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1 Introduction

Human reasoners engage in diverse and powerful forms of cognition. Perhaps the
most common mechanism used by humans is induction, which is the usual process of
learning. The most celebrated and well understood process of thought is deduction, the
method employed in mathematical proof. Humans can also make plans, reason about
events and causality in an environment which frequently changes and often provides
incomplete information. Humans need not be certain about their facts, and can make
assumptions when required information is unavailable.

Classical logic deals almost exclusively with deduction. In chapter 4 of Aristotle’s
Metaphysics [1], there is a section regarding the application of logic to predicting the
future. In that treatise, Aristotle describes what has now become known as the axiom
of Excluded Middle. In essence, he states that in his logic a proposition can be either
TRUE or FALSE, exclusively. No other values for the veracity of a proposition are
possible. There is no middle ground. Because the future is indeterminate, one cannot
assign absolute knowledge of a forthcoming event. This is a broad statement which has
far reaching implications. As pointed out by Bertrand Russell in the early nineteen
hundreds, it is not a trifling thing to easily toss aside.

On the other hand, perhaps the interpretation of the axiom of excluded middle has
been too broad. Aristotle was seeking truth in a very absolute way. He was quite aware
of the works of Zeno and Pythagoras, and to a certain extent his logic was developed
from his knowledge of their process of mathematical proof. Propositions in mathematics
are universal in their temporal extent. One never hears a geometer state that two lines
are parallel from two until four this afternoon. The lines are simply parallel or they are
not. The geometer’s proof makes no reference to time, and, in like manner, neither does
Aristotle’s logic.

One should not lose track of the fact that logic is primarily a model for analysis of
human thought. Its utility as a paradigm for symbolic reasoning and computer pro-
gramming is secondary to its value as a model of the cognitive process. The restriction
to exclude time simplifies the model and makes it much more comprehensible. The
restriction also limits the range of problems to which the model may be successfully

applied.

Clearly, human reasoners often contemplate the future and create rational plans about
it. During the last century, logicians have begun to extend classical logic in order to
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better model this kind of cognition. Modal logics have been invented to describe systems
in which propositions may or might be true or false. Defeasible logics and model theory
are used for systems which involve change. And temporal logics have been devised to
reason about time. The purpose of this paper is to describe the logic used in the reasoning
scheme employed in the Tower Chief system.

2 Classical Logic

Let us begin with a short review of the fundamental ideas of logic. The elementary
operands of logic are propositions. A proposition is a declarative statement such as,
“Socrates was a man”, or “There is ice on runway 33.” Logic consists of:

1. A set of abstract operations for combining propositions in ways that preserve the
veracity of the resulting compound proposition;

2. A mechanism for generating new propositions from (i) knowledge already known
and (ii) general statements called rules. This process is called deduction.

Symbolically, a proposition which is believed to be true may be represented as p.
The belief that the same proposition is not true (false) is represented as ~ p. The
opposite of a proposition being false is that the proposition is true, or ~ (~ p) =p. A
situation in which p and ~ p are claimed to be true is a contradiction. In classical logic,
contradictions indicate an error in the logical system in which they occur.!

Propositions may be combined via conjunction (logical AND) or disjunction (logical
OR). The symbolic representation of the conjunction of two propositions is:

pPAg (1)

and that of the disjunction? is:
pVa (2)

The laws of commutation and distribution for logical combination operators are re-
spectively:

(pAg) = (anp) (3)
(pvVa) = (qVp) (4)

and

~ (pA(gAT) = (PAgA(pAT) (
(pA(gVr) = (PAQV(PAT) (
(pv(gVvr)) = (pVgV(pVr) (7
(pV(gAT) = (PVOA(PVT) (
lGenerally caused by an erroneous rule. Read on.

2The use of the symbol V for disjunction is from the Latin word vel, meaning “inclusive OR”. Unlike
English, Latin possesses a separate word for “exclusive OR”, aut.




Any combination of two propositions may be treated as a single proposition.

Negation applied to combinations leads to the following relationships, known as De-
Morgan’s Theorems

~(pAg) = (~pV ~9q) (9)
~(Ve = (~pA~9q) (10)

2.1 Rules
Deductive inference is accomplished through the use of rules.

“A Rule is a hypothetical proposition composed of an antecedent and conse-
quent by means of a conditional connective or one expressing reason which
signifies that if they, viz. the antecedent and consequent are formed simul-

taneously, it is impossible that the antecedent be true and the consequent
false.”3

Translated into more modern terms, a rule is a conditional statement, consisting of an
antecedent (the set of conditions to be met) and a consequent (the set of inferrences to
be implied if the conditions required in the antecedent are satisfied).

While the laws of logic, such as the commutative law above, and the theorems deriv-
able from them, such as DeMorgan’s Theorems, are domain independent, rules are based
on semantic information. Thus,

“If it is raining, then the runways are wet.” (11)

is a rule. Such a rule is written formally as

pPDgq (12)

where p represents the antecedent (“it is raining”) and g represents the consequent (“the
runways are wet”). The hypothetical nature of the statement is embodied in the symbol
. :

Generally, rules have more than one antecedent, and may have more than one conse-
quent. Rules may combine antecedents purely by conjunction, purely by disjunction, or
in combination. As an alternative, a disjunctive rule can be split into several simple or
conjunctive rules. While this is less efficient from a notational point of view, it avoids
disjunction altogether. This is valuable when creating a computer program to do logic,
because the program need only perform conjunction.

There are six forms in which deductive rules of inference may appear. For the pur-
poses of this discussion, the description of two will suffice.

3This definition is from a translation of the fourteenth century logician Pseudo-Scotus (John of
Cornubia) which appears in [1].
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Modus Ponens This form, properly known as modus ponendo ponens, or the method
of affirmation leading to affirmation*, comes to the conclusion of the consequent if
the hypothetical antecedent is declared. For the rule above, the information that
it is raining leads to the inference that the runways are, indeed, wet. Formally

P D g
p
q (13)

Modus Tolens The correct name is modus tollendo tollens, or the method of denial
leading to denial.® In this form, the negation of the antecedent is concluded if the
hypothetical consequent is declared not to be true. The formal definition is

P O 9
~q
~p (14)

A rule may be thought of as a generalization that can be applied to a domain of
specific situations. In effect, rules are the analogs of algebraic equations in logic. This
generalization is accomplished, as in algebra, through the use of variables.

Note that the rule stated in (11) is not really correct. Obviously, if the rain is falling
in Boise, there is little effect on the runways at LaGuardia. The rule as stated is not
precise enough. A more precise statement of the intended meaning of rule (11) is

“If it is raining at some airport, then the runways at that airport are wet.” (15)

If the airport is represented by the variable z, that it is raining at by Rz, and that
the runways are wet at by Wz, then the formal statement of rule (15) corresponding
to (12) is

Rz D Wz (16)

Further information on topics such as quantification can be found in [2].

3 Defeasible Logics and Truth Maintenance

In a classic paper in 1979, Jon Doyle [3] made a first attempt to create a computer
program employing an extended classical logic for use with dynamic domains. Doyle’s
Truth Maintenance is based on the idea that reasoned inferences are supported by evi-
dence. The evidence supporting an inference is composed of the propositions that were

4From the Latin ponere, “to affirm”.
5From the Latin tollere, “to deny”.
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used as the antecedents of the rule that resulted in the inference. If one or more of
the evidenciary propositions changes, then the inferred consequent must be examined to
verify that it is still true. If an inference is no longer supported by any evidence, then
the inference must be denied.

More formally, Doyle restricted the application domain to those systems in which all
the propositions which satisfy modus ponens also satisfy

P D¢
~p
~q (17)

Propositions which meet this criterion are said to be logically equivalent. An example of
logical equivalence is the state of a switch and the state of the voltage on a line controlled
by the switch. When the switch is on, the voltage on the line is on, and while the switch
is off, the voltage is off. While there are many examples of natural phenomena which
exhibit this kind of behavior, there are many more which do not.

In Doyle’s version of truth maintenance, evidence is kept in a “support list”. In
essence, a support list associated with an inference contains those propositions and a
reference to the rule that were used to conclude it. Consider two rules which conclude
the same proposition

Ri:pAgDec (18)

and .
Ry:anbDec (19)

These two rules are equivalent to a disjunction which embodies both rules
Rs:(pAq)V(aAb)Dec (20)

If ¢ is declared true, then its support list will contain one or the other (or both) of
the conjunctions in the antecedent. If, at some future time, one of the propositions in
the support list changes to false, the conjunction it appears within is removed from the
support list. If the support list is empty, then by (17) ¢ must be denied.

This scheme works well for the restricted set of domains which satisfy (17). Unfor-
tunately, most processes occurring in nature do not fall into this set, and truth main-
tenance cannot be used successfully to reason about their dynamics.® Further, there is
no explicit mention of time in the truth maintenance mechanism, so the length of time
that a proposition might be true cannot be easily specified.

81n classical logic, the form described in (17) is considered to be an error, and is known as “denying
the premise”.
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4 Default Logic

Classical logic treats knowledge in a very restricted way. There is a tacit assumption
that the reasoner knows all that is necessary in order to proceed. While this may be true
in mathematical proof, it is certainly not true in general. Human reasoners are often
faced with lack of knowledge.

There is an ambiguity in the standard meaning of ~ p. This can be easily demon-
strated. Suppose that p represents the statement, “It is raining”. One interpretation of
~ p is the statement, “It is not raining”. Another interpretation is, “No information is
available as to whether it is raining or not”. In either case, it cannot be said that pis
TRUE. For the purpose of mathematical proof, either meaning will suffice.

The domain of human reason is not as restricted as that of mathematical logic. The
difference between knowing something is FALSE or TRUE and not knowing may be
crucial. It is very important that the explicit meaning of ~ p be well defined and
understood. '

Actually, there is implicit to the statement that some proposition is true the further
statement that it is known to be true. When it is stated that, “It is raining”, the actual
meaning is that, “It is guaranteed that it is raining”. Similarly, when some proposition
is reported false, the meaning is that it is certainly NOT true.

Let us look more closely at the meaning of negation. There are statements such as,
“Day is not night”, in which the negation is a property of the domain. That is, in the
case that the meaning of negation is the opposite state of the proposition, the veracity
of the logical connection is semantically derived.

Alternatively, denial of possession of knowledge concerning the truth of a proposition
has nothing to do with the domain of discourse. It is a purely logical matter, having only
to do with form. Having or not having knowledge about a proposition has nothing to do
with the semantic content of the proposition.

The importance of this distinction may be exhibited by reference to a rule used in the
Modus Tolens progression (equation 14). If ~ ¢ means that q is known to be false, then
the result of the progression is that p is known false as well. If, instead, ~ q indicates
that no knowledge is available about whether q is true (or false), then the result is that p
is unknown, too. While the results look formally the same, the meaning is very different.
In the case that the state of a proposition is known, we may not logically make any
assumption concerning it. But when we have no direct knowledge about a proposition,
it is often useful (or indeed, necessary) to make assumptions. For example, suppose that
it is known that the temperature outdoors is 40°F, the dew point is just one degree less,
and the humidity high. While it cannot be stated with certainty that there is fog, there
is evidence to support the assumption that there is fog. Of course, if, in addition to the
above, there is specific information that no fog is observable, an assumption about fog



should not be made.

This ability to make assumptions is the utility of supporting an “excluded middle”.
As a prerequisite, the two ambiguous meanings of not must be formally distinguished.
For the remainder of this discussion, “~” will be used to denote that the opposite of the
proposition following it is true, while “5” will signify the lack of verifiable or trustworthy
knowledge of the proposition which follows it.

A few rules concerning assumptions are necessary:

e Observation must always take precedence over assumption. This means that if
an assumption has been inferred about some proposition, and contradictive infor-
mation is subsequently observed concerning the same proposition, the assumption
must be replaced by the observation.

o All propositions which are concluded from rules in which one or more of the an-
tecedent propositions are assumptions, are themselves assumptions.

A new class of rules called assumptive rules may be defined. They are separated
from normal rules because all their antecedents contain one (and only one) proposition
claiming lack of knowledge about something, and they conclude an assumption. In the
case of the “fog” example, let Fz indicate the proposition that there is fog at airport z.
Let Qz indicate that the dew point is within two degrees of the outside air temperature
at airport z. The assumptive (or default) rule may be written

(o Fz)ANQz D Fz* (21)

to mean, “If it is not known that there is fog at an airport, but it is known that the dew
point is close to the air temperature at that airport, it can be assumed that there is fog
at that airport”. The superscript asterisk appended to the conclusion is a reminder that
this proposition is an assumption.

This particular choice of mechanism for making assumptions is a special case of

Reiter’s “Default Logic”[4].

The existence of assumptions extends the meaning of contradiction. To appreciate
this, it is necessary to understand the different classes of information which can be present
in a defeasible logic with default rules:

Observations are propositions that are obtained from outside of the logical system.

Inferred Facts are the consequent propositions resulting from rules in which all an-
tecedent propositions are either observations or inferred facts.

Fundamental Assumptions are the consequent propositions arising from default rules.

Inferred Assumptions are consequent propositions which derive from rules in which
one or more antecedent propositions are assumptions (of either variety).
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The meaning of contradiction depends on the classes of the propositions involved in
the inconsistency:

¢ Observation and observation: One of the observations must be in error. Given

enough domain information (in the form of rules), it may be possible to ascertain
which proposition to believe, but this is generally difficult even for humans.

Observation and Inferred Fact: This situation almost always indicates an erro-
neous rule. Some rule in the deductive chain leading to the inferred fact must be
responsible; with luck, there might only be one.

Two Inferred Facts: A contradiction of this kind is also indicative of an error in a
rule, but the reasoner will require outside assistance to determine the culprit, since
there is no way to tell which rule is mistaken.

Observation or Inferred Fact and Fundamental Assumption: The default rule that
asserted the fundamental assumption is incorrect.

Observation or Inferred Fact and Inferred Assumption: This is an interesting case.
If only one of the propositions in the antecedent of the rule which inferred the
assumption is an assumption, then the inferred assumption must be denied, and
the assumption which appeared in the antecedent must be denied, and so on back
to the fundamental assumption which started that chain of reasoning. This process
is called “dependency directed backtracking”. If it should happen that there were
more than one assumption in the antecedent of any of the rules in the chain that
led to the discrepancy, then a choice must be made: Which assumption should
be retracted? There are various approaches that might be taken to answer this
question:

— One could retract the chronologically latest assumption and search for an alter-
native.
— One could withdraw the chronologically earliest and search for an alternative.

— Alternative assumptions could be found for each of the candidates, trying each
one until a choice is found which does not cause the contradiction. This may
be very time consuming, or, in fact, undecidable.

e Two Fundamental Assumptions: One of the default rules is incorrect.

In essence, all of these possibilities reduce to two major situations.

1.
2.

Contradictions among facts, which indicate errors of some kind.

Contradictions among assumptions, which require the replacement of one of the
propositions with another assumption. The difficulty lies in deciding which as-
sumption to replace, and with what.



The essence of the solution to the problem of replacing an assumption involved in a
contradiction is the employment of a class of domain dependent preference rules. These
rules have a general form of “If there is a contradiction involving two assumptions re-

arding X . then Y is the preferred assumption to retain (or to retract).”
g g A, P p

The idea of preference rules may also be used to decide which of two (or more)
conflicting observations to keep. If each observation is tagged with a description of
its origin, then preference rules stating that one origin is more “believable” or more
“important” may be used.

5 Temporally Dependent Propositions

Time dependence can be formally introduced into logic by defining

p(7) (22)

to represent that proposition p is true during the time interval 7. The interval 7 is a pair
of numbers, such as Universal Times, such that the first member of the pair precedes or
is equal to (i.e., is before or at the same time of) the second. Formally,

T = (tl,tz), tl j t2 (23)

Having introduced this notion of the interval of veracity or the activity interval of a
proposition, its effect upon all of the axioms of logic introduced in the previous section
must be explored. It will suffice to examine only Conjunction, Disjunction, and the
activity interval of the consequent of a rule.

The activity interval of a conjunct will be defined as the intersection of the activity
intervals of the operands:

p(m)Aq(n)=pAgqg(nNm) (24)

That this is a reasonable definition can be seen in the following example: If I am in room
A during the time interval from two until four this afternoon (p (71)), and you are in
room A during the interval from three until five this afternoon (g (7)), then we are in
room A from three until four this afternoon (p A g (11 N 72)).

Nota Bene: This definition of conjunction effectively states that two propositions
can interact if and only if they have overlapping time intervals. This may seem overly
restrictive at first glance, especially considering the human penchant for describing many
interacting events as following one another and being causally linked. However, closer
examination reveals that the restriction is completely correct. Temporally disjoint events
which seem to interact are invariably connected by some persistent process, produced as
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an effect of the first event, which remains in effect at least until its time interval overlaps
that of the second event.

The preceding motivates the definition of the activity interval of a disjunctive pair
as the union of the activity intervals of the operands:

p(n)Va(r)=pVg(nun) (25)

Again, using the room occupancy example: If I am in room A during the time interval
from two until four this afternoon (p (71)), and you are in room A during the interval
from three until five this afternoon (g (72)), then one or the other of us is in room A
from two until five this afternoon (p V ¢ (11 U 12)).

5.1 Evanescence and Persistence

The rules for generating the activity interval of a logical combination of temporally
constrained propositions allow the computation of the activity interval of the antecedent
of a rule. However, the activity interval of the consequent of a rule is not necessarily the
same as that of its antecedent. Processes and physical things whose activity intervals are
shorter than the activity intervals of their antecedents are called evanescent. An example
of an evanescent process is the firing of a gun. When the hammer drops the gun fires.
The fact that the hammer remains down does not make the “bang” last longer. Other
things and processes are persistent, lasting well after the events which created them have
ceased to exist. For example, if the temperature is below freezing on the ground, and
it is raining, ice will form on the ground. When the rain stops, the ice does not simpl
disappear. :

The root of this problem is the domain dependence of the activity interval of a
physical process. While it is true that no process can exist without some form of causal
precedent, once formed a process may have an independent existence of its own. In the
case of persistence, quite often the only way to “undo” something which has been “done”
is to do something specifically designed to destroy it.

For practical purposes, there are only two classes of consequent

e Inferred propositions with activity intervals which are the same as the computed
activity intervals of their antecedents. In this case, no further information is re-
quired in the consequent.

e Inferred propositions with independent activity intervals. Causality requires that
the beginning of the consequent activity interval be the same as the start of the
computed antecedent interval, but the domain dependent information to compute
the end of the consequent activity interval must be supplied in the rule.

This topic will be discussed in greater detail in a forthcoming paper, “Implementation
of the Tower Chief Planning System”.
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5.2 Resource Allocation and Planning

Classical temporal logic is insufficient to describe the domain and events which occur
in the ATC environment characterized previously. In particular, the information available
about the future state of some value may change during the execution of a plan. For
example, there may be a weather prediction at 09:00 that claims that passage of a front
with an associated shift in wind direction will occur between noon and one o’clock. A
later prognostication, perhaps at 11:00, might change the time of the frontal passage
or some parameter associated with it. Such a change may require a modification of a
planned configuration shift which may already be in progress. Because of the infeasibility
of certain transitions, the modification of one configuration choice may affect those which
precede and follow it, and so on.

Preparation for the use of a specific configuration may demand the allocation of
resources in advance. In winter, for example, one or more of the runways that are to be
used in a future configuration may require snow or ice removal or freatment to prevent
ice accumulation prior to being put into service.

In standard expositions on temporal logic, the processes that the system is designed
to model usually involve the evolution of some physical quantity such as the position of
a ball or the temperature of an object. The rules for this kind of modelling generally
look like

P(t1,t2) A q(ts, ta) D r(ts, te) (26)

where p(t1,t2) A g(ts,ts) = p A q [(t1,82) N (E3,84)]. I 7 is a new state that was described
previously by p, then t; < t5.7 For example, “If some water is in the liquid state (p) during
(t1,t2), and is brought in contact with a thermally massive object with a tempetrature
greater than the boiling point of water (q) during (¢3,%4), then the water will be in the
vapor phase (r) during (¢s,t6).”

A plan, on the other hand, is by definition something that is intended for future
execution. Plans are based on what the planner believes is going to happen. Because
the future is not fixed, a plan may have to be modified or even abandoned before or
during its execution. Actions which are taken for the most part cannot be withdrawn
when a plan is deserted. That such actions were based on beliefs which turned out to
be false does not change the fact that they were executed. If the planner is to be able
to explain the reasons behind its actions, it must recall its prior beliefs even if they were
later proven to be wrong. In fact, the planner may change what it believes about the
future as a result of its intention to carry out some plan.

Consider the reasoning involved in the allocation of some resource. Let Wr(ty,t,)
indicate that use of resource r is desired during the time interval (¢;,¢;). Similarly, let
Ar(ty,t;) indicate that resource r is available during the time interval, and finally let

"In other words, a thing cannot be in two disjoint states at the same time.
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Hr(t1,t2) represent that the resource has been allocated for the period. Then we might
write ‘

Wr(ty,t2) A Ar(ty,tz) D Hr(ty,t2) A ~ Ar(t, ts) (27)
to describe the rule for allocation: “If resource r is required during (¢;,t;), and the
resource is available during the period, then r is allocated for the interval, and is no
longer available for allocation during that time.” There is an apparent paradox in this
formulation, since Ar(t;,%;) and ~ Ar(t;,t;) appear at the same time. The reason that
this problem appears is that the reasoner’s belief about the availability of the resource
for other use during the specified interval changed as a consequence of the reasoning
process itself.

The last example demonstrates that reasoning about the future may involve non-
monotonic logic. However, propositions previously thought to be true cannot necessarily
be simply retracted. They may be in the support lists of later propositions which involve
actions or the reasoning process itself. A human reasoner in the resource allocation
example would explain, “Of course, I believed the resource was available beforeI allocated
its use. Now that I have committed the use of it during the time period, it is no longer
available for other use.” The reasoner is aware of the temporal order of the events of the
reasoning process in addition to the projected time of execution of the plan.

There are three time periods associated with the resource allocation problem. First,
the time in the future during which the use of the resource is desired. For the sake of
easy reference, let us give that a name: the activity interval. Second, the time during
which the planner believes that the resource will be available during the activity period.
Third, the time during which the planner believes that the resource has been allocated
for the activity period and will no longer be available for other use during that interval.
Again, for reference, let’s call these two periods “belief intervals”. If we put the belief
intervals into the logical statement of the resource allocation rule as subscripts to the
propositions, we obtain

Wr(rim) (B1582) A ATy (b1 82) D HI(rg ) (B E2) A~ ATy r) (81, 82) - (28)
and the paradox is resolved. The planner can now refer to what it believed prior to

making its decision as well as its opinion after the act of making the decision.

Since a runway manager’s duties include allocation of people and equipment to a
variety of tasks, and a manager must take actions based on the current knowledge
about the domain, the kind of reasoning described above is central to accomplishing the
cognitive task of planning runway configurations.

6 Conclusions

The important attributes of this problem are not unique to runway configuration man-
agement. Temporal reasoning, default reasoning, and reasoning about the commitment



of resources are ubiquitous characteristics of almost all process management. Analysis of
these kinds of cognition led us to a single representation and reasoning paradigm which
integrates all three.

There is still much to be done. Currently, all input activity intervals must be clock
times. It would be much more convenient to be able to enter times in qualitative terms by
reference to information already known. Clock times often give a false sense of precision
to information whose actual accuracy is fuzzy at best. It is well known that the process
of maintaining a temporal database of the kind described here is NP-hard.® What saves
us is that the rate of change in the systems we have looked at is slow, and the airport
eftectively hardware resets every night. If this technology is to be employed in a broader
spectrum of application, such as planning and scheduling of a planetary exploration
robot, this efficiency problem will have to be solved.
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