressable registers or,memory
locations. The addresses of the locations,
however, are not sequence numbers but large
bit patterns (256-bit addresses in the examples
above). To store 256-bit data patterns, each
location will have 256 storage bins for small
up-down counters. This organization is shown
in Figure 5, which is not that different from
Figure 4. In Figure 5, the location addresses
are random 256-bit patterns, and the memory's
contents are shown after many patterns have
been stored in the memory.

Because the memory addresses are large bit
patterns, the number of addresses and hence
of possible memory locations is astronomical.
Only memories with a small subset of the
possible locations can be built in practice,
and that is why these memories are called
sparse. Practical numbers range in the
thousands to millions to billions of locations.

To move data into and out of the memory
array, both kinds of memories have three
special (input/output) registers: one for the
memory address or cue, another for the word or

Address register Data-in register

«les

"o~
T
T
1
0

•

0

0

t

-

"̂

* i » t * * * *

0

i
i
0

0

1
0

1
0

0

1
0

0

0

0

0

1
0

0

1
1

1
0

1
1
1

1
1

0

0

0

0

0

0

1

0

1
1
1
0

0

0

1
1
0

0

0

0

1

1
0

0

1
0

•
1
0

One-bit
storage

bins

M < M M ,
Data-out register | o| i| o| I | 0 | 1 |o |T]

FIGURE 4. The organization of a random-access
memory as an array of addressable locations.

2.000
location

addresses

Address register

00 10 100

\ I
1 0 1 0 O i l
00 1 1 101

1001 111

1 1 1 0 110
01 01 001

;
00 11 010

01 I I 100

-

—

Disc Select

120

HI

132

126

141

•

123

03

-

—

0

1

0

0

0

0

1

—

-~

Data-in register

I

1

2

-1

0

2

• 1

0

1

1

I

4

1

0

2

3

1

1
2

3

0

.4

1

'. '. '.

0

1

2

-1

-4

1

0

1

0

1
-4

-3

0

0

-3

0

1
0

•1
0

0

1

-

0

-1

2

-I

Up-down
counters

256 bits MM M
Sums [27 |-33145 129 | • • -|.1||.1T|

MM M

^
Data-out register | 1 | o| 11 1 | • •

236 bits

FIGURE 5. The organization of a sparse
distributed memory as an array of addressable
locations.

data pattern to be written into the memory, and
the third for the word or data pattern being
read out of the memory. In Figures 4 and 5
they are above and below the memory array.

In addition to the memory array and the
input and output registers, Figures 4 and 5
show intermediate results of a memory
operation. The numbers in the column or
columns between the address matrix (on the
left) and the contents matrix (on the right)
indicate whether a memory location is selected
for a given read or write operation. The
selection depends on the contents of the
address register, on the location's address,
and on the selection criterion, as will be
explained shortly. Figure 5 (of SDM) has, in
addition, a row of sums as a way of getting
from the contents of the memory locations to
the final output pattern.

Operation

Reading and writing in ordinary computer memory
is simple in concept. Both operations start
with specifying a memory address in the address
register. That selects one location from the
memory array—the location with the matching
address. The selection is indicated by the
single 1 in the select column of Figure 4,
the rest of the values in that column being
zeros. If the memory operation is a write,
the word being written is placed in the data-in
register, and it will replace the word stored
previously in the selected location; if it is
a read, the contents of the selected location
are copied into the data-out register.

Reading and writing in the sparse
distributed memory likewise start with
addressing the memory. However, when an
address is specified in the memory-address
register, the memory array will usually not
have a location with that exact address. This
is overcome by selecting many locations at
once—and by modifying the rules for writing
and reading accordingly.

The criterion for selecting or activating a
location is similarity of address patterns: If
the location's address is sufficiently similar
to the address in the address register, the
location is selected. Hamming distance between
address patterns provides a simple measure of
similarity, and it is used in Figure 5 and in
subsequent examples. The column next to the
address matrix in Figure 5 shows these Hamming
distances, and the column next to it has ones
where this distance does not exceed 112 bits.
These than are the selected (nearby, active)
locations, the unselected (distant, inactive)
locations being indicated by zeros in the
select column. As a rule of thumb, the
selection criterion should be such that many
locations are active at once, but their number
should not exceed the square root of the total
number of memory locations.

A (data) pattern is written from the data-
in register into the memory by adding it into
all selected locations (in an ordinary RAM,
new data replace old in one location). It can
be added simply by incrementing the counters
under the ones of the data-in register and by
decrementing the counters under the zeros.

Figure 6 shows the writing of two patterns
into a very small memory that is initially

empty (all counters initially zeros). The
selected locations are shown in white and the
unselected in gray. As more and more data are
written into the memory, individual counters
can reach their capacity. When this happens,
attempts to increment a counter past its
maximum value or to decrement it past its
minimum value-are ignored.

A pattern is read out of the memory (from
the selected locations) by computing an average
over the contents of the selected locations. A
simple average is gotten by adding the contents

(vector addition) and by thresholding the sums
at zero, with a sum larger than zero yielding a
1 in the output pattern, and a sum smaller than
or equal to zero yielding a 0. A bit of the
output pattern will then be 1 if, and only if,
the patterns written into the currently active
locations have more ones than zeros in that bit
position, constituting a bitwise majority rule.
Figures 7a and 7b illustrate reading at and
reading near the second write address,
respectively. In both cases, the second
written pattern is retrieved (cf. Fig. 6b).

Address

I 1 0 1 1 0 0 1 0 1 0]

I I
1 1 0 1-1 0 0 1 1 1

1 0 1 0 1 0 1 0 1 0

00000,14 I

1011101100

O O I O I 0 1 1 tils

onroaooiro.

1011010110

DisL

2_

ss;

m

Select

I

H
M

m

Data in

Q|

I I I M
(0

1
,0
0

1
0

3>
0

0

1
•0
0

:-0

.1
0,
0

1
'0

0
0

0

•1
-iC
0

!Ko
i

,0

f O
1

"0

0

0

0

1
"0
a

3o
i
0

,.«
i
0
0

0

0

1
0
0

so
I
0
0
1

0

0

0

0

1
-0
0

HO
-1
0

~0
•1
*0

-°
0
0

.1
-a

a

10
I
-.0
0
1
0

«o
>'o
0

1
to
to

J'o
•I
'0
0

-1
0

,0
»0

0

1
0

'o

¥o
1
0
,0

1
0

0

:o
0

1
0

'0

So
•1
0
0

-I
a

^0
6

0

•I
so
0

Address Data in

| 0 1 0 1 0 1 0 1 1 0 |

\ I
HO] O i l »T°Mo | i |

00000111 10

01000001 10

1011010110

1 1000101 1 1

Dist. Select

'*

IP:

MM MM
0'
r
•i
0,'

l?

<C
0*
-1
0
0
.,
$1

0
I

-1
.0

it*

,0

0-"
1

"o
-2

-1

Of

*0
I

-1
^0

'r
0

0
-1
0
0

-1
•&

0
1
1

ro
' t~
fr
0*
I
Of
2

1
M

*0
1
1
0

,1
0

0"
1

-O
2

1

*0?

"o
*l
I

••0

-I
0

.0-
1

™0
ff
1
S

di o'
i
-i
0

I
Ok

:0>
-1

-0
0

-1
iff:

-i
i
0

••1
0

yf
i

i>
0

1
to!

'0
r
.1
,0

%J
a
0
-i
'0

0

-i
m

0
-1
1
.0

r
0,

0'
1

.0
0

1
leg

FIGURE 6. Writing two patterns into a tiny sparse distributed memory.
First the pattern 1011101010 is written at 1011001010 (a), and then the
pattern 0001110101 at 0101010110 (b) .

Address

[0 1 0 1 0 1 0 1 1 0

I | Dist. Select

THM I O O M I',

l a i o - i o i o i o
0 0 0 0 0 1 1 1 1 0

.001 lortooi
~r.**r r -* ^ *, *»x^

r O T M O l 100-

aoioiolf tV
f i o i iVtH 01
01000001 10

orfoi oio'oi *
101 1 0 1 0 1 1 0

1 1 0001 0 1 1 1

1 1 1 ft 1001 f~

-»
-»

—
.̂

-»
-»
-^
-«•

—»
-»

&
5s'1

3

ff.

m
'£%,
$K

2
'S;
3

3

$

-»

—

—-"

-.

-»

—

ftf

td
i

^0
'0

0

0

1
"o*

I
,
0

—

r»-

Sums

Data out

»:•
7l
-i
0

n
0

•0
-i

;p;-
0

-i
0;

•0
>1
-1
0

l-l
0
0

-1
i'O?

-2

-1
;0;

;-o
'•;'i
-i
^0

,1
0

0
-1
•;q.

0

-i
:o

•o
"1
1

"J>,
1
0
0

1
j.Oj

2

I
Vfii

:0
.s.1
i

0

-\
0

0

1
•&
2

1

;o

•0
•-i
i

,0

-1
,0

0
1

(0

0

1
•-.°:

Iff.
?I
.1
0

T
0

"0
.1

:,o;
0

-i
1°..

-~oi|y>
;;f|

1

o>
'M
0

,0
1

iff.
0

1
,0

:';l

•1
,0

t
0

'0
-1
50

0

•i
31

50"
:-i
i
0

-i
o-
0

1
•0;

0

1
:0;

M M M M M
-3 -5 -3 S » h -3 3 -3 >

1 M 1 i { i j M
0 0 0 •h 1 0 1 0 I

Address

1 1 0 1 0 1 0 1 1 0 |

I I Dist Select

1101 10011 1

inOiiiqMtcgijOJroj
^ ••;"•>*»: ft; :;:-!S»iS;-<*-f 3::-. J.J

tOO.OOO'lJlft^IiO?

fd'o'S-ffitlPobiK
wmsM&m
'SbaiiiQfilriis
piiBSJiilKolirSiifo
01 000001 10

i .'•,'; ss.«SK» ̂ i'̂ '-̂ £.-'̂ r".̂ •

::o:r;tO!i:OTooii'
101 1 0 1 0 1 10

1 1000101 1 1

fWPS:Kro~6M?

-

-»

3
pT

•4*
;7,

r^
:-5

3
:«;
2
1

5

*

—-»
-»
•*

1
la
fft

|S

i
I?'
i
i

I?:

0
*?
~L

0

\"

'0

.0

1
0*

0
-1

;<»

0
"I

11
™0

1
0

0

1
0

-2

-1

=iO:

0
I

-r
'<-o
vl

"0

0

-1
, 0

0

•i

0

I
t
0

t
0

0

1
0

2

1
jo|vo

o| o| o
1
L
0

1
0

.0
1
0
2

1
::o:

^ i
i
0

!

0

0

1

0
0

i
|p

;.!
-1
0

i
0

0

1
a
0

-i
ro

0
tr
t
0

£t
0

0

1
0

0

i

0
a<
-r
J>
\i
•*o
0

.1
o
0

-i
. 0 1*0

0
"L

I,

a
-i
0

0

i
0

0

1
0

MM MM I I
SumsfT2| -i|.2| 4) 4 | 2 | -2J 21-2 | ;|

M M I I i I M
Data out [0 | 0 | Q| 1 | I | 11 0 | 1 | 0 [1 [

a . b

FIGURE 7. Reading at (a) and reading near (b) a previous write address.

- 5 -

Why Does the SDM Work?

A premier property of the sparse distributed
memory is sensitivity to similarity, or noise
tolerance. It is the result of distributing
the data, that is, of writing into and reading
from many locations at once, and it is
explained mathematically by the amount of
overlap, counted in active memory locations,
when the memory is addressed with two different
patterns. If two address patterns are very
similar to each other, the sets of locations
they activate have many locations in common;
if they are dissimilar, the common locations
are few or none. This can be seen in Figures
6 and 7: The second read address (Fig. 7b)
differs from the second write address (Fig. 6b)
by one bit only (the two addresses are very
similar), and the number of locations selected
by both—the overlap—is 3; it differs from
the first write address (Fig. 6a) by five bits
(dissimilar), and the overlap is 1 location.
Thus, when we read near the second write
address (Fig. 7b), the second written data
pattern has a weight 3 and the first a weight
1 in the sums accumulated from the selected
locations, allowing the second pattern to be
recovered in thresholding.

The example illustrates that, in a sparse
distributed memory, common address bits
translate into common memory locations, and
common memory locations translate into weights
for stored patterns when reading from the
memory. Thus, the memory is a means of
realizing a weighting function that gives low
weights to most of the patterns written into
the memory and high weights only to a small
number of "relevant" patterns, the relevance
being judged by similarity of address.

The operation of the memory is statistical,
and the actual output is affected not only by
the construction of the memory but also by the
structure of the data. The results discussed
above are demonstrated most readily when the
addresses of the locations and the data are
a uniform random sample of their respective
spaces of bit strings. There is the further
condition that not too many patterns have been
written into the memory. The memory works in
the manner described if the number of stored
patterns is no more than 1-5 percent of the
number of memory locations.

Closely Related Architectures

Ordinary RAM as a Special Case of SDM

We can now demonstrate the close kinship of
the two kinds of memories. Let us start with
a random-access memory that has just over 16
million (2 to power 24, 2**24) locations for
32-bit words. The memory address is then 24
bits long. This memory can be thought of as
a sparse distributed memory with the following
parameters: an array of 2**24 memory
locations, with 24-bit addresses and 32 one-
bit up-down counters for holding the data.
The address matrix would contain each of the
2**24 possible addresses exactly once, and
the Hamming distance for selecting a location
would be zero. That would mean that each
possible address would select exactly one
location, and two different addresses would

always select two different locations.
Writing into this memory causes the old

contents of the location to be lost to over-
and underflow, because the location's counters
have only one bit each. Reading from it
fetches the contents of one location—whatever
was written there last—and thresholding will
not change the bits. This example shows that
the sparse distributed memory indeed is a
generalized random-access memory; it yields
the ordinary RAM as a special case. In the
terminology of the preceding section, the data
pattern associated with the read address has
weight one and all other patterns have weight
zero.

Extensions of the Basic Model

In the basic model of sparse distributed
memory, the pattern components are binary.
The model can be generalized to allow
many-valued components, including continuous,
and an important case is one in which the
components are trinary. The most convenient
three values are -1, 0, and 1, and useful
interpretations for them are 'off, 'don't know
or don't care', and 'on', respectively. The
activation of a location must be based on a
measure that is more general than the Hamming
distance, for example, on the inner (dot)
product of the location's address with the
address in the address register. Writing into. •
the memory is by adding the input-data pattern
into the active locations, much as before,
and reading is by summing over the active
locations, except that to get the final output
pattern, we need two thresholds instead of one.
If this model is restricted to the values -1
and 1, and the two thresholds are both equal
to 0, it is equivalent to the basic model with
binary components.

Other variations of the model are gotten
by adjusting it to the data being stored.
The more the data deviate from the "ideal,"
that is, from being a uniform random sample of
the underlying space, the more important the
adjustments are. Real-world data are never
ideal in that sense, and so the adjustments
are essential in systems for real-world
applications. The adjustments include:
choosing the addresses of the memory locations
based on the addresses in the data; activating
a fixed number of closest locations in any
given read or write operation instead of all
locations within a certain distance; having
individual selection distances for individual
locations; adding correction vectors into
the memory instead of, or in addition to,
data-pattern vectors; weighting active
locations in a read operation according to
their contents; and adjusting the thresholds
that determine the final output.

Some variations of the basic model would
take it outside the realm of cerebellar models.
Adjusting the addresses of the memory locations
as a part of "training" the memory for a
given data set is the most important of such
variations. In the cerebellar models, the
address of a location, once defined, stays
fixed, setting them apart from more general
models, such as multilayer back-propagation
nets [5], which resemble the cerebellar models
in many other respects. Another characteristic

- 6 -

of the cerebellar models, as compared with most
other models/ is that any given read or write
operation activates many locations but leaves
most locations inactive: a location is either
on of off, as indicated in the select column of
Figure 5. These constraints of the cerebellar
models simplify the construction of memories
based on the models, making it possible to
build very large memories that can be trained
reasonably fast.

In the taxonomy of adaptive networks or
artificial neural nets, the sparse distributed
memory is a 'fully connected three-layer
feed-forward' net. The address register (see
Fig. 5) corresponds to the input layer of such
a net, the location-address matrix holds the
input weights of the hidden layer (each memory
location—a row—is one hidden unit), the
select vector is the output of the hidden
layer, the contents matrix (the up-down
counters) are the weights of the output layer
(each column is one output unit), and the
data-out register has the outputs of the output
layer. 'Fully connected' means that each bit
of the input address is seen by each memory
location and that each memory location can
contribute to each output bit. 'Feed forward'
means that the output of one layer goes to
the next or subsequent layers only (no direct
feedback to the layer itself or to its
predecessors), which in turn means that the
outputs of a layer are logically independent
of each other. The term 'three-layer' is a
misnomer, as is evident when several such nets
are cascaded or pipelined. Cascading three of
them will not result in a nine-layer net but
in a seven-layer net, which suggests that the
original net really is a two-layer net (and a
cascade of three of which is a six-layer net) .
Thus, the network input (the address register)
should not be counted as a separate layer.

Relation to the Cerebellum

The reason for calling the sparse distributed
memory, and the models of Marr and of Albus,
cerebellar models is largely historical. After
developing these neural models of associative
memory, the developers noticed and pointed out
remarkable similarities in the wiring diagrams
of their models and the wiring of the cortex of
the cerebellum and, based on the similarities,
suggested functions for several cell types of
the cortex. The significance of the models is
in giving us a mathematical way to look at a
major part of the brain, in the perspective of
the cerebellum as an associative memory with
billions of locations, in motivating further
research into the cerebellum, and in arming
researchers with useful questions.

Why Associative Memories?

Nature has solved problems that appear to be
beyond the capacity of even the most powerful
computers . These problems include taking a
complex signal from the world, such as the raw
input to our visual, auditory, olfactory, and
tactile systems, and producing from it over
time a coherent model of the world—and of the
self in it—that allows us to function in the
world. In our ability to do so, we think of
ourselves as intelligent and would call systems

with similar powers intelligent. How do
intelligent systems work? We will consider
this question only as it relates to associative
memories for large patterns.

The perceptual task of identifying an
incoming signal based on experience can be
divided into sensory analysis and pattern
matching. In sensory analysis, the senses
extract features from the signal, and further
processing of the signal is in terms of those
features. If two scenes produce very similar
patterns in terms of the extracted features,
the two will be identified as the same by
an associative memory (cf. Fig. 1). This is
exactly what an intelligent system has to do
in identifying objects from different views of
it. However, it is important that the features
are appropriate for the task. For a counter-
example, the pixels of a bit map (a raw retinal
image) are poor features for vision, because
shifting the figure only slightly or viewing it
from a different distance can change a large
portion of the features. Human and animal
perceptual systems have attentional mechanisms,
including feedback from memory, that help the
sensors to extract appropriate features.

The actions of humans and animals are
accomplished by the selective contraction and
relaxation of large numbers of muscle fibers
controlled by large numbers of motor neurons.
The configuration of active and inactive motor
neurons at any one time is a large pattern,
and the state of no single neuron is critical
for the performance 01 a given action. The
activation patterns of motor neurons are
therefore appropriate for an associative
memory, as is the learning of actions as
responses to sensory patterns—the actions
being associated with the sensations. Actions
can also be associated with internal states of
the system that reflect the system's past in
complicated ways, which means that a system
based on an associative memory can learn
complex, coordinated actions.

The relative merits of associative memories
in these tasks derive from how information is
packaged. Conventional computers work with
small bit patterns (words) that represent
a quantity, an index, or a small vector of
features. Many such patterns are needed to
describe a complex object or a moment of
experience. However, at the top level, a
single, short index describes or encodes it.
The top-level description is precise, as two
slightly different indexes can point to two
entirely different objects, but it is also
almost totally uninformative. To find out
anything about the object, it is necessary
to fetch from memory further indexes and
associated data fields. This allows objects to
be described in arbitrary detail, but it also
tends to hinder fundamental operations such as
the comparison of objects to see how they are
related—it makes "seeing" objects in whole
difficult; they are seen in tiny fragments.

In contrast, systems based on neurally
motivated associative memories work with large
patterns (e.g., 10,000 bits) as units. A
single pattern can encode a large amount of
information about an object—hence it is highly
informative, yet it need not be precise. It
can serve as the (top-level) description of
an object, and it can also serve as an index.

- 7 -

These properties of the descriptions, together
with the properties of the memory, are helpful
with operations such as the comparing of
objects. They also make it easy to describe
events that occur over time: a moment (of
experience) can be encoded by a single pattern,
and an event by a sequence of patterns that
is stored in the'memory as a pointer chain.
A single pattern can include sensory and motor
components, plus components that encode the
internal (subjective) state of the system,
and hence a sequence of patterns can encode
interactions of all of these components.

The memory's ability to store associations,
and pattern sequences in particular, gives it
the power to predict, and the failure of a
prediction signals an occasion for learning.
Learning is by training through a set of
examples rather than by explicit programming.
This is referred to as learning from
experience. The term is particularly
appropriate if the training patterns encode
real-world phenomena.

Among traditional methods, multivariate
statistical analysis resembles associative-
memory-based methods, and there are important
connections to coding theory and to adaptive
filters. All of these exploit the richness of
the geometry of very-high-dimensional spaces,
something that conventional computer methods
tend not to do.

Pattern Computing

Neurally motivated associative memories and,
more generally, adaptive networks or artificial
neural nets are computing architectures for
very large patterns. They are therefore
classified appropriately as pattern computers,
as contrasted with conventional numeric and
symbolic computers. This classification is
based on practical considerations, as a
computer in any one class can be used to
emulate those in the other two, except that

the emulations tend to be too slow to be of
practical interest. The speed of pattern
computers in dealing with very large patterns
is achieved by large numbers of relatively
simple processors working in parallel.

Today's computers combine components
for numeric and symbolic computing. We can
expect future computers to add more and more
pattern-computer components to them, as we
learn to build and use pattern computers.
That, in turn, will broaden the scope of
computing and the usefulness of computers—
it may well revolutionize computing.

Acknowledgements. This work was supported
by the National Aeronautics and Space
Administration (NASA) cooperative agreement
NCC2-408 with the Universities Space Research
Association (DSRA). Michael Raugh fended off
interruptions and made it possible to write
the paper. The examples were run on an SDM
simulator written for the SON workstation by
Robert Brown. Louis Jaeckel came up with the
idea for Figure 1. James Keeler first drew
the matrix pictures of the SDM as they appear
in this paper, and he called the zeros in the
trinary model don't-know-or-don't-care bits.
David Rogers prepared the illustrations. The
author's sincere thanks to all.

References

[1] P. Kanerva, Sparse distributed memory,
MIT Press, 1988.

[2] D. Marr, "A theory of cerebellar cortex,"
J. Physiology, vol. 202, p. 437, 1969.

[3] J. S. Albus, "A theory of cerebellar
functions," Mathematical Biosciences,
vol. 10(1/2), p. 25, 1971.

[4] J. S. Albus, Brains, behavior, and
robotics. Byte Books, 1981.

[5] D. E. Rumelhart and J. L. McClelland, eds.,
Parallel distributed processing, vol. 1,
MIT Press, 1986.

