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A SIMPLIFIED METHOD FOR PREDICTING THE STABILITY OF
AERODYNAMICALLY EXCITED TURBOMACHINERY

Albert F. Storace
General Electric Aircraft Engines
Cincinnati, Ohio, U.S.A.

A method is presented for the quick and accurate prediction of the stability of
aerodynamically excited turbomachinery using real eigenvalue/eigenvector data
obtained from a rotordynamics model. An expression is presented which uses the
modal data and the transmitted torque to provide a numerical value of the
relative stability of the system. This approach provides a powerful design tool
to quickly ascertain the effects of squeeze-film damper bearings, bearing
location, and support changes on system stability.

INTRODUCTION

The purpose of this paper is to present a method that is easily and economically
applied to turbomachines to predict the effects of shaft flexibility,
squeeze-film bearing supports, and static structure configuration on the
rotor-bearing/static structure system stability relating to rotor aerodynamic
cross coupled stiffness (Alford) forces. The method is general in that systems-
with general rotor support arrangements and multiple spools can be handled. A
major advantage of the method is that it allows machine designers to quickly
determine the effects on stability of bearing changes, shaft modifications, and
bearing support designs to determine appropriate system designs. This paper
presents an expression and analysis methodology for predicting system stability
that includes the effects of destabilizing forces, rotor/stator dynamic
displacements, internal and external damping, and gyroscopic moments. The
expression and methodology presented provides an analysis approach that is
simplified but at the same time includes all of the modeling detail needed to
perform a valid assessment of system stability.

The method provides a timely and cost effective means to initially screen designs
without incurring the high computer costs and large amounts of data reduction
time required using complex eigenvalue rotor dynamic analysis programs in a
repetitive mode. Specifically, the method uses the results of an undamped
lateral critical speed analysis and generalized forces derived from the physical
destabilizing forces to develop modal equations of motion for a self-excited
system. The solution of these equations is then used to develop a modal
dimensionless stability criterion. This criterion requires that the energy
absorbed by the system exceed the energy imparted to the rotor by unbalanced
torque forces if instability is to be prevented.

The method is intended to supplement the more general analysis techniques which
are used for final confirmation of the stability predictions.
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SYMBOLS

Aerodynamic forces acting on the rotor N
(LBf)

Aerodynamic forces acting on the stator N
(LBf)

Rotor displacements cm (IN.)
Stator displacements cm (IN.)
Cross-coupling spring rates N/cm (LBf/IN.)

Compressor or turbine stage torque N-cm
(LBf-LB)

"Alford" coefficient (dim.)

Stage pitch diameter cm (IN.)

Blade height cm (IN.)

Generalized coordinate pair cm (IN.)
Modal displacements (dim.)
Generalized forces N (LBf)
Generalized mass Kg (LBf-SECZ/IN.)

Generalized damping coefficient N-SEC/cm
(LBf-SEC/IN.)

Generalized stiffness coefficient N/cm
(LBf/IN.)

Mode shape vector (dim.)

Physical stiffness matrix N/cm (LBf/IN.)
Undamped natural frequency (RAD/SEC)
Modal Q-factor (dim.)

Number of rotor stages (dim.)

Design point speed (REV/MIN)

Number of field damping components
(casing, frames, rotors)
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SYMBOLS (Cont.)

na Number of lumped damping components
(mounts, bearings, dampers)

Qa Component Q-factor for lumped damping
components (dim.)

Qb Component Q-factor for field damping
components (dim.)

ﬁb Spin speeds for field damping components
(8, is zero for static components)
(RAD/SEC)

N, Low pressure rotor speed (REV/MIN)

N2 High pressure rotor speed (REV/MIN)

MSC Modal Stability Criterion (dim.)

BACKGROUND

A major destabilizing mechanism acting on turbomachinery stages is the Alford
aerodynamic cross-coupling stiffness force (ref. 1). In a fixed frame global
coordinate system, this force can be modeled by the following equation.

- . (1)

where KX = KYX = (T/B/DPH) N/cm, T is the stage torque, D, is the pitch diameter
of the Xtage, H is the blade height, and B is the chghge in thermodynamic
efficiency per unit change in blade tip clearance, expressed as a fraction of
blade height. The physical rationale for these forces is based on an increase of
blade efficiency with decreasing tip clearance. Referring to Figure 1, the
displacement of the disc centerline resulting from whirl decreases the blade tip
clearance in the direction of the displacement. The efficiency of those blades
with reduced clearance is improved resulting in a greater than average torque
delivered by those blades with reduced clearances. Conversely, on the side of
the disc with increased clearances, a less than average torque is imparted to the
rotor by those blades. The integrated effect of the circumferential variation of
blade torque results in a net torque in the direction of whirl associated with
the vector force described in equation 1. As discussed in references 1 and 2,
the cross coupled stiffness can be responsible for self-excited rotor instability
at high power levels that is characterized by subsynchronous rotor whirl in the
direction of rotation. This subsynchronouswhirl is generally associated with the
first rotor dominated mode and the stability analysis method to be presented in
this paper addresses a mode by mode evaluation approach to ascertain the
potential for system instability.
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STABILITY CRITERION

Equation 1 expresses the physical forces acting on the rotor. It can be extended
to include the forces acting on the case (stator) as follows.

F K o* K Y (2)
YR Y X o4 0R

F K K X

FXS « N oXY 'S

YS YX YX S

These forces will be used in conjunction with the gyroscopically stiffened modes
obtained from a real eigenvalue/eigenvector analysis to develop a stability
criterion. For a given mode obtained from the real mode set, define Py and P, as
the modal coordinate pair describing the generalized response in the vértica] and
horizontal planes of the system. More will be said later in this paper about the
incorporation of gyroscopic effects in the modal data.

The rotor and stator modal displacements at a given stage can then be used to
define the physical destabilizing forces acting on the rotor and stator as
follows:

Fyr = Ky (Yp = Yo) = -KyyPy (Byp - Byq)

FRR_ XY (xR _ xSy = kXYpY (gIR _ gY¥S)

YR = Kyx (X - X5) = KyxPy (@xp - s

FIR_ KX (R Yy - F (3)
B A SR S

vs = Kyx (Xg - %g YR

The total generalized forces acting in the X and Y directions can be written

Gy = KyyPy (Byp-Bys) Byp + KyyPy (Byp - Bys) Oys -
KyyPy (Byg - Bys) (Byg - Pys) )
Gy = KyxPx (Pxr - fxs) Byp - KyxPx (Bxr - Pxs) dys -
KyxPx (g - Bxs) (Byg - Pys)
If circular whirl is assumed, '
8R - gXR - 8YR (5)
S XS YS :
Then the generalized forces are
_ 2
o = ka;PY(é¢R_”¢0§% (6)
Y XY R S
The equations of motion for the modal coordinate pair are
mP, + CP, + k P, = G
asX «X X~ X
mPY + CPY + k PY = GY (7)
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Combining these equations and eliminating PY,

4 3 2\ 2
d*e, 2 d&py <2k C>dPx 2ck  dp,

+ —at\— |5 T —— (8)
at?  om dtd \m n?/dt?  w? dt
2 2 4
(¥ K-8\
— 2 X =
m m
For a solution, assume Py, = p eSt and upon substitution, the following
characteristic equation is 8%tainéﬁ.
4 3 2 _
ST+ A3S + AZS + AIS + A0 =0 (9)

The complex eigenvalues of this equation define the stability boundaries of the
system. Specifically, a root with a positive real part indicates an unstable
system. Per the Routh stability analysis, an inspection of the coefficients of
the characteristic equation determines whether the motion is stable or unstable

For a stable system,

2
Ay A, Ay > A

Evaluating the terms,

+ A5 A, (10)

m m m
- ac’k [k 2
m3 m m
stk ac? [k Ko, (@, - BOF
A2, A23A - + XY R S
! 0 m4 m2 m2 m2
Then
2 2 4
C 5 K XY (¢R - ¢S)
m : k
Equation 10 can be written as
K
XY 2
¢> %) (¢R ) ¢S)
- 2
or k> Kyy (¢R - )" Q | (11)
whereq) =\lk/m = undamped natural frequency,
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and Q = k/Cw = modal Q-factor.
Expressing the relative modal displacement on a per stage basis

and the cross-coupling stiffness in terms of the rotor speed and
the HP per stage at the design point leads to the following equation.

For stability,

2PE
> 1.0 (12)
713,31 N @.Hp,
) 2
—Q > L1 (B - Bes)
RPM  $o1 ho Ri7SI

Dp;H;

where PE = 1/2 {¢}T[K]{¢} = 1/2 k = modal potential energy and N = the number of
rotor stages. Equation 12 represents an energy balance expressed in terms of the
pertinent modal parameters for a system mode of vibration and the physical
destabilizing forces. If English units are used, then the constant 713,361
RPM-cm-N/HP becomes 63,025 RPM-IN-LB/HP. The accurate calculation of the modal
or generalized Q-factor is key to the use of equation 12 for evaluating system
stability. It must reflect the effects of both external and internal damping and
the modal participation of the various engine components.

The modal Q-factor is given by equation A10 in the Appendix. Substituting this

equation into equation 12 yields the following modal stability criterion (MSC).
For stability, )

na PE g\ PE
2 __§+ ____t.)_>___l2—x
2 Q fii( @/ q,

a
> 1.0 (13)
713,361 _N 61.HP1. ﬁ ¢ 9
on tT oon. PR fsi)
N Pi'i
Note that squeeze-film damper elements contribute lumped damping and are included
in the summation a=1, 2, 3, ..... , na. As an approximation, they are modeled as

soft springs in the system vibration analysis and a conservative component
Q-factor of 3.0 can be used, although a more exact value can be calculated.

GYROSCOPIC EFFECTS AND ROTOR INTERNAL DAMPING

Figure 2 shows an example of a typical engine system vibration model used %o
generate modal data for the MSC. This model represents a single plane of a
demonstrator engine and is an assemblage of substructure (span) and spring-type
elements. It can be built very rapidly and is easily altered and interactively
run to generate modal data for MSC evaluation of a wide range of alternative
system designs. The span element type, represented by solid lines in Figure 2,
includes both flexibility and mass properties and models casings, rotors, and
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frames. The spring-type elements model bearings, mounts, and dampers.
Gyroscopic moments are incorporated through spin and whirl frequency dependent
terms in the mass matrices of the substructures. Note that while the modal data
is obtained from an analysis which models a single plane of the engine, it does
reflect whirling motion of the rotors. Consider the consequence of cross-axis
gyroscopic coupling: (1) lateral motions of the rotor are not planar-the rotor
center motion describes a circular orbit, if rotational symmetry prevails; (2)
each free vibration mode of the equivalent non-rotating shaft of the planar model
is split into two modes which are distinguishable by the sense of whirl motion
(relative to the shaft spin). These are forward and backward whirling modes, and
since the Alford instability mechanism drives forward whirling modes, the planar
model is constrained to provide forward whirling modes for the reference rotor.
Figure 3 shows the Campbell diagram (map of natural frequencies vs spin speeds),
for the model of Figure 2, referenced to high pressure rotor spin speeds. The
frequency lines represent system modes involving forward whirl of the high
pressure rotor and backward whirl of the Tow pressure rotor. The latter are a
consequence of counterrotating rotors, and decreasing natural frequency (due to .
gyro softening) with increasing high pressure rotor speed reflects dominant Tow
pressure rotor participation. Figure 4 shows examples of mode shapes for two
high pressure rotor subsynchronous modes at the 13,226 RPM NZ/-11,340 RPM N
design point for the Campbell diagram of Figure 3. The 3131%cyclie/min (CPM}
mode is a fan shaft bending mode and the 8303 CPM mode is a core rotor bending
mode, with the core rotor out-of-phase with _the core case. For these two modes,
the spin speed to whirl frequency ratios @, /o for the high and Tow pressure
rotors are equal to (4.22, -3.62) and (1.55, -1.36), respectively. The MSC
evaluations are based on a mode by mode evaluation at the design point (design
speeds and reference rotor torque). The MSC values are calculated for each
forward whirl high pressure rotor mode and the minimum value is the basis for the
rotor system stability prediction. Since the destabilizing effects of the
aerodynamic cross-coupling forces are generally much more significant for the
high pressure rotor than for the low pressure rotor, the former is considered as
the reference rotor. Hence, the index i in equation 13 ranges over the stages
for the high pressure rotor; both power absorption (compressor stages), and power
generation (turbine stages) are included in the summation. It will be noted that
single mode evaluation is acceptable because the cross-axis stiffness associated
with the Alford forces is relatively small and, therefore, little loss in
accuracy results from the use of the original mode shapes in the stability
calculations.

The incorporation of the modal Q-factor in the MSC results in the implicit
inclusion of rotor hysteresis or rotary damping which can be destabilizing if the
rotor is undergoing subsynchronous vibration. The spin speed to whirl frequency
ratios obtained from the system vibration analysis provide the data needed to
correctly incorporate the effects of rotor internal damping in the generalized or
modal damping for the mode. Hence, the modal Q-factor provides the effective
system damping needed to correctly define the energy absorbed by the turbomachine
at resonance.

EXAMPLE STABILITY CALCULATION AND ROTOR WHIRL EXPERIENCE

To demonstrate the calculation method, the MSC values are calculated for each

291



natural frequency involving high pressure rotor forward whirl at the design point

for the engine model of Figure 2. These natural frequencies are calculated up to
the HP rotor synchronous frequency and correspond to the intersection of the
Campbell diagram frequency lines and a vertical line passing through the
reference rotor design speed (Figure 3). They occur at 1118, 1554, 1665, 3131,
4034, 5966, 6654, 8303, 10632, and 12580 CPM.

For example, for the 8303 CPM high pressure rotor bending mode, the numerator of
equation 13 is equal to 122,708. In general, 1<@<2. Setting @equal to 2.0
for each stage, the term

N(31

X:
By - Py
1'=1 DP.H, N fsi)

of equation 13 is equal to 1569 HP/cmz.

As previously mentioned, the summation i=1, 2, ...., N encompasses both the
compressor and turbine stages of the high pressure rotor. Then at the N

13,226 RPM design speed of the high pressure rotor: 2
The MSC is equal to 123,067 N/cm
= 1.45
713,361

—(1569) N/cm
13226

Table 1 provides the MSC and modal Q-factor for the design point modes. This
table shows that the minimum value for the MSC occurs for the 8303 CPM mode and
that the system is predicted to be stable.

The modal stability criteria has shown good correlation with experience for
various General Electric Aircraft engines.

CONCLUSIONS

The MSC provides a convenient and quick means to perform a rotor stability
analysis using modal data readily available from planar system vibration models.
It includes all of the significant parameters (gyroscopic moments, damping,
rotor/stator relative displacements), and modeling detail needed to perform a
valid assessment of rotor stability related to Alford forces. The assumption of
circular whirl means that the stabilizing effects of non-axisymmetric rotor
and/or engine support stiffness are not included, and this may result in built-in
conservatism, depending on the characteristics of the engine system modes.
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TABLE I -~ MODAL STABILITY AND Q-FACTOR VALUES CALCULATED AT THE
DESIGN POINT* FOR THE ENGINE MODEL OF FIGURE 2

NATURAL FREQUENCY MODAL-Q MSC

(CPM)
1118 12.5 1657
1544 12.4 2643
1665 - 15.1 1112
3131 20.7 12
4034 16.1 58.9
5966 21.4 246
6654 15.3 7.5
8303 19.3 1.45
10632 16.5 53.7
12580 18.5 6.0

* N = 11340 RPM/N, = 13226 RPM
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CLEARANCE

STATOR HIGH BLADE FORCE

ROTOR DISK ECCENTRIC TO STATOR IN X DIRECTION
PRODUCES NET FORCE IN Y DIRECTION

FIGURE 1 - ALFORD INSTABILITY MECHANISM

HIGH
PRESSURE 23

ROTOR a3

@ ., & N LOW PRESSURE ROTOR Cad

FIGURE 2 - SYSTEM VIBRATION MODEL OF A DEMONSTRATOR ENGINE
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e HP ROTOR SYNCHRONOUS
1/REV MODES AT INTERSECTIONS
HP ROTOR OF 1/REV LINE AND MODES
LINES

o SOFTENING DUE TO BACKWARD
WHIRL OF COUNTERROTATING

LP ROTOR

_ - DES. POINT
3 ] 5 ¢ 7 8 9 10 1 1z 13! 34 N,= +13,226 RPM
N, (KRPID) N = -11,340 RPM

FIGURE 3 - CAMPBELL DIAGRAM
FORWARD WHIRL MODES FOR HP ROTOR
BACKWARD WHIRL. MODES FOR LP ROTOR
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HP ROTOR FORWARD WHIRLING MODE AT
THE DESIGN POINT

N1=-11340, N2=13226 RPM=3131.3
TOTAL ENERGY 128744

R ,==11340=-3.62
3131

RHP=13226=+4.22
3131

HP ROTOR FORWARD WHIRLING MODE
AT THE DESIGN POINT

N1=-11340, N2=13226 RPM=8302.6
TOTAL ENERGY 679347

CORE BENDING MODE

RL =-11340=-1.36
8303

Ryp= 13226=+1.59
8303

FIGURE 4 - EXAMPLES OF HIGH PRESSURE ROTOR .SUBSYNCHRONOUS MODES
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APPENDIX
DEVELOPMENT OF MODAL Q-FACTOR EQUATION

The equation for the modal Q-factor is developed by summing the damping
contributions of the engine components (field damping for casings, frames, and
rotor component structures, and lumped damping for mounts, bearings, and
squeeze-film dampers).

The Q-factor for the i-th component is defined as

27 PE]
Q = —— (A1)
Ei |
where PE! is the physical strain energy in the component and EDi is the energy
dissipatéd.

Consider the work done on the system at resonance by an excitation force P at
point j expressed in terms of modal data for the system.

Wiy = TTPJ.gIJ. (SF) (A2)

where §. is the modal displacement at point j and SF is a scale factor relating
the modd] displacement to the physical displacement.

From equation Al, the energy dissipated by the engine components
is

5 PEi

Wy = 2T(SH) 2 —- (A3)
i=1 Q.
i

where n is the number of components and PEi is the modal strain energy in the
i-th component.

Equating the work done on the system to the energy dissipated Teads to a solution
for the modal scale factor SF.

. b P
n PE, PE, (A4)
- — 2y —+
i=2 @ i=l Q

where ¢j is the modal displacement at point j.

In reality, the modal scale factor is the modal participation at resonance, or

0~j .
SF = akf—o (A5)
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where;f’= Pjﬁj = the generalized force and k is the generalized stiffness.

Hence, k P.p. 2PE PE
Q= (SF)gz = — iE T T w
F n : n .
2> —L > — (A6)
i=T g i=1  Q

Equation A6 provides the modal Q-factor for the system reflecting the damping
contributions of the static structures and the rotor component structures.
However, in the latter case, the rotors are treated as stationary component
structures since the effects of spin and whirl have not been included. Hence,
the internal or hysteretic damping associated with a spinning and whirling rotor
has been neglected. This -damping mechanism is characterized by an internal
friction force caused by the rate of change of strain within the rotor. This
internal friction force can be represented with the viscous damping model derived
in references 3 and 4 as

Fy = ~Cod (-§) (A7)

where C, is the viscous damping coefficient for a stationary rotor, @ is the spin
speed, ¢yis the whirl frequency, and o is the whirl displacement.

Equation A7 represengs the follower force (tangential force which leads the whirl

displacementd” by 90°) F, in a rotating coordinate system fixed to the rotor. An
equivalent damping coeff?cient is derived as follows.

Fy = -cEQwJ= -6 (w-§) = -C.od (1-g/w) (A8)
Hence, Cpy = Cy (1-9/cw)
If Q5 is the component Q-factor for a stationary rotor corresponding to C,, then
u

an eduivalent field Q-factor QEQ for a whirling and spinning rotor of sti?%ness
kR can be defined as follows.

1 kR 1 kR ( ﬁ/ )
Cen = = 1-p/w
oy w0y W
or ' QR

0, = —R—
B (1-g/w)

(R9)

Notice that the equivalent Q-factor Q., for the rotor is negative when the rotor
speed § is greater than the whirling Egeedco. Physically this means that the
damping force F, acts in the direction of whirling for subsynchronous vibration
and is thus des{abilizing.

Incorporating the expression for the rotor Q-factor into equation A6 yields the
following equation for the modal Q-factor which includes the effects of spinning
and whirling rotors. ‘
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PE

na PE nb . PE (A10)
4> (Pw) —2
a=1 Qa b=1 Qb

total system modal potential energy

number of lumped damping components (mounts, bearings, dampers)
modal strain energy for lumped damping components

component Q-factors for lumped damping components

number of field damping components (casings, frames, rotors)

spin speeds for field damping components (ﬁb is zero for static
components)

modal strain energy for field damping components

component Q-factors for field damping components
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