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The connection between solar luminosity and magnetic fields is now well-established. 
Magnetic fields under the guise of sunspots and faculae enhance or suppress heat transfer 
through the solar surface, leading to changes in the total solar luminosity. This raises 
the question of the effect that such surface heat transfer perturbations have on the inter- 
nal structure of the sun. The problem has been considered previously by Foukal(l) and 
~ ~ r u i t ( ~ 9 ~ ) .  We here generalize the calculation of Spruit, removing the assumption of a 
constant heat diffusivity coefficient by treating the full mixing length heat transfer expres- 
sion. Further, we treat the surface conditions in a simpler manner, and show that the 
previous conclusions of Foukal and Spruit are unaffected by these modifications. 

The model treats the solar convection zone as a plane parallel layer of perfect gas, 
denoting H the heat flux, P the pressure, and T the temperature. We assume that the 
solar interior is unaffected by surface effects, and thus enforce a constant heat flux Ho 
at the base of the convective layer. On the surface, we enforce a radiative boundary 
condition H = aT4,  but allow a to vary with time to model the time variations of the 
effective emissivity (caused by sunspots and faculae). In general, the total height of the 
layer will vary in response to the variations in a while the total mass in the layer remains 
constant so that we define the location of the base and surface of the layer by the base 
and surface pressures Po and Ph. As mentioned, we neglect partial ionization effects by 
assuming a perfect gas equation of state, but leave y (the adiabatic index) unfixed to 
preserve generality. Finally, we assume a constant gravitational field. 

The model allows us to study various plage/sunspot scenarios through the use of their 
effective emissivity variation a(t). For the present work, we use a(t) = a 0  + Sau(t) where 
u(t) is the unit step function, and 6a is a small perturbation Sa << ao. With this choice 
of a(t), we make the following observations. For t < 0, we expect the fluid layer to be in a 
steady state with H = Ho everywhere. At t = 0, the surface luminosity will jump from Ho 
to Ho( l  + 6a/ao). However, as t -+ co the layer will approach another steady state, with 
H = Ho everywhere, so that the surface luminosity must relax from Ho(l  + 6a/ao) back 
to Ho. It is the timescale of this relaxation that we are interested in. In what follows, it 
will be shown that each steady state corresponds approximately to an adiabat, so that the 
a(t) variation forces the fluid layer from one adiabat to another. 

To begin the full solution, consideration of Fig. 1 leads us to the following set of 
five equations, which, in order, are the continuity equation, the hydrostatic equation, 
conservation of energy, mixing length convective heat transport, and the equation of state: 
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where z is the depth coordinate, g  is the solar gravitational constant, v is the fluid velocity, 
c p  is the specific heat per unit mass, l is the mixing length and p  is the mass of an 
individual gas particle. We note that in equations (2) and (3) inertial terms second order 
in the perturbation have been neglected. In (4), we take the mixing length l to be x k T / p g  
where k T / p g  is the pressure scale height, and x is a numerical factor of order unity. 

To facilitate the application of the boundary conditions, we rewrite this set of equa- 
tions using P as an independent variable in place of z .  Having done this, we find that 
equations (1)-(5) reduce to a single equation: 

where 

To obtain the physical meaning of G, we note that G can be shown to be proportional to 
e K s  where S is the entropy, and I< a constant. 

In examining (6), we see that in steady state, the equation can be immediately solved 
to give: 

G(P) = Cl - cop-('-&) (9) 

where, for the boundary conditions on H shown in Fig. 1, we find 

For solar-like conditions, one can show that the second term in (9) is important only near 
the surface of the layer, yielding immediately the fact that the steady-state solutions lie 
approximately on adiabats. 



We next use the steady state solutions (9) to linearize (6) as follows. For t < 0 and for 
t -, co, the layer is in steady state, as mentioned previously. We denote the initial steady 
state as G;,(P) and the final steady state as G;,(P), where G;, and GL are given by (9) 
with the proper values of Co and C1. An examination of (10) and (11) shows that the two 
steady-state solutions differ only in their value of C1 i.e. they lie on different adiabats. We 
next define AG(P, t)  as: 

G(P, t) = G{,(P) + AG(P, t) (12) 

where AG is considered small. We then use (12) in (6) and retaining only terms first order 
in AG, we find: 

where 

The values of Co and C1 in (12) are those appropriate for G,~,(P). In deriving (13), we 
have neglected the pressure dependent term in G;,(P) since it is small, thereby assuming 
polytropic steady state solutions. The boundary conditions on AG(P, t)  can be shown to 
be: 

where 

With (15)-(18), (13) is a well-defined boundary value problem whose solution can be writ- 
ten as an eigenfunction series as follows: 

where 
Mm (P)  = P-" { Ju ([m P9) + Bm Yu([m PO)) 



The characteristic times Tm are solutions to the eigenvalue equation: 

Having the solution for AG(P, t), we note the following connection to the heat flux. 

The surface luminosity is then given by (29) evaluated at P = Ph. 

As noted by Spruit, the solution (29) exhibits some general characteristics. The 
luminosity is shown to relax on two different timescales: one on the order of lo5 years, 
and the other on the order of 50 days. The eigenvalue equation can be solved to yield an 
expression for the long timescale as follows: 

The next longest timescale is found from the first zero of 

Finally, we find Do,  the amplitude of the long timescale mode, to be:: 

For typical values of Ph = lo6 dynes, Po = 5 x 1013 dynes, y = f and, x = 1, we find 
TO = 350,000 years, 71 = 51 days, Do = .549. 



In summary, the model shows that following the application of a step function emis- 
sivity change, a fraction 1 - Do of the luminosity change relaxes away after 50 days. 
This corresponds to the thermal diffusion time across the convection zone, adjusting the 
difference of the adiabatic temperature gradient and the actual temperature gradient to 
a value in correspondence with the surface change. In other words, the whole convection 
zone "feels" the perturbation on this timescale. The remaining fraction relaxes away on a 
timescale of lo5 years, corresponding to the convective layer radiating away enough energy 
so that it can adjust to its new adiabat. These are the same results arrived at by Spruit 
and Foukal. 

For variations of u on timescales of 10-200 years, then, the only important relaxation 
is the 50 day one. If the amplitude of this relaxation is small, the luminosity follows the u 
variation. 
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