
THE STABILITY OF THE STEADY STATE AND BISTABLE RESPONSE OF A 
FLEXIBLE ROTOR SUPPORTED ON SQUEEZE FILM DAMPERS* 

Meng Guang 
The Vibration Research Council 

Northwestern Polytechnical University 
Xian, China 

In this paper, the stability of the steady state circular response 
and the bistable response of a flexible rotor--centralised squeeze film 
damper (shortened as SFD) system is analysed, and the system's charac- 
teristics of accelerating or decelerating through the bistable region 
are investigated. It is found that there are two unstable regions for 
the circular response. The larger the unbalance parameter and the 
smaller the bearing parameter and external damping, the easier it is 
to cause an unstable circular response. In addition, the larger mass 
ratio and the smaller stiffness ratio will decrease the threshold rota- 
ting speed of instability. Although in some cases, the system's circu- 
lar response is unstable, the system is still stable and has stable 
nonsynchronous response. 

It is also found that only when the initial rotating speed is 
ahead of the bistable region can the bistable response be produced when 
the system is accelerating through the bistable region. The small 
solution of the bistable response is more stable than the large one. 

NOMENCLATURE 

a = angle acceleration 
B = bearing parameter (=p~~~/rn~,c~), where R is the bearing 

radius, L is land length of SFD, and p is the absolute vis- 
cosity of the lubricant 

c = radial clearance of SFD 
Cd = external damping coefficient 
eu = unbalance eccentricity 
k a = retainer spring stiffness 
k s = shaft stiffness 
K = stiffness ratio (=kg/ks) 
mg, mD = mass lumped at bearlng station and rotor mid-span 
mu = unbalance mass for experiment 
n = rotating speed in RPM 
U = unbalance parameter (=eU/c) 
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x,y; r,t = Cartesian and polar coordinates 
X,Y = X/C, y/c 
Z - = X+iY 
Z = conjugation of Z 
a = mass ratio (=mB/mD) 
E B ,  ED = eccentricity ratio of journal or disk (=eB/c or eD/c), where 

eg and eD are eccentricities 
P = damping ratio (=cd/2meC) 
r 2 = a/wc 

$B, $D = attitude angles 
w = rotor rotating speed 

iC = pin-pin critical speed (=(ks/mD) 112 
= speed ratio (=w/wc) 

-C = at for steady state response and wCt for transient response 
('1 = d/dt 

Subscripts 

(B) = bearing journal 
(Dl = disk 
(0) = steady state condition 
(x), (y) = direction subscripts 

INTRODUCTION 

A well designed squeeze film damper (SFD) is a good isolator and 
damper in rotating machinery and can increase the system's stability. 
But poorly designed SFD may destabilize the rotor system, so the sta- 
bility analyses of rotors supported on SFD's have received more atten- 
tion (Ref. 1 and Ref. 2). The bistable response which is induced by 
the nonlinear fluid film forces will cause a large vibration amplitude 
that is harmful to the rotor system. Since the high nonlinearity of 
the fluid film force makes the mathematical analysis very difficult, 
most stability analyses of the rotor-SFD system are limited to the case 
of steady state circular response of the centralised SFD system (Ref. 3 
and Ref. 4). Whether the system is unstable when its circular response 
is unstable is still an undiscussed problem. As the system is nonlin- 
ear, it may have a stable response other than the circular response. 
Furthermore, it is not clear what the properties are when the rotor 
system accelerates through the bistable region, and the influences of 
the system parameters on the system's stability have not been thor- 
oughly analysed. As these problems are very important for designing 
good SFD, they are worth investigating. 

EIGEN-MATRIX FOR STABILITY ANALYSIS 

For the flexible rotor supported on the centralised SFD shown in 
Fig. 1, the nondimensional equations of motion can be derived by taking 
the same assumptions adopted in Ref. 5: 



Bearing journal: 

where F=f,+if, is the dimensionless fluid film force. 
In the agsumptions of the short bearing and v-film, there are 

(ref, 6) 

where 

For the steady state circular response, there are 

i@o 
ZBO =Eoe I sO=c~nstl ~ O = r - @ ~ l  @l=const and ZBO'iZBO 

Linearizing the nonlinear fluid film force about the steady state cir- 
cular response ZBO with the Taylor series, we get (Ref, 6) 

where, Z~=ZB-ZBO. The linearizing coefficients are 



and 

As %=const, $o=~-$~, $l=const, it can be seen that these coefficients 
are periodic functions of time, the period being n .  

In Eq. (1) and Eq. (2), note Z1=ZD-ZDO, Z =Z -2 2 B BO' we can get the 

perturbed equations of motion about the steady state response 
iOo 

ZBO=e oe and Z Do=& D8 i4Do (approximated to the first order term): 

2 i c p  
+ (B2+iC2) e OZ; ] =O 

Thus, the perturbed equations of motion of the system about its cir- 
cular response are in the form of the Hill equation with periodic 
coefficients. 

Now U1=p1+ip2, U2=p3+ip4, and make the transformation of 

that is, analysing the problem in the coordinate rotating synchronously 
with the rotor shaft, we have 

There are similar results for 22. Substituting Eq. (7) and Eq. (8) 
into Eq. (6) and separating the real and imaginary parts, we get 

where P = ( P ~ , ~ ~ , P ~ , ~ ~ ) ~ ,  and the damping matrix D and stiffness matrix S 
are 



Substituting Eq. (5) into Eq. (9) and noting R=(rl,rZ,. . .,r8) T 
=(pl,pi,p2,pa,p3,pj,~4,Pi)TI Eq. (9) can be transferred to the first 

order form: 

Note 

These are the same eight fluid film force coefficients commonly used 
for SFD in the polar coordinate (Ref. 4); then the coefficients matrix 
H is 



The stability of the system's steady state circular response can 
be determined by the eigenvalue of matrix H. The steady state respon- 
ses ZBO and ZDO of Eq. (1) and Eq. (2) are asymptotically stable when 
all the eigenvalues of H have negative real parts, and they are 
unstable if only one eigenvalue of H has a positive real part. 

NUMERICAL ANALYSIS OF STABILITY 

The eigenvalues of matrix H are solved with the QR method, ar.d the 
stability of the system's steady state circular response is analysed. 
From numerical results we find that, for both Q<l and Q>l, there are 
two unstable regions. The unstable region generally begins before the 
peak point of response and finishes after the peak point (see Fig. 2). 
In most cases, the larger the unbalance parameter U, and the smaller 
the bearing parameter B and the external damping ratio P, the easier it 
is to produce the unstable response. Furthermore, the larger the mass 
ratio a and the smaller the stiffness ratio K, the lower the threshold 
rotating speed of instability - perhaps because the larger a and 
smaller K may reduce the critical speed of the system. No instability 
is found in the region of Q<l and ~ ~ < 0 . 5 .  

The middle solution of the bistable response is always unstable, 
while the small solution is always stable. For the bistable response 
of the isolated bifurcation form, the large solution is generally 
stable (see Fig. 3). but it may be unstable when the bistable region 
is large (see Fig. 4). For the bistable response of the Duffing form 



when Q<l (although in most cases the large solution is stable) it may 
become unstable in some cases (see Fig. 2). When Q>l, the large solu- 
tion is unstable in most cases (see Fig. 2 and Fig. 3). 

In order to find the reason for this instability, Eq. (1) and 
Eq. (2) are directly solved with the Runge-Kutta method in the unstable 
region. It is found that in most cases, the instability is caused by 
the nonsynchronous response. That is to say, within the unstable 
region, although the circular response is unstable, the system is still 
stable and has a stable, nonsynchronous response. For the example of 
Fig. 3, when Q=2.0, the circular response is unstable, but the system 
has a stable 1/3 subharmonic response at the same time (see Fig. 5). 

Besides the nonsynchronous response, the lack of a steady state 
response is another reason for instability. In only a few cases, the 
system is very unstable, and the response is divergent. 

The above results explain the reason why the bistable response is 
seldom fcund in practical rotor systems, although it is common in theo- 
retical analyses. 

From the numerical results it is also found that the instability 
can be avoided by selecting reasonable system parameters, especially 
for the instability in Q<l. 

It is worth paying special attention to the fact that the nonsyn- 
chronous response also occurs frequently in centralised SFD, 'both in 
'the regions of Q<l and Q>l although the nonsynchronous response may be 
more prevalent in the uncentralised SFD. The nonsynchronous response 
should be avoided as it will cause alternating fatigue to the rotor 
system. 

TRANSIENT CHARACTERISTICS WHEN THIS SYSTEM IS ACCELERATING THROUGH 
THE BISTABLE REGION AND STABLE DEGREE OF BISTABLE RESPONSE 

We have analysed the stability of bistable response. But what is 
the bistable jumping process, and what is its relationship with the 
initial rotating speed? Furthermore, the large and small solutions of 
the bistable response are both stable in most cases, but which is more 
stable? So the transient response of the system accelerating through a 
bistable region is analysed in the following, 

Supposing that the accelerating motion of the flexible 
rotor---centralised SFD system has a constant acceleration, that is, 
+"= const = a, then the dimensionless equations of motion can be 
written as 

where z is now denoted as ~=w,t and Q0 is the initial speed ratio. 
By solving Eq. (12) numerically, we find that, for different ini- 

tial rotating speeds at the beginning of acceleration, the response 
routes when passing through the bistable region are different. If we 
note the beginning and finishing speed ratio of the Duffing bistable 



response as Qs and Qe (see Fig. 6 ) ,  then the response will take the 
route of L1 when Qo<Qs, and a bistable response occurs (see Fig. 7). 
But the response after jumping down will not completely take the route 
of the steady state response, it goes to steady state after a period 
of oscillation. During the period of oscillation, a nonsynchronous 
response appears in some cases. When the initial speed ratio Q0>QsI 
only for very suitable initial response conditions can the response 
take the large solution and cause bistable jumping. In most cases, 
the response will take the route of L2; that is, the small solution is 
the practical one and no bistable jumping occurs. If Qo<Qs, but stops 
accelerating when Qsc$Qe, then the bistable jumping down will occur in 
most cases, and when the acceleration is continued, the response will 
take the route of L2. Therefore, the response will take the route of 
L3 for the whole process. 

From the above analysis, it can be seen that the small solution of 
the bistable response is more stable than the large one. In decelera- 
ting, the response takes the route of L4. It is easy to see that the 
jumping phenomenon of deceleration is not obvious and sudden as that of 
acceleration, and the faster the deceleration, the smaller the jumping 
amplitude. 

EXPERIMENTAL ANALYSIS 

In this experiment, a symmetric rotor is used which has a diameter 
of 32 rnm and a length of 889 mm, with a 10.325 kg disk assembled in its 
mid-span, The SFD is fabricated with two load lands, a circumferential 
groove for the oil supply, and no seals. The first rigid critical 
speed of the rotor shaft is about 5500 RPM, the absolute viscosity of 
the lubricant at 18 "C is about p=8.05~10-~ kgs/cm. 

The rotor and journal vibrations in the horizontal and vertical 
directions are measured and recorded by a TEAC-R50C type recorder and 
then processed with an SM-2100B signal analyser. This gives us the 
magnitudes of vibration, the oscillation orbits, and the power spec- 
trum charts of the response. 

Figure 8 is the stable nonsynchronous response of 1/2 the sub- 
harmonic. Although theoretical analyses show that, in this case, the 
steady state circular response of the system is unstable, the system is 
still stable. 

Figure 9 shows a stable synchronous (almost circular) response 
and theoretical analyses also indicate that the circular response is 
stable. 

Figure 10 shows the experimental results of a bistable jumping 
down when system is accelerating through the bistable region. It can 
be seen that the middle solution of the bistable response is unstable, 
as shown in the orbit figure. 

CONCLUSIONS 

1. The perturbed equations of motion of a flexible rotor supported 
on SFD about its circular response are of the form of Hill equations 
with periodic coefficients, and there are two unstable rsgions for the 
system's circular response separately in Q<l and Q>l. In most cases, 



the larger the unbalance parameter and the smaller the bearing parame- 
ter and external damping, the easier it is to produce instability. 
Furthermore, larger mass ratio and small stiffness ratio will decrease 
the threshold rotating speed of instability. 

2. Although the steady state circular response is unstable, the 
system is still stable in most cases and has a stable nonsynchronous 
response. In many cases, especially when Q>l, the large solution of 
bistable response is also unstable, and then bistable jumping will not 
occur. This explains why the bistable response is seldom observed in 
practical rotor systems. Thus further work on bistable response is 
not worth pursuing. 

3. Whether the bistable jumping occurs or not is largely related 
to the initial rotating speed where acceleration begins. Only when the 
initial specd is ahead of the bistable region can the bistable jumping 
be caused. The small solution of the bistable response is more stable 
than the large one. 

REFERENCES 

111 Tonneson, J.; Lund, J.W., "Some Experiments on Instability of Rotor 
Supported in Fluid Film Bearing," Trans. of ASME. J. of Mechanical 
Design, Vol. 100, No. 1, 1978, pp. 147-155. 

121 Yan Litang, "The Bistable Characteristics of Rigid Rotor Supported 
on Squeeze Film Dampers," Proc. of Fourth Conf. on Structure, Strength 
and Vibration, 1987, China, pp. 76-78. 

131 Rabinowitz, M.D.; Hahn, E.J., "Stability of Squeeze Film Damper 
Supported Flexible Rotors," ASME paper 77-GT-51. 

141 White, D.C., "The Dynamics of a Rigid Rotor Supported on Squeeze 
Film Bearings," Proc. Inst. mech. Engs, Vol. 186, 1972, pp. 213-219, 
Conf. on Vibration in Rotating System. 

151 Meng Guang; Xue Zhongging, "Investigation on Steady State Response 
and its Nonlinear Characteristics of Flexible Rotor--Squeeze Film 
Damper System," ASME paper 85-DET-141. 

161 Meng Guang; Xue Zhongging, "Some Theoretical Analyses on Flexible 
Rotor--Squeeze Film Damper Bearings System and Fluid Film Forces," 
Proc. of the Intl. Conf. on Rotordynamics, Sept. 1986, Tokyo, 
pp. 511-516. 



1. squeeze film damper 2. squeeze oil film 
3. outer race constrained not to rotate 
4. ball bearing 5. centralising spring 

Fig.1 Schematic diagram of a flexible rotor 
with squeeze film damper 



Fig.2 Stability analysis of system's circular response 
(U=0.2, P=0.0005, a=0.1, B=0.025, K=0.2) 
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Fig.3 Stability analysis of system's circular response 

(U=0.4, P=0.005, a=0.2, B=0.05, K=0.01) 
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Fig.4 Stability of isolated bistable response 
(U=0.4, P=0.0005, a=0.01, B=0.3, K=0.001) 

~ig.5 Nonsynchronous response in Fig.6 Schematic diagram of the 
unstable region (U=O. 4, P=0.005, influence of initial rotating 
a=0.2, B=0.05, K=0.01, R=2.0) speed on bistable jumping 



Fig.7 Bistable jumping response of accelerating through 
bistable region (U=0.25, P=0.0005, a=0.1, B=0.05, 
K=o.~, aO=o.42, r=o.0005) 

Fig.8 System's 1/2 subharmonic response by experiment 
(L=1.2cmI c/R=0.5%, mu=10.5g, n=4320rpm) 



Fig.9 System's synchronous response by experiment 
(L=l.Gcm, c/R=O.l%, m,=7.6gI n=5280rpm) 
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Fig.10 System's bistable response by experiment 
(L=1.2cmI c/R=O.l%, mU=4.6gI n=5430rpm) 




