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AN ESTIMATE OF CHANGES IN THE SUN'S TOTAL IRRADIANCE
CAUSED BY UV IRRADIANCE VARIATIONS FROM 1874 TO 1988
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ABSTRACT

Enhanced emission from bright solar faculae is a source of significant variation
in the sun’s total irradiance. Relative to the emission from the quiet sun,
facular emission is known to be considerably greater at UV wavelengths than at
visible wavelengths. Determining the spectral dependence of facular emission is
of interest for the physical insight this may provide to the origin of the sun’s
irradiance variations. It is also of interest because solar radiation at A < 300
nm is almost totally absorbed in the earth’s atmosphere. Depending on the
magnitude of the UV irradiance variations, changes in the sun’s irradiance that
penetrates to the earth's surface may not be equivalent to total irradiance
variations measured above the earth’'s atmosphere. Using an empirical model of
total irradiance variations which accounts separately for changes caused by
bright faculae from those associated with dark sunspots, the contribution of UV
irradiance variations to changes in the sun’s total irradiance is estimated
during solar cycles 12 to 21.
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OBSERVED VARIATIONS IN THE SUN’S TOTAL AND UV IRRADIANCES

As illustrated in Figure 1, approximately half of the sun’'s total irradiance is
emitted at wavelengths between 400 and 800 nm, with only ~1% of the irradiance
emitted at UV wavelengths less than 300 nm. However, variations in the UV
portion of the sun’s spectrum, which is formed higher in the sun’'s atmosphere
than is the visible radiation, significantly exceed those at visible
wavelengths. Estimates of UV irradiance variations during solar cycle 21 are
shown in Figure 2. Like the total irradiance, the UV irradiances have their
maximum values at times near maximum solar activity. However, the magnitude of
the UV irradiance variations are more than an order of magnitude larger than the
~0.082 variation in the total solar irradiance that has been observed during
solar cycle 21.1

Simultaneous observations during solar cycle 21 of the sun’s total irradiance,
S, and of the UV spectral irradiances at 205 nm and at 121.57 nm (HI La) are
illustrated in Figure 3. It has been shown recently, using data similar to that
in Figure 3, that changes in

the sun's energy at
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accounted for 192 o? the SUSIM SL2 Solar Spectrum
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EMPTRICAL MODEL OF TOTAL IRRADIANCE VARIATIONS

Since the solar UV irradiances have been shown, during solar cycle 21, to
contribute significantly more to variations in the total irradiance than the 12X
they contribute to the total irradiance itself, it is of interest to determine
how changes in solar UV emissions have modulated total irradiance variations on
historical time scales. This is investigated using an empirical model of the
sun’s total irradiance variations that accounts separately for the contribution
of dark sunspots and bright faculae.® In this model, which is described in
detail elsewhere in these proceedings,“ the sunspot blocking is determined
directly from observations of the areas and locations of sunspots on the solar
disc. Enhanced emission from bright faculae is estimated from a facular proxy
via its correlation with a residual irradiance time series, S-Pg-S,, calculated
by subtracting the sunspot blocking from the measured total irradiances during
times when both the proxy
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In order to partition the total facular brightness at all wavelengths into its
UV and non-UV portions, it is necessary to establish the relationship between
the two. Figure 4 illustrates that temporal variations in the measured
irradiance residuals, S-Pg-S,, are closely tracked by variations in the
independently determined UV irradiances. This has been demonstrated elsewhere,
over both solar rotation and solar cycle time scales,l:3+% and is consistent
with an understanding of the origin of the brightness source of total irradiance
variations as being magnetic flux tubes; these carriers of solar activity extend
from the photosphere, where the visible radiation is formed, to the top of the
chromosphere, from where La is emitted.

— S = ACRIM + 1366.8 x Pg - 1366.8
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ESTIMATED TOTAL IRRADIANCE VARIATIONS EXCLUDING ULTRAVIOLET
IRRADIANCE VARIATIONS

Because changes in the sun’s UV emission are related, approximately linearly, to
variations in the total irradiance facular emission, the UV portion of the
enhanced facular brightness can be easily subtracted from the bolometric facular
emission. The facular term, reduced by its UV component, S-Pg-S5-UV, is then
combined with Pg to estimate variations in the sun’s total irradiance, at
wavelengths longward of 300 nm. These variations are compared in Figure 5 with
variations in the sun’s total irradiance, determined from the same empirical
model, but with the UV component of the facular emission retained. Figure 5
suggests that during solar cycles 12 to 21, according to these calculations, the
variation in the sun’s total irradiance incident on the earth’s surface was
reduced, by as much as 20Z, from that at the top of the earth's atmosphere.
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" FUTURE MEASUREMENTS OF TOTAL AND UV SOLAR IRRADIANCES

Understanding the role played by the sun’s UV emission variations in the broader
context of total irradiance variability will be improved when simultaneous
observations of both the UV and total irradiances are made during solar cycle
22. The reliability of future UV irradiance observations should exceed those
made in solar cycle 21 which were hampered by wavelength dependent changes in
instrument responsivity. It is planned, during solar cycle 22, to launch
together on the Upper Atmosphere Research Satellite (UARS) three solar
irradiance monitors, the Active Cavity Radiometer (ACRIM II), the Solar
Ultraviolet Spectral Irradiance Monitor (SUSIM) and the Solar Stellar Irradiance
Comparison Experiment (SOLSTICE). Figure 6 is a schematic of SUSIM. With
multiple optical elements, the radiometric redundancy designed into the SUSIM
experiment will allow detailed on-board monitoring of instrument responsivity.
Data collected by these instruments will significantly improve our understanding
of the magnitude and temporal variability of the sun’s total irradiance, its UV
spectral irradiance, and the interconnection between them.
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Fig. 6. NRL's SUSIM instrument, to be launched on the UARS satellite in mid 1991.
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