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ABSTRACT

Wohlever, James Christopher. MSME, Purdue University. August 1988.
Vibrational Power Flow Analysis of Rods and Beams. Major Professor: Dr.
R.J. Bernhard, School of Mechanical Engineering.

A new method to model vibrational power flow and predict the resulting
energy density levels in uniform rods and beams is investigated. This method
models the flow of vibrational power in a manner which is analogous to the flow

of thermal power in a heat conduction problem.

The classical displacement solutions for harmonically excited, hysteretically
damped rods and beams are used to derive expressions for the vibrational power
flow and energy density in the rod and beam. Under certain conditions, the
power flow in these two structural elements will be shown to be proportional to
the gradient of the energy density. Using the relationship between power flow
and energy density, an energy balance on differential control volumes in the rod
and beam leads to a Poisson’s equation which models the energy density

distribution in the rod and beam.

Coupling the energy density and power flow solutions for rods and beams is
also discussed. It is shown that the resonant behavior of finite structures
complicates the coupling of solutions, especially when the excitations are single

frequency inputs. Two coupling formulations are discussed. The first coupling



formulation is based on the receptance method. The second coupling scheme is
based on the traveling wave approach used in Statistical Energy Analysis. The
receptance method is the more computationally intensive method but is capable
of analyzing single frequency excitation cases. The traveling wave approach
gives a good approximation of the frequency- average of energy density and
power flow in coupled systems, and thus, is a efficient technique for use with

broadband frequency excitation. .



CHAPTER 1 - INTRODUCTION

The path by which vibrational (mechanical) power propagates through a
structure is an issue of great interest to an engineer concerned with minimizing
vibration or noise levels. In many physical situations, vibrations from a remote
piece of m#chinery are transmitted along a structural framework and radiated
into an inhabited environment as sound. An example of structure-borne sound
is the engine vibrations of an aircraft which travel along the wing and are
eventually radiated as sound into the passenger cabin. In a complicated
structure, such as an aircraft or building, the ability to map how power flows
through the system would greatly facilitate efforts to control structure-borne
sound. As discussed by Lu [1], when the main paths of power flow are
identified, damping treatments or structural modifications can be optimized to
give the highest vibration (acoustic) reductions while minimizing both the cost

and weight of the vibration control treatment.

Many complex structures can be modeled as a combination of simple,
connected component structures. The dynamic response of a building frame for
example, might be analyzed as a system composed of connected beam and plate
elements. This type of subdivision is the basis of the popular finite element

methods. To study how power flows from one part of the building to another, it



is necessary to understand how an individual beam or plate element conducts
mechanical power. Once the power flow in an individual element is understood,
it is then necessary to develop a capability to couple the elements into the

desired configuration.

Much of the current dynamic structural analysis is done using traditional
finite eiement methods (FEM) (2,3]. However, in complicated acoustic/structural
systems the finite element method is usually limited to low frequency analysis.
As the frequency increases, the wavelength of vibration decreases. Thus to
properly model higher order modes, either the order of the interpolating
functions in the FEM must be increased or the size of the elements in the finite
element mesh must be decreased [4]. As a result, for accurate high frequency
studies, finite element models can quickly become too large for efficient

application.

Statistical Energy Analysis (SEA) has become a generally accepted technique
for modeling the high frequency, dynamic response of acoustic/structural
systems in which high modal density exists. Statistical Energy Analysis treats
each component of a built up system as a statistical population of mode groups,
and calculates the average dynamic response of the component parts. However,
due to simplifying assumptions made in the development of SEA, its accuracy at
lower and middle frequencies is limited. In addition, SEA gives no information
about the spatial variation of dynamic response within a given subsystem and is

generally only valid in the case of a broadband frequency excitation.



The inadequacies of the finite element method and Statistical Energy
Analysis have prompted researchers to search for alternative methods of power
flow analysis in acoustic/structural systems. This work investigates a new power
flow method which could ultimately bridge the mid-frequency range gap where
the finite element method is too expensive and Statistical Energy Analysis is
unreliable. This alternative power flow method models the flow of mechanical
power in a manner which is analogous to the flow of thermal power in a heat
conduction-problem. The new pc;wer flow method has the advantage over the
displacement formulations used in the finite element method in that only energy
variations are modeled. Since energy variations are simpler than displacement
variations, even for higher order modes, the power flow formulation will be an
efficient method at high frequency while providing information about the spatial
variation of dynamic response within a subsystem. The power flow formulation

is also applicable to both single frequency and broadband frequency excitations.

The objectives of this study will be to investigate the power flow in simple
one dimensional structures and examine the relationships between energy
density and power flow in such structures. In addition, the energy and power
flow relationships for coupled simple structures will be studied. Ultimately,
these methods should be formulated for numerical methods such that
complicated, built-up structures can be modeled. Chapter 2 is a brief literature
review of previous work done in vibrational power flow analysis. It will discuss

the motivation which led to the development of an alternative power flow



analysis technique. In chapter 3, the classical longitudinal displacement solution
of a harmonically excited, hysteretically damped rod is used to develop
expressions for the power flow and energy density in a rod. In chapter 4, the
classical displacement solution for a transversely vibrating beam is used to
develop expressions for the power flow and energy density in a beam. The
classical displacement solutions used in chapters 3 and 4 will allow direct
assessment of the simplifying assumptions used to develop the governing energy
equations for both rods and beams. Chapter 5 will discuss the problems
encountered in coupling simple structures using the energy solutions developed
in chapters 3 and 4. Some examples comparing the simplified power flow
theories developed in chapters 3 and 4 to exact solutions will be presented in
chapter 6. Chapter 7 will contain a discussion of results along with

recommendations for future research.



CHAPTER 2 - LITERATURE REVIEW

The concept of vibrational power flow through a conductive medium has
been considered and utilized for many years. Over one hundred years ago, Lord
Rayleigh [5] described the "communication” of vibrational energy between two
coupled acoustic systems. However, it has only been in the last twenty five years
that the study of vibrational power flow in structural systems has received
appreciable attention in the technical literature. This chapter is a short review
of some analytical teéhniques which have been developed for modeling the flow
of vibrational power in acoustic/structural systems.

2.1 Statistical Energy Analysis

Statistical Energy Analysis is an analytical technique used to model the flow
of power and distribution of vibrational energy in built up acoustic, structural
and acoustic/structural systems. SEA models a compléx structure as a
statistical population of coupled subsystems or mode groups. Each subsystem
acts as an energy reservoir with the ability to both store energy and dissipate
power. When the power input to each subsystem is a known value, the solution
of a SEA model predicts the total energy in each subsystem. The total energy in
a subsystem can then be converted into space and time averaged dynamic

responses of such physical parameters as displacement, velocity etc.



One of the earliest works in SEA was a study done by Lyon and Maidanik [6]
on the power flow between two conservatively coupled, one degree of freedom
oscillators (subsystems). Lyon and Maidanik found that when the oscillators
were driven by two independent white noise sources (broadband frequency

sources):

1) The power flow between the two coupled oscillators -is proportional to the

difference in the vibrational energies of the two oscillators.

2) The flow of power is from the oscillator of higher energy to the oscillator of

lower energy.

3) The power dissipated by an oscillator is proportional to the total energy in

that oscillator.

SEA model predictions are based on conservation of power. Power into a
subsystem must be dissipated or transmitted to connected subsystems. By
predicting power flow from a subsystem of higher energy to a subsystem of
lower energy, SEA models the flow of vibrational power in a structure in a
manner similar to the flow of heat (thermal energy) in a thermal conduction

problem.

SEA was soon extended to multi-degree of freedom and continuous dynamic
systems. A complete treatise on Statistical Energy Analysis by Lyon (7], which

includes an extensive annotated bibliography on work done in SEA before 1976,



remains the most comprehensive book available, though several other short
introductions to SEA have been written by Woodhouse [3], Cremer et al. [8],
Maidanik [9] and Fahy [10]. In addition to these introductory guides to
Statistical Energy Analysis, several general SEA computer codes, SEAM [11] and

COSMIC SEA [12], are available.

Lyon (7| discusses many aspects of SEA, including how built-up systems are
modeled, the estimation of dynamical responses from energy values and the
evaluation of SEA system parameters. The system parameters in a SEA model
include loss factors, modal densities and coupling loss factors. Examples of the
evaluation of loss factors and modal densities in plates and shells can be found

in work done by Ranky and Clarkson (13| and Clarkson and Pope [14].

A large number of the studies of SEA have been concerned with developing
coupling loss factors. The coupling loss factor is a constant of proportionality
which models the tendency of power to flow between two connected structures
in a SEA model. A common technique to couple structures in SEA is a method
known as the "wave transmission approach”. The wave transmission approach,
introduced by Scharton and Lyon [15], allows the coupling of continuous
systems by approximating the frequency averaged, input impedance of a finite
structure to be that of an infinite structure. The input impedance of a finite
structure is strongly influenced by its resonant behavior. Analytical solutions
for the input impedance of finite structures can therefore be quite complex and

are generally available only for special cases. The input impedance is also quite



sensitive to slight perturbations in the subsystem. The input impedance of an
infinite structure however, exhibits no resonant behavior and is generally a
simple function of the material properties and the wave speed in the subsystem.
Several authors have presented specific examples which justify modeling finite
structures by similar structures of infinite extent. In his book on SEA, Lyon (7]
showed the input impedance of a simply supported plate, when averaged over
the plate area and over frequency, approached the impedance of an infinite
plate. In a separate study, Pinnington and White [16] found that the point
mobility of a finite beam, which is the reciprocal of the point impedance, when
averaged over frequency is equal to the point mobility of an infinite beam.
Cremer et al. [8] generalized the impedance results by showing that for a
frequency average, the impedance of a finite structure approaches that of a
similar infinite structure. Approximating finite structures by infinite structures

greatly simplifies the task of modeling coupled structures.

Remington and Manning {17] calculated the coupling loss factor for two rods
vibrating longitudinally, coupled by a linear spring, using the wave transmission
approach. Remington and Manning compared their approximate coupling Aloss
factor to an exact closed form solution and found good agreement when the

exact solution was averaged over frequency.

Scharton and Lyon (15| also used the wave transmission approach to
calculate a coupling loss factor for two simply supported beams coupled by a

torsional spring. Newland [18] calculated a coupling loss factor for the same



coupled system studied by Scharton and Lyon. Newland however, calculated his
coupling loss factor from a method he introduced known as the “natural
frequency shift method” [19]. The natural frequency shift method is a technique
by which a coupling loss factor can be calculated for the case of light coupling
by evaluating the changes in the natural frequency when two continuous systems
are coupled. Crandall and Lotz [20] coml;ared the beam-beam coupling loss
factors calculated by Scharton and Lyon and Newland and found that in the
case of light coupling the loss factors calculated by each were identical.
However, Crandall and Lotz also showed that in the case of strong coupling, the
coupling loss factors developed by the two methods did not agree with one
another. Crandall and Lotz did not evaluate the accuracy of either method in
the case of strong coupling. Later, Davies and Wahab [21], improved the
coupling loss factors for strong coupling between the simply supported beams by
making approximations on an exact closed form solution based on whether high

or low modal overlap existed.

Due to the inherent difficulty involved in their calculation, analytical
solutions for the loss factors and coupling loss factors for structural elements
may only be partially complete or not available at all. In many applications, the
loss factors and coupling loss factors for structural systems must be confirmed or
measured experimentally. In comparing SEA predictions with experimental
results for cylinder-plate-beam structures, Ghering and Raj [22] concluded that

SEA is most reliable when "benchmarked against experimental data so that loss
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factors and other parameters can be properly adjusted.” In a review of the
evaluation of loss and coupling loss factors, Maidanik and Brooks [23] discussed
a number of different methods to experimentally determine the loss factors and
coupling loss factors for coupled dynamic systems. Maidanik and Brooks
explained how loss factors and coupling loss factors could be evaluated by
measuring both the input power and resulting energy levels in an experimental
set up and back solving for the desired loss parameters. This in situ approach
of calculating the loss factors and coupling loss factors was demonstrated by
Bies and Hamid [24] in calculating the loss factors and coupling loss factors for

two coupled plates.

Statistical Energy Analysis has a number of important shortcomings. Since
SEA is based on statistical modeling of average system responses, it cannot
accurately predict the resonant behavior found in most structures. SEA is
generally limited to high frequency, broadband analysis where resonant behavior
is less important. In addition, SEA cannot predict the spatial variation of
energy in a given subsystem. The output of a SEA model is the total energy
which exists in a subsystem. Therefore only average values of displacement,
velocity etc. can be calculated. Finally, SEA does not have the capability to
model localized or boundary damping mechanisms or local power inputs. These
weaknesses in Statistical Energy Analysis have prompted a number of

researchers to study vibrational power flow outside the realm of SEA.
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2.2 Further Studies in Power Flow

Goyder and White [25] studied the mechanical power flow from machinery
into a foundation of beam stiffened plates. Citing work of Skudrzyk [26],
Goyder and White modeled the beam-plate foundation as an infinite structure.
In effect, Goyder and White assumed that the foundation on which the vibrating
machinery was set, was large enough that the propagating waves moving away
from the source were attenuated enough so that there were no reflections. Using
a spatial F 6urier transformation,‘Goyder and White were able to perform an
exact analysis of the infinite model. They found that the power carried by
torsional, longitudinal and flexural waves decays exponentially from the source
- in an infinite, damped beam. Goyder and White also tabulated formulas to
calculate the frequencies at which the point mobility of finite beams and plates
are well approximated by their infinite counterparts. They found that in a
beam-plate foundation, if the input was applied to the beam and was a
transverse force or moment, the total power input to the foundation is
controlled only by the properties of the beam. As the wave moves away from

the power source more power is transmitted by the plate than by the beam.

Pinnington and White [16] continued the work of Goyder and White by
investigating the power input to vibration insulators used for vibration control
of machinery. Using the mobility model for a beam like insulator, Pinnington
and White found that for a force excitation, maximum power is input at the
resonant frequencies of the insulator. A velocity excitation has a maximum

power input at the antiresonant frequencies.



Independent of the work done by Goyder and White, Belov et al. [27]
investigated the optimization of a damping treatment on a beam stiffened plate
by modeling the power flow in the plate. To account for the reflections when a
wave traveling in a plate encounters a beam, Belov et al. developed reflection
coefficients which coupled flexural and longitudinal modes of vibration in the
plate. Belov et al. likened the spread of energy in a vibrating structure to the
flow of heat‘in a thermal conduction problem. Using a power balance, Belov et
al. developed a set of differential equations "of the heat-conduction type" to
model the flow of power in the beam plate structure. Solving this set of
differential equations for various arrays of beam patterns Belov et al. optimized
the damping treatment on the plate by minimizing the a.vex;age spectral energy

leaving the plate boundaries.

The power flow analyses discussed in this section, though adequate for the
specific systems for which they were designed, are not applicable to arbitrary
systems. A more useful power flow analysis would be a general method which
could be used to accurately model the power flow in a wide range of
acoustic/structural systems. The approach to power flow analysis taken by
Nefske and Sung, which is discussed in the next section, may be a step in the
direction towards a more general and accurate power flow analysis.

2.3 Finite Element Power Flow Analysis
A new method to model the power flow and energy density in structures was

recently developed by Nefske and Sung [2]. Nefske and Sung began their
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analysis with a simple power balance on a differential control volume in a
conductive medium. They based their work on the hypothesis that the power
flow in a conductive medium is proportional to the gradient of the energy
density. This assumption is analogous to Fourier’s law in heat conduction which
states that the flow of heat in a material is proportional to the temperature
gradient. Using this hypothesis for power flow and assuming that the power
dissipated at a point is proportional to the local energy density, Nefske and
Sung were able to use a farfield propagating wave analysis to determine energy
conduction parameters. These conduction parameters, which are analogous to
the thermal conductivity for a heat conduction problem, serve as the constant of
proportionality between the power flow and the gradient of energy density.
Using these conduction parameters, Nefske and Sung found they could model
the power flow and energy density in a simply supported beam with a2 one
dimensional Poisson’s equation. The boundary conditions for this problem were
known power fluxes. They solved their heat conduction formulation of the
vibrating beam problem using a standard MSC/NASTRAN finite element code
[28]. Nefske and Sung demonstrated the ability of their power flow method to
accurately calculate the displacement of a vibrating beam at frequencies where a
traditional displacement finite element formulation could not be used. They
also showed how their method could predict the spatial variation of
displacement in a beam where SEA could only predict an overall average

displacement.
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Although Nefske and Sung demonstrated the accuracy of their thermal
power flow method for specific cases, the basic premise of their work, which was
the relationship between the power flow and energy density in a conductive
medium, was never proven explicitly. Thus, there was no way to determine
under what conditions the finite element power flow method is valid.

2.4 Summary

As discussed in chapter 1, this study continues the work of analyzing power
flow in simple one dimensional str;uctures. In this study however, relationships
between the flow of mechanical power and the energy density in rods and beams
will be derived from the classical displacement solutions of harmonically excited,
hysteretically damped rods and beams. The advantage of deriving the power
flow and energy equations from the classical displacement solutions is that the
displacement solutions give deterministic relationships which can be used to
evaluate the accuracy of the resulting power flow and energy equations. After
certain simplifying assumptions are made it will be shown that for certain
conditions the power flow in rods and beams can be approximated as being
proportional to the gradient in the energy density. The exact nature of the
displacement solutions indicate how generally these conditions can be applied.
This capability to evaluate the assumptions will give guidelines to determine the
conditions for which the analysis is valid. Similarly, the classical displacement
solutions will be used to investigate coupling the energy density solutions of
rigidly connected, 1-D structures. Local coupling relationships will be explored.

In addition, traditional coupling methods will be discussed and evaluated. The
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ultimate objective is to implement these coupling methods using numerical
methods and thus provide an alternative to FEM and SEA in predicting the

energy density levels in built-up, vibrating structures.



CHAPTER 3 - THEORETICAL DEVELOPMENT FOR RODS

3.1 Introduction

In this chapter, the governing equations used to model the power flow
through rods will be developed. The power flow and energy density equations
will be developed from the classical solutions of displacement in a harmonically
driven rod. This analysis is an effort to find a more efficient
structural/acoustical model for power flow at medium and high frequency

vibration where standard finite element methods become impractical.

The rod is one of the simplest cases of vibrational energy transmission
because the equation of motion is a one dimensional second order differential
equation with respect to both time and position. After the rod energy equations
are developed, similar energy equations will be derived for a beam in chapter 4.
Some complications will arise in the beam equations due to the fourth order
nature of the equations of motion.

3.2 Rod Equations
The equation of motion for a rod, such as the one shown in figure (3.2.1),

excited by a general forcing function is

2 2
ps Ut _ g FUME g (3.2.1)
ax2 &2
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where:
U(x,t) is the longitudinal displacement in a rod.
f(x,t) is the distributed forcing function per unit length.
pS is the density per unit length.
E;S is the rod stiffness.
The spring end conditions in figure (3.2.1) represent general boundary
.conditions. For example an infinite spring rate oy, repr;esents a fixed end while a

zero spring rate is a free end. The analysis will allow general impedance

boundary conditions.

In this investigation the forcing function will be modeled as a harmonic point
force. The harmonic nature of the driving force will simplify the analysis by
allowing the time dependency in the governing equation of motion (3.2.1) to be

removed. A harmonic point force, f(x,t), may be mathematically represented as
f(x,t) =F <5(x—xo)ej°”t (3.2.2)
where:

f(x—x,)=0 if x # x,

§(x—x,) is a dirac delta function.

and
[ fx—x,)dx =1

F is the magnitude of forcing function.

w is the excitation frequency (rads/sec).
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A damping term, which models a hysteretic energy absorption mechanism in
the rod, may be introduced into the rod formulation by using a complex

modulus of elasticity. The complex modulus E, is

E. =E(1 +jn) (3.2.3)
where

7 is the hysteretic damping coefficient.

Since the force is harmonic, it follows that in steady state vibration, the
displacement U(x,t) will also be harmonic in time. Using a separation of

variables technique, U(x,t) may be written as
U(x,t) = u(x)e** (3.2.4)

Since damping has been introduced into the formuliation, u(x) will be complex to
account for phase differences between the force and the displacement.
Combining equations (3.2.1) through (3.2.4) and canceling e“t gives the

governing equation

Pulx) | & (=i oy ZE g (3.2.5)

where

:_E

¢cC =

which is the square of the phase speed.
J/

Equation (3.2.5) can be written more concisely if a complex wavenumber k is

defined as
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K= (0=jn) (3.2.6)

¢ (1+7)
Thus, the equation of motion is
du(x —F
—Exiz—l +Kulx) = 25 ) (3.2.7)

c

In many applications, the point force will be applied at the end of the rod.
In such circumstances the force is most easily dealt with by applying it as a
boundary condition. When the excitation is at a boundary, the equation of

motion becomes homogeneous

ulx) +k%u(x) =0 (3.2.8)

dx®
and has a simple solution of the form
u(x) = Ae7Ik* 4 B (3.2.9)

The constants A and B in equation (3.2.9) are complex and are determined by

applying the boundary conditions.

The boundary conditions for a rod in longitudinal vibration are either a
prescribed displacement or strain. The displacement condition at a point x=x,
is

u(x,) = u, (3.2.10)

where u, is a known constant. A fixed end condition is modeled as u, =0. A

known time harmonic velocity condition at an end is modeled as a constant not



equal to zero. As discussed by Soedel [29], the relationship between the

magnitude of an axial point force in a rod and the resulting strain, ¢, is

d F_

E. = ==

3.2.11
° dx X=X, ES ( )

For the strain boundary condition only the real part of the complex modulus E,
is used. The real part of the modulus is assumed to be a valid approximation
since in this analysis light structural damping, 7<<1, will be considered.
Though using only the real part of the complex modulus is not necessary, it will
simplify the analysis. The important effects of the damping in the complex

modulus are included in the complex wavenumber k, as defined in equation

(3.2.6).

When a point force is applied at an interior point on a rod, it is necessary to

divide the rod into two parts at the point of force application in order to find

the analytical solution. Figure (3.2.2) shows a rod excited by a harmonic source

at x=x,. Figure (3.2.3) shows the rod split into two sections at x=x,. Each rod

section has its own displacement solution

uy(x) = Ae K £ BF* ¥ <x <x, (3.2.12)

and
uy(x) = Ce ¥ £ D x <x <x, (3.2.13)

Note equations (3.2.12) and (3.2.13) contain four unknown constants. Therefore
four boundary conditions must be applied in order to completely specify the

problem. At x=x; and x=x, either a displacement or slope end condition must
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be specified. At x=x, both a displacement and slope condition must be applied

to supply the two remaining boundary conditions.

The first boundary condition at x=x, is continuity of displacement
uy(Xo) = uy(x,) . (3.2.14)

The second condition at x=x, is a balance of forces. The internal longitudinal
forces in both rods one and two must balance the applied force F. From

equation (3.2.11) the force boundary condition is

(ES)Iﬁ | —(ES) duy | =F (3.2.15)

2
X x=X, dx X=X,

Using the four boundary conditions, the constants A, B, C and D can be
found. The complete solution for displacement in a rod section as a function of

position and time is

U(x,t) = (Ae7I¥*4BelkX)elvt (3.2.16) -

3.2.1 Power and Energy Equations for a Rod

As discussed in the introduction, one of goals of this analysis is to develop
equations which relate the power flow and energy density in a rod. The solution
given in equation (3.2.16) will be used to express the energy density and power
flow in forms which are easily manipulated. As noted by Kinsler et al. [30] the
time averaged power flow and energy density are usually of more interest then
the instantaneous values. This analysis will concentrate on time averaged

values.
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In a rod where only axial forces are present, the power, q, defined locally as

the force at a point times the velocity, is written in terms of the displacement as

dU(x,t) JU(x,t)
ox ot

q=-ES (3.2.17)

where;
is the axial force.

_ES IU(x,t)
Ox

AU(x,t
ot

is the longitudinal velocity.
The time averaged product of the force and velocity is [31]
<(force)(velocity)> = ’;- Re|(force)(velocity)’] (3.2.18)

where
< > is a time averaged quantity.

Here the expression (velocity)* is the complex conjugate of the velocity.
Substituting equations (3.2.16) and (3.2.17) into equation (3.2.18), the time

averaged power flow <q> at a point can be expressed as

<> = -;— wES{k,[ A |2***~ |B Ize—zkgx]—2k2[Im(AB*)cos2k1x—Re(AB*)sin2k1x]}
(3.2.19)

where

k=k1 +jk2



The energy density is the sum of the potential (V) and kinetic (T) energy

densities. For a rod, the potential and kinetic energy densities are

_1 ou
V= 5 ES —8x T (3.2.20)
and
1 ou
T= > pS [ £ ]’ (3.2.21)

Following the steps used to derive the time averaged power flow, the time

averaged potential and kinetic energies are

<V> = % ES [k [*}{]|A |2e2k'3x+ iB |2e-2k°x—2[Re(AB*)c052k1x+Im(AB*)sin2k1x]}

(3.2.22)
and

<T>= i- pSuP{|A |2e* 4 IB |2e_2k'3x+2[Re(AB*)cos2k1x+Im(AB*)sin2k1x]}
(3.2.23)
The total time averaged energy demsity at a point, <e>, is the sum of the

kinetic and potential energy density. The total energy density is
1 2 2ksx 2 —2k.x 2 2
<e> =< {|aFe™ 4+ [B % HES [k [* + oS0}

- -;—{Re(AB‘)cos2k1x+Im(AB*)sin2k1x]}{ES [k | — pSu?}

(3.2.24)
3.2.2 Simplifying the Power and Energy Expressions for a Rod

Equation (3.2.6) defines the square of the complex wavenumber. Assuming

small damping in the rod
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<1

the real and imaginary parts of the wavenumber are approximately

k, ~ = (3.2.25)
[
and
k, ~ —12 — Ty 3.2.26
2 o 5 K1 ( )

Thus, in this analysis it will be assumed that the imaginary part of the
wavenumber is small compared to the real part. This assumption will be used
to simplify the analysis and was found to be an excellent approximation for

values of damping found in common structural materials such as steel.

Applying the assumption that |k1 |>> |k, | to the expression for power flow,
equation (3.2.19), it can be assumed that the second term involving the sine and
cosine functions is significantly smaller than the first term and may be

neglected. Thus, the power is approximately

<q> ~ -;- WESk,{ |A |Ze™*— |B |27} (3.2.27)

To illustrate the difference in the power flow expressions shown in equations
(3.2.19) and (3.2.27), consider the harmonically excited rod in figure (3.2.4). The
rod in figure (3.2.4) is driven by a harmonic point force at x, and has a free end
condition at x;. Figure (3.2.5) shows the difference between the exact power flow,

equation (3.2.19), and the approximate solution given in equation (3.2.27) when



the following rod parameters are used

length of rod =5 m
ES =6 X10" N
pS = 2.358 kg /m
p = 7860 kg /m?
7 =0.01
w = 12677.79 rad /sec
The magnitude of the excitation force has been adjusted so that the power flow
into the rod at x, is unity. Note in figure (3.2.5) that since there is a free end
condition, no power can leave the rod at x,. Equation (3.2.27) approximates the
power flow as the sum of two exponential functions. The approximate solution
passes through the middle of the exact solution. The component of power flow
which is neglected is significantly smaller than the retained terms. In addition,
the neglected terms are harmonie functions in space and the approximate
solution represents the spatial average of the exact power flow. It will be showﬁ
in section 3.3 that the harmonic component of the exact solution for power flow
is due to the type of damping used in this model. It is also important to note
that with a single power source, (e.g. a single harmonic input), the magnitude of
the power flowing through a point in the rod monotonically decreases as one

moves away from the power source as expected due to conservation of energy.

Figure (3.2.6) is a plot of the exact, time averaged potential, kinetic and

total energy densities from equations (3.2.22), (3.2.23) and (3.2.24), using the
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same rod parameters as the power flow solutions used in figure (3.2.5). The
potential and kinetic energies in figure (3.2.6) are spatial harmonic functions
which are out of phase by 180 degrees. The reason for this phase shift is the
form of the displacement solution, equation (3.2.16), and the nature éf how
potential and kinetic energies are stored. Equation (3.2.20) shows that the
potential | energy is proportional to the square of the first derivative of
displacement with respect to x, while the kinetic energy is proportional to the
square of the zeroeth derivative of displacement with respect to x. Though
difficult to see in figure (3.2.8), a slight negative gradient does exist in the total

energy density indicating the dissipation of power.

The light damping assumption allows a simplification of the energy density
expression shown in equation (3.2.24). Using the light damping assumption, the

square of the magnitude of the wavenumber is approximately

W?
kP~ =
ik~
Thus it can be shown that
ES |k |? =~ Si2 = ES“—éﬂ = pSu? (3.2.28)
¢

Substituting equation (3.2.28) into (3.2.24) the time averaged total energy

density may be written approximately as

<o> > L psur(]a et B ety (3.2.29)
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When the damping is light and the time averaged values are computed, the
harmonic components of the potential and kinetic energy densities are
essentially equal in magnitude but the negative of one another. The important
result of such behavior is that when added together, the harmonic portions of
the potential and kinetic energy densities cancel and the exact total energy
density is well approximated by the simple expression given in equation (3.2.29).
The importance of having no signiﬁcant harmonic components in the total
energy density will become more apparent when the energy density equations for
the beam are developed.

3.2.3 Relationship Between Power and Energy Density in a Rod
The gradient of the approximate energy density is

d<e>
dx

= pSuPky{ |A [2e2F_ |B [Te~2) (3.2.30)

Dividing the approximate expression for time averaged power, equation (3.2.27),
by equation (3.2.30), and solving for <q>, a simple relationship between local

power flow and the energy gradient for rods is found to be

2
<> =S d=e> (3.2.31)
nw dx

The assumption used in deriving equation (3.2.31) is that hysteretic damping is

small 7 << 1, and thus, |k; | >> |k, |.
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3.2.4 Energy Balance in a Rod

Figure (3.2.7) shows an energy balance for a differential rod element. The
time rate of change of energy within the control volume must be equal to the
net power entering the volume minus the power dissipated within the volume.

The resulting balance is

Oe 0
& - _5;1 . (3.2.32)
where:
e is the energy within the differential control volume.
q is the net power flow at a point.

Tgss 15 the power dissipated within the differential control volume.

Using the relationship between the power flow and energy found from the
analytical rod solution, equation (3.2.31), the gradient of power flow in equation
(3.2.32) can be expressed in terms of the second derivative of the energy density.
Also, the time derivative of energy density in equation (3.2.32) is zero since
power flow is being studied in a steady state condition. Thus, the time averaged,

steady state form of equation (3.2.32) is

¢t dl<e>

nw  dx?

- <7r>diss =0 (32.33)

3.2.5 Power Dissipation in a Rod

At steady state, equation (3.2.33) shows that the power dissipated at a point

is proportional to the second derivative of energy density at that point.

~

Calculating the second derivative of energy density, the power dissipated at a
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point, from equation (3.2.33) is
<> giss = %—pSwznw |A |2e2k"’x + |B |2e_2k2x} (3.2.34)

Dividing the expression for energy density as given by equation (3.2.29) by

equation (3.2.34) and solving for dissipated power leads to the relationship
<T>gies = N <e> (3.2.35)

Thus the energy dissipated at a point is proportional to the energy density at
that point, given the assumptions used to derive equations (3.2.29) and (3.2.33).
The expression for power dissipation which Nefske and Sung [2] use in their
power flow analysis is identical to equation (3.2.35). However, Nefske and Sung
developed their power dissipation term from a Statistical Energy Analysis (SEA)
assumption that the dissipated power is proportional to the total energy in a

system.

3.2.6 Governing Equations for the Energy Density and Power Flow in a Rod
All the necessary equations needed to describe power flow and energy density

in a rod have now been developed. Substituting the term for power dissipation,

equation (3.2.35), into equation (3.2.33) and rearranging terms, the approximate

governing equation of the energy distribution in a rod is
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d*<e>
dx2 — 1p2<e> = () (3.2.36)
where
w
Y=n=
o4

The assumption used in deriving equation (3.2.36) is that hysteretic damping is

small 7 << 1, and thus, |k, | > |k, |.
The general solution to equation (3.2.36) is
<e> = Cie¥* + Cpe™¥* (3.2.37)

where the constants C, and C, are determined by applying the boundary
conditions, either a specified energy density or power flux condition. The power
flow is calculated by substituting equation (3.2.37) into equation (3.2.31) which

results in the expression
<> = —c{Cie¥™ — Cpe™¥%) (3.2.38)

In this work the boundary conditions will all be power fluxes. This is similar to
SEA where input power to a structure is a known parameter but energy levels
generally are not.
3.3 Effect of Damping Model

Predicting the damped response of a structure can be approached on several

different levels [32]. The most deterministic approach is to study damping on a
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microscopic scale. A micromechanistic view attempts to predict the behavior by
modeling the interactions between grains in the material and losses due to grain
deformation. Though this is the most scientific approach it is usually limited to
very special cases of geometry and loading, and is often too complex for efficient
application to a mathematical m;)del. More common approaches rely on a
macroscopic study of damped behavior. The macroanalytical approach models
damping by modifying equations of motion and material properties in an
attempt to éimulate the observed damped response of structures. However, since
damping mechanisms are not completely understood on a macroscopic scale,
modeling damping in this manner is not a deterministic process. Certain
engineering assumptions are generally made to predict the damped response of a
dynamic systems in a cost effective and reasonably accurate manmer. Two

examples of macroscopic damping schemes are the well known viscous and

hysteretic damping models.

In this study, hysteretic damping was introduced into the rod and beam
analysis through a complex modulus of elasticity. A hysteretic damping model
was chosen over a viscous damping model because a constant hysteretic loss
factor predicts results which are more consistent with experimental studies than

a constant viscous loss factor [32].

The equations developed in section 3.2 describing power flow and energy in
rods are functions of the type and degree of damping used. In spite of the

apparent exact nature of the equations of motion, the uncertainty of how to
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accurately model damping introduces a level of error into these relations. It is
difficult to determine how closely the exact and simplified solutions for power

and energy match what happens in real systems.

Figure (3.2.5) illustrates how the simplified solution for power flow in a rod,
equation (3.2.27), differs from the apparent exact solution of equation (3.2.19).
The simplified model decays exponentially away from the power source. The
exact curve oscillates about this simplified model. The explanation of why these

curves differ can be found by studying the power dissipation terms.

The power dissipation in the exact solution for a rod is more readily
understood by using an equivalent viscous damping model. Consider the
equation of motion for a rod, equation (3.2.1). A viscous damping term may be

introduced into the forcing function, f(x,t), in equation (3.2.1) as

AU(x,t

f(x,t) = F(S(x—xo)eth — 7y -

(3.3.1)

where
7, is the viscous damping coefficient.

Substituting this force into equation (3.2.1) and removing the time dependence,

the equation of motion is

d2
G
dx

2 VES ES

i 3 Wiy }\A(X) = —T-F; 5(x—xo) (3.3.2)

In equation (3.3.2), the modulus of elasticity is a real value since viscous

damping is being modeled. Following the same procedures used in section 3.2,
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the equation of motion can be simplified to

2
i;x—‘,_f +k,%u(x) =0 (3.3.3)

where the complex viscous wavenumber k, is defined

0J2 wny,
k2= |2 ;% .3.
v—[& ey (3.3.4)

Assuming again that the viscous damping is small, the components of k, may be

written approximately as

w
kvl ~ 'c— (3.3.5)
Ty
koo =~ — 3.3.6
v2 zpsc ( )

Comparing the real and imaginary parts of the hysteretic wavenumber in a
rod, equations (3.2.25), (3.2.26), to their counterparts for viscous damping given

above, equivalent viscous damping implies that

kl = le (3.3-7)

kz = ka (3.3.8)

For the equalities to be satisfied the equivalent viscous damping coefficient in

terms of the hysteretic damping factor is
Ny = pSwn (3.3.9)

It is important to note that for a constant hysteretic loss factor, 7, the
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equivalent viscous damping is a function of frequency. The result in equation

(3.3.9) is derived by Soedel [29].

The local viscous damping force in equation (3.3.1) is

F, = nv—-(uUaf d . (3.3.10)

The power dissipated by the damping mechanism is the damping force times the
local velocity

*

&
ot

1
= —T]V

2

F

v

1
Texactdiss = ERe o5t

U r (3.3.11)

From equation (3.2.21), the time averaged kinetic energy in a rod is

U r (3.3.12)

1
<T>=1,g
Z =3

Thus, the dissipated power and kinetic energy are related as

2n, :
LMexactdiss = p—S<T> (3.3.13)

Using the equivalent damping factor in equation (3.3.9), this relationship may be

rewritten as

Lexactdiss = 2NwW<T> (3.3. 14)

Equation (3.3.14) indicates that the exact solution predicts that the power
dissipated at a point is directly proportional to the local kinetic energy density.
Equation (3.3.14) can be verified by plotting the potential and kinetic energy

densities, shown in figure (3.2.6), with the exact power flow solution, shown in
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figure (3.2.5). Such a plot is shown in figure (3.3.1). Note in figure (3.3.1) that
at a maximum of kinetic energy the slope of the power flow is also maximum.
From the discussion in section 3.2.4, it was shown that at steady state, the
power dissipated at a point is equal to the negative of the slope of the power
flow. Where the kinetic energy is zero the slope of the power flow is zero,
indicating no power is dissipated. The harmonic component of the exact power

flow is due to the spatial variation of the kinetic energy.

The simplified theory for power flow does not distinguish between potential
and kinetic energies. It models the total energy density in the rod. Because the
simplified model does not differentiate between energy types, it could not be
e);pected to model power dissipation as proportional to the kinetic energy alone
as the exact solution does. Equation (3.2.35) shows that in the simplified model

the power dissipated at a point is proportional to the total energy density.

The average power dissipated over a wavelength using the exact formulation

is
- 1 X+ A 1 ) " -
Mexactdis™y [ Texaer>do = = (m)pSe? —[IAI% T—B [P ""]
xact~" diss N ‘){ exact N 2k2
1 * " X+ A
+ P [Re(AB )sink;c—Im(AB )coskla'] |
1 X

(3.3.15)

where X is a wavelength of vibration and is defined for light damping as

2 27
>\ = — R
kK k

The harmonic terms in equation (3.3.15) go to zero when evaluated between x



and x+\. Thus, the exact average power dissipated over a wavelength is

1 So? 2 2k 2 _—2kwo X4 2
Mexact=diss = 4—k2->\_ (nw)pSuA{ |A [?e™ — |B |2e™*)} x| (3.3.16)

A similar calculation for power dissipation using the simplified model gives

X+ A

- 1 . -2k
<T> gigg = o (nw)pSuH{ |A 27 — |B |27 | (3.3.17)

The average power dissipated over a wavelength, or an integer number of
wavelengths, by the simplified and exact solutions is identical in spite of the fact
that the spatial profiles of the two power flow solutions are different. It is
important to note that the power dissipated by the exact and simplified
solutions are identical only when integrated over an integer number of
wavelengths. This is because in equation (3.3.15), the harmonic portions of the
exact solution go to zero only when integrated over an integer number of
wavelengths. In essence, the simplified model averages the power absorption

over a wavelength.

A similar comparison of the exact and simplified theories for a beam, to be
discussed in chapter 4, would produce results analogous to those for a rod. For
the exact solution of a beam, power is dissipated in proportion to the local
kinetic energy levels while the simplified theory models the dissipation of power

in proportion to the average total energy density.

Due to the uncertain nature of damping models, it is difficult to say if the

exact or simplified solution is a more accurate representation of the power

-
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dissipation. Experimental data on the detailed spatial variation of power flow in
rods or beams are not widely published in literature. For purposes of medium
to high frequency analyses of energy in structures, the simplified solution models
the actual power absorption mechanism in rods and beams well enough to
predict accurate average energy and power flow values.
3.4 Summary

Equation (3.2.31) shows that fqr the assumption that hysteretic damping is

small n << 1:

1) [k | >> |k, |.

2) <q> is approximated by equation (3.2.27).
3) <e> is approximated by equation (3.2.29).

Using these assumptions it was found that the power flow in a rod is
proportional to the gradient of energy density. Furthermore, the control volume
analysis shown in figure (3.2.7) along with the relationship between power
dissipation and energy density allows the development of a Poisson’s equation
(3.2.36) which models the power flow and energy distribution in a rod. Thus,
the thermal conduction analogy, which was discussed in the introduction, for
studying the power flow and energy density in a rod is a valid model for

conditions of small hysteretic damping.
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With respect to damping models, equation (3.3.14) showed that in the exact
solution, hysteretic damping results in power dissipation in proportion to the
local kinetic energy. The simplified theory models power dissipation in
proportion to the total energy density. Thus, the difference of power flow
between the exact and simplified power flow solutions can be attributed to the
different ways in which each models power dissipation. However, at medium to
high frequencies, these diﬂ‘erences»are small and the simplified model is a good

engineering model of power flow in rods.
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Figure 3.2.1 - Longitudinally Vibrating Rod Excited by a Distributed Forcing
Function with General Spring Boundary Conditions
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Figure 3.2.2 - Longitudinally Vibrating Rod Excited by a Harmonic Point
Force at x, with General Spring Boundary Conditions
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Figure 3.2.3 - Longitudinally Vibrating Rod from Figure (3.2.2) Split into Two
Components to Allow the Harmonic Point Force to be Applied as
a Boundary Condition
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Figure 3.2.4 - Longitudinally Vibrating Rod Excited by a Harmonic Point
Force at x, with a Free End Condition at x,
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Figure 3.2.5 - Comparison of the Power Flow Solutions for the Longitudinally
Vibrating Rod Shown in Figure (3.2.4) Using an Exact Solution,
Shown in Equation (3.2.19), and the Approximate Solution,
Shown in Equation (3.2.27)
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Figure 3.2.8 - Exact Potential, Kinetic and Total Energy Density Solutions for
the Longitudinally Vibrating Rod Shown in Figure (3.2.4) Using
the Solutions Shown in Equations (3.2.22), (3.2.23) and (3.2.24)
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Figure 3.2.7 - Energy Balance on a Differential Element in a Longitudinally
Vibrating Rod Excited by a Harmonic Point Force
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Figure 3.3.1 - Exact Solutions for the Power Flow and Potential and Kinetic
Energy Densities in a Longitudinally Vibrating Rod
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CHAPTER 4 - THEORETICAL DEVELOPMENT FOR BEAMS

4.1 Introduction

In this chapter, the governing equations used to model power flow through a
beam will be developed. As for the rod analysis, the power flow and energy
density eqﬁations will be developed from the classical solutions of motion of a
harmonically excited beam.

4.2 Beam Equations
The equation of motion for a uniform Bernoulli-Euler beam, figure (4.2.1),

excited by a general forcing function is

3*U(x,t) 8*U(x,t)
EJI pw + 48 pw =

(x,t) (4.2.1)
where:
U(x,t) is the tranverse displacement of beam.
E.l is the flexural rigidity of beam.
PS is the density per unit length.
f(x,t) is the distributed forcing function per unit length.

The spring end conditions shown in figure (4.2.1) represent general boundary
conditions. The torsional spring rates op control the relationships between the

moments and angular displacements at the ends. The transverse spring rates oy,

control the relationships between the shear forces and linear displacements at

-



47

the ends.

For this investigation the beam excitation will be modeled as a harmonic
point force. The excitation will be a transverse force acting perpendicular to the

neutral axis and is defined mathematically as
f(x,t) = Fx—x,)e (4.2.2)

Damping in the beam will be introduced using a hysteretic model which results

in a complex modulus of elasticity E, as shown in equation (3.2.3).

Following a procedure similar to that used for the rod analysis, only steady
state harmonic conditions will be investigated. Thus, the time dependence of
the beam equation of motion will be removed by a separation of variables
technique. Substituting equations (3.2.4) and (4.2.2) into (4.2.1) and removing

the time dependence gives

TR T TR e

Equation (4.2.3) may be further simplified by defining a complex wavenumber k

for a beam such that

Ko S A-jn) (4.2.4)

EI (14 7%

which results in an equation of motion

— k*u(x) = 8(x—x,) (4.2.5)
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When forces are applied at the boundary, equation (4.2.5) is homogeneous

—Egl —k*u(x) =0 (4.2.6)

and has a solution of the form
u(x) = Ae7 % 4 Belkx 4 Cekx 4 pekx (4.2.7)

In general, the constants A, B, C and D are complex numbers which are

determined by applying the boundary conditions.

The four unknown constants in the beam displacement solution require
specification of two boundary conditions at each end of the beam to pose the
problem correctly. For a transversely vibrating beam, the appropriate boundary
conditions are displacement, slope, moment and shear force. The displacement

condition for a beam at x=x, is

u(x,) = u, (4.2.8)
A specified slope is
du 8, (4.2.9)
dx X=X,

where u, and 6, are known constants, and are often zero. From elementary
beam theory, the second and third derivatives of u(x) are related to the internal

moment (M) and shear force (F) respectively as

v M
d—x2 = EI— (4.2.10)
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and

3« F
@ E (4.2.11)

The sign conventions for positive moment and shear are shown in figure (4.2.2).
For the moment and shear boundary conditions only the real part of the
complex modulus E, is used. The real part of the modulus of elasticity is again
assumed to be a valid approximation of the modulus for light damping. The
important damping effects are included in the complex wavenumber k. Only
certain combinations of the boundary conditions can be used. At each end of

the beam the two boundary conditions must be given as [29]

u(x,) =u, or :i?x-lxo =& (4.2.12)
and
du d%u M
— = —_ = —— 4.2.13
dx x=x, o OF dx2 X=X, El ( )

For a point force applied along the beam, analytical solutions are found by
dividing the beam into two sections. Figure (4.2.3) shows a beam driven by a
transverse harmonic point force. As with the rod, the solution procedure
requires the beam to be divided into two sections at the location of the driving
force, as shown in figure (4.2.4). Each of the two beam sections now have its

own displacement solution
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uy(x) = (Ae ¥ 4 B¥® 4 Ce™¥* 4 DekX) (4.2.14)
X S X S Xo
and
uy(x) = (Ee ¥ 4 Fel** 4 Ge™™* 4+ Hek¥) (4.2.15)
Xo S X S. X9

At x =x, and x = x,, one boundary condition from both equations (4.2.12) and
(4.2.13) must be specified. At the point where the two beam sections are joined,
X =X, , four boundary conditions must be enforced. Three of the four

conditions are the continuity of displacement, slope and moment relationships

u(x,) = uy(x,) (4.2.16)

du, du,
— | === | (4.2.17)
dx X=X, dx X=X,

d2U2

(EI), (4.2.18)

The fourth condition at x=x, is a balance of forces. The internal shear forces in

both beams at the coupling location must balance the applied shear force F such

that

d®y, du,
| —EDy— | =F (4.2.19)

dx3 x=x, dx® x=x,

(ED),

Using the four continuity relationships and two boundary conditions at each end
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of the beam, the problem in figure (4.2.3) is completely defined and the eight
constants in equations (4.2.14) and (4.2.15) can be found. The complete solution

for a beam section as a function of both position and time has the form

U(x,t) = (Ae™I¥* 4 Be¥® 4 Ce™** 4 Dekx)elvt (4.2.20)

4.2.1 Power and Energy Equations for a Beam

Power in a transversely vibrating beam is transmitted by two separate
mechanisms. This is in contrast to a rod vibrating longitudinally in which all
the power is transported by the internal axial force, equation (3.2.17). Power
flow in a beam is transmitted by shear and moment mechanisms. The time

averaged power associated with the shear force <q> is

1 U || a
<gq>; = ;Re{ Elg " } (4.2.21)
where:
EI gsxg is the shear force.

9y is the transverse velocity.

ot

The time averaged power carried by the moment <q>_ is

_8u
Oxdt

5*U
8)(2

El (4.2.22)

<q>, = éRe
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where:

2

EIaU
axz

_du
%t

is the moment.

is the angular velocity.

Substituting the displacement solution U(x,t) into equations (4.2.21) and

(4.2.22) the expressions for shear and moment power may be written as

<q>; = --%EI(»JRe{jkz[jAe'jkx — jBe*™® — Ce & + De*¥]

[Ae™%® 4 BelX 1 Cek* 4 Dek¥") (4.2.23)

and

<q>p, = —Elw [k |*Re{jk[Ae 1 4 Bel** — Ce™®* — Dek¥|

0 |

[jAe™k% — jBel® 4 Ce™™* — Dek¥]") (4.2.24)

The total energy density in a transversely vibrating beam is the sum of its

potential energy density (V)

2
v=Llp LY (4.2.25)
2 ox?
and kinetic energy density (T)
1 au
T=—=pS|— 4.2.26
ol e ]1 (4.2.26)

Substituting the displacement solution equation (4.2.20) into equations (4.2.25)

and (4.2.26) and calculating time averaged values of potential and kinetic energy
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results in the relationships

<V> = %EI |k? |°Re{[Ae~ix 4 Bel® — Ce™** — De¥|

[Ae™ix 4 Belkx — Ce™x _ Dek¥|') (4.2.27)

and
<T>= %pSsze{[Ae‘jh + Be® 4 Ce™* 4 Dek¥]
[Ae™® 4 Bel* 4 Ce™® | Dek¥|") (4.2.28)

4.2.2 Nearfield and Farfield Terms

The complex wavenumber for a beam is defined in equation (4.2.4).

Assuming damping in the beam is small
n1<K1

the real part of k* is much larger than the imaginary part. Using this
assumption, the real and imaginary part of the wavenumber k can be shown to

be approximately

1
S {4 W
k=~ |22 =X 4.2.29
1 [EJ - (1220
and
1
S |4 n
kp ~ —L [ P22 7 = L 4.2.30
,~ -1 EII Lk, (4:2:30)
where

wave velocity in a beam.

LEL
S

i)
\_*r._
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These expressions are excellent approximations for small damping.

The displacement solution for a longitudinally vibrating rod, equation
(3.2.16), is the sum of two traveling wave solutions. The partial solution of the
form el“t-¥) ig commonly referred to as a "right traveling wave", while the
partial solution &(“**¥¥) ig 5 "left traveling wave”. Actually since k is a complex

number the term ei(«¥—¥x) may be rewritten in the form

Slwt—kx) _ eJt(wt—kl’t) R (4.2.31)

Equation (4.2.31) represents a right traveling wave whose magnitude is decaying

exponentially ( k, is a negative quantity ).

The displacement for the beam, equation (4.2.20), is a four term solution.
Four terms are necessary since the governing differential equation for the beam
is fourth order with respect to x. The first two terms in equation (4.2.20) are
identical in form to the displacement solution for the rod, and consequently they
represent exponentially decaying traveling wave solutions. Since ko is small, the
rate of decay is small and this portion of the displacement has come to be
known as the farfield solution. The last two terms in equation (4.2.20), the
exponential functions, are commonly referred to as the nearfield solution since

the effect of these terms is significant only near a boundary.

The terminology “nearfield solution” implies that with respect to the total
displacement solution the nearfield terms are generally only important "near"”

some type of discontinuity. In this formulation a discontinuity includes all the
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classical end conditions where the beam terminates, e.g. clamped end, free end,
pinned end, mass loaded end, etc. In addition discontinuities can occur where

two different beams are coupled and at the location of a driving force.

The nearfield terms in equation (4.2.20) complicate the displacement solution
for a beam. If it were true that the farfield terms were always much larger than
the nearfield terms the beam analysis could be simplified by neglecting the
nearfield terms. However, in separate studies on the measurement of structure-
borne wave intensity, Pavic (34] and Noiseux [35] found that, at a discontinuity,
the magnitude of the nearfield terms can be of the same order as the farfield
terms. In their text on structure-borne sound, Cremer et al. [8] discussed the
role of the nearfield solution in transverse beam vibration. Cremer et al.
explained that the nearfield is necessary in order that the displacement solution,
equation (4.2.14), can satisfy the equilibrium conditions at a discontinuity. The
farther away a point in a beam is from a discontinuity, the less significant is the
contribution of the nearfield to the total solution u(x). Goyder and White [25]
discussed the importance of the nearfield in a study of power flow in infinite
structures. Goyder and White derived the displacement solution for an infinite
beam driven by a harmonic point force, as shown in figure (4.2.5). Using a
spatial Fourier transformation and contour integral Goyder and White derived

the displacement solution for x>0 in terms of a farfield and nearfield term
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u(x) —_ Ae—jkx + Ce—kx =Ae—jklx ekex + Ce‘klx e_jktx (42'32)

where the constants A and C were shown to be

A= —dE
4EIK3
and
c=—F
4EIK3

Note the magnitude of A and C are the same. Thus, the magnitude of
displacement in the vicinity of the drive point, x=0, will be equally dependent
on both the nearfield and farfield effects. However, both terms in equation
(4.2.32) decay exponentially as x increases. The farfield term decays as ek
while the nearfield term decays as e % Since Ik, |>> Ik, | the nearfield term
will decay much more quickly than the farfield term. As an example, consider
the case of an infinite beam made of steel. The hysteretic damping coefficient

for steel is commonly assumed to be of the order 7 = 0.001 [32]. Making use of

the relationship between the wavenumber and wavelength
k, ~k = <L (4.2.33)
where

X is the wavelength of vibration.

the exponential decay terms in equation (4.2.32) can be written as



=e (4.2.34)
and

7 UL

S (4.2.35)

It was pointed out earlier that at the drive point the magnitude of the nearfield
and farfield terms in equation (4.2.32) were the same. Using the expressions in
equations (4.2.34) and (4.2.35) it is found that one wavelength from the drive
point in a steel beam, x = A\, the magnitude of the nearfield term is less than
two percent of the farfield term. At x = 2)\ the ratio of the two is less than
0.0004 percent. Figure (4.2.6) shows a plot of the ratio of the magnitude of the
nearfield term in equation (4.2.32) to the magnitude of the farfield term, for
x>0, as a function of position in wavelengths for a infinite steel beam. Goyder
and White concluded that for large values of kx the nearfield term in equation
(4.2.32) could be neglected. Figure (4.2.6) and equations (4.2.34) and (4.2.35)

support this conclusion.

For small damping, the displacement solution for the infinite beam, equation
(4.2.32), is essentially the sum of a right traveling wave solution plus an
exponentially decaying function. The two term solution is sufficient for an
infinite beam since there is no discontinuity in the beam to reflect the wave and
create a left traveling wave. The displacement solution for a finite beam,
equation (4.2.14), consists essentially of a right and left traveling wave solution

plus two exponential functions. Both a right and left traveling wave solution
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are required in a finite beam to account for reflections which occur when a
propagating wave encounters a discontinuity. The finite beam also requires two
nearfield solutions to allow the boundary conditions at each end of the beam to

be satisfied.

The displacement solution for beam section 2, shown in figure (4.2.4), is
uy(x). For light damping, the magnitude of the traveling wave solution,
Ae kx4 Belkx g essentially constant over the length of the section since the
decay terms are small. The nearfield solution Ce™¥* is associated with the left
boundary, x=x,, on beam section 2 while the nearfield solution De** is associated
with the right boundary at x =x,. Except for tHe case when the beam section
length is much less than the wavelength of vibration, it can be shown that the
nearfield solution associated with one boundary is negligible at the other
boundary. For example, consider the case shown in figure (4.2.4) where the
wavelength of vibration is equal to twice the length of beam section 2. At x=x,
the magnitude of the partial nearfield solution associated with that boundary,
Ce_kx, can be of the same order as the magnitude of the traveling wave portion
of the total displacement solution. However, at the other boundary, x = x,, the
magnitude of Ce ™2 is about four percent of its value at x=x_, and therefore can
be neglected near x = x,. At the same time, at x = x, the magnitude of the
partial nearfield solution associated with the right boundary, Dekxf, can be of the
same order of magnitude as the traveling wave solution but is negligible near

x=x,. The concept of nearfield solutions being associated with a particular
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boundary, allows approximations of the total displacement solution near a
discontinuity. It can be argued that if the length of beam section 2 in figure
(4.2.4) is greater than one half the wavelength of vibration, in the vicinity of the
left boundary, x=x,, the total displacement solution u,(x) can be written

approximately as
Uy (x) = Ae KX L BK® 4 CeT (4.2.36)

Equation (4.2.36) is based on the assumption that the nearfield solution De¥* is
negligible near x=x,. By the same reasoning the displacement solution near the

right boundary, x = x,, can be written approximately as

wpp(x) = Ae % | Belk* 4 Dek* (4.2.37)

As the driving frequency of the forcing function increases, the
approximations in equations (4.2.36) and (4.2.37) become better. As the driving
frequency increases, the wavenumber, which is proportional to the square root of
frequenc};, also increases. As the wavenumber increases the wavelength of

vibration decreases and the effective region of the nearfield solution gets smaller.

When the driving frequency is high enough, such that the length of beam
section 2 for the case in figure (4.2.4) is ten wavelengths long
(x, = 10\) and x,=0, the partial nearfield solution Ce™* is significant only in
the region 0 <x <.05x, while De* is significant only in the region
95x, < x < xy. At this frequency, the nearfield solutions are significant on only

one tenth of the total beam section 2. This means that on the region
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05xy <x <.95x, the displacement solution for section 2 can be written

approximately by the traveling wave solution
ugpp(x) = Ae T 4 Bk (4.2.38)

The validity of equation (4.2.38) is based on the assumption that the partial

nearfield solutions are negligible over most of the beam.

As a final example of the relative importance of the nearfield and farfield
terms to the total displacement solution, consider the case of the harmonically
excited beam shown in figure (4.2.3) with no end constraints, i.e. a free-free

beam, with the following beam parameters.

x,=-0.5m
X, =0

Xy =0.5m
EI = 500 Nm?

pS = 2.358 kg/m
p = 7860 kg/m®
n = 0.001
A free end condition can be accomplished by setting the spring rates of the
system shown in figure (4.2.3) to zero. Figure (4.2.7) is a plot of the ratio of the

magnitude of the nearfield solution to the magnitude of the farfield solution
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[Ce ™™ | + |De*¥|
IAe"ka | + IBejkx |

(4.2.39)

for beam section 2 in figure (4.2.4), as a function of position. The four curves in
figure (4.2.7) correspond to the four cases where the wavelength of vibration

equals 2Xj, Xj, .5%,, and .25x,. When A=2x,=1 and A\=x,=0.5 figure (4.2.7)
suggests that the effects of the nearfield terms are important over the entire
beam section length. Thus approximating the displacement using omnly the
farfield terms, equation (4.2.38), is not valid anywhere on the beam. For the
case when A=.5x,=0.25, equation (4.2.38) is a good approximation over the
middle section of the beam but not near the boundaries. When 7\=.25x,=0.125
however, figure (4.2.7) indicates that the farfield displacement solution is valid
over the region .05<x<.45, or approximately eighty percent of the beam length.
As the wavelength of vibration gets smaller, the farfield displacement solution

becomes valid over more of the beam.

The arguments and figures in section 4.3.3 demonstrate how to determine
which conditions and ranges the displacement solution for a transversely
vibrating beam is well modeled by the farfield solution. Neglecting the nearfield
displacements in power flow analysis is fairly common in the literature. Nefske
and Sung (2], Goyder and White (25|, Pavic [34], and Noiseux (35|, at some

point in their analyses assumed the nearfield effects were negligible.
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4.2.3 Energy Density in a Beam

The expressions for the time averaged potential and kinetic energies for a

beam in terms of wave amplitudes are

<V> = i—EI [k? |{ |A [2e™+ |B |27+ |C [2e ™24 D [2e™*

~26™[Re(AC"Jooszx-Hm(AC ags]~2¢"[Re(ADeost;x-Hm(AD Jint;x]
—2¢”""[Re(CB")coszyx+Im(CB ")sinz)x|—2¢"*[Re(DB )cosz,x+Im(DB )sin(z,x)]
+2[Re( AB‘)cos2klx+m(AB*)sin2k1x] +2 [Re(CD*)c052k2x+Im(CD *)sin2k2x] }

(4.2.40)
and

<T>= %psﬁ{ |A [2e™ %+ [B |27+ |C [%e™™ "+ D [P

26 Re(AC" eostyx-Hm(AC sinzyxl-+2¢ [Re(ADeoszyx-Hm(AD Jsinayx]

-|-2e_“"[Re(CB*)cosszlx+Im(CB}")sinzlx]-{-2ewl [Re(DB‘)cosz2x+Im(DB*)sinzzx]

+2 [Re(AB')cos2k1x+Im(AB‘)sin2k1x] +2[Re(CD cos2k,x-+HIm(CD ")sin2k,x|}
(4.2.41)

where

3 =k +k2=k1(1—%)

and

zz=k1"k2=k1(1+§')

To illustrate the distribution of the energy density components in a transversely
vibrating beam, consider the harmonically excited beam in figure (4.2.8). The
beam in figure (4.2.8) is excited by a transverse point force at x, and is simply

supported at both ends. Figure (4.2.9) is a plot of the exact potential, kinetic
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and total energy densities when the following beam parameters are used.

x;=0

X, = 0.25 m
X, =0.5m
EI = 500 Nm?

pS = 2.358 kg /m
p = 7860 kg /m®
n = 0.001
w = 36791.95 rad /sec
The potential and kinetic energy densities in figure (4.2.9) are calculated from
equations (4.2.40) and (4.2.41). The total energy density is the sum of the
potential and kinetic energy densities. Over most of the beam length the
potential and kinetic energies are in phase with each other and of the same
magnitude. The only place where the potential and kinetic energies are out of
phase or of different magnitude is near the point force. Such behavior near the
point force is the result of the nearfield effects. Figure (4.2.9) shows that the
total energy density in a beam is a spatial harmonic function. This is in
contrast to the distribution of energy density in a rod where the total energy

density has no significant harmonic components.

Using the assumption of light damping, some simplifications may be made to

the exact energy density solution. When 7<<1 the magnitude of |k?|? may be

written approximately as
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S
Sl ESER 4.2.
i |2 ~ oS (4.2.42)
Thus, the following relationship may be written

EI K2 |® = EIJ%—SI— = pSut (4.2.43)

The total time averaged energy density at a point is calculated by adding
equations (4.2.40) and (4.2.41). Substituting equation (4.2.43) into the potential
energy expreésion, equation (4.2.40), and adding the potential energy to the

kinetic energy, equation (4.2.41), the approximate total time averaged energy

density <e> is

<e>= %psﬁ{ |A [2e5% 4+ |B |2e ™24 |C [PeTH%+ D [2e"

+2 [Re(AB‘)c052k1x+Im(AB*)sin2k1x] +2[Re(CD *)c032k2x+1m(CD*)sin2k2x] }
(4.2.44)

The assumptions used in deriving equation (4.2.44) are that hysteretic damping

is small n << 1, thus, [k?|? = o/ -gTSI- and E, = E.

There are several differences between the approximate total energy density
function for a rod, equation (3.2.29), and the approximate total energy density
for a beam, equation (4.2.44). There are two nearfield terms in equation (4.2.44)
which will only be important near the boundaries; For the beam, a harmonic

farfield function
2[Re(AB*)cos2k1x + Im(AB)sin2k,x| (4.2.45)

exists. It has been shown that when damping is light the harmonic portions of



65

the potential and kinetic energies in a rod were out of phase with one another
and therefore add to zero when the potential and kinetic expressions were
summed. Investigation of the expressions for potential and kinetic energies for a
beam, equations (4.2.40) and (4.2.41), shows that both the potential and kinetic
énergies have ha.rxhonic terms which are in phase with each other. Thus, when
the potential and kinetic energies are added, the harmonic function in equation

(4.2.45) is not canceled as it is in a rod.

The spatially harmonic portions of the time averaged potential and kinetic
energies are in phase with one another due to the potential energy storage
mechanism in a beam. Equation (4.2.25) shows that the potential energy in a
beam is proportional to the square of the second derivative of displacement with
respect to x. In a rod the potential energy is proportional to the square of the
first derivative of displacement with respect to x. In both cases the kinetic
energy is proportional to the displacement with respect to x. In a beam
therefore, the maximum time averaged values for both the farfield potential and
kinetic energies occur at the same location in the beam. For a rod these
maximum values were out of phase with each other.

4.2.4 Simplifying the Power and Energy Expressions for a Beam

In general, none of the terms in equation (4.2.44) are negligible. However, in
many applications the exact spatial profile of energy may not be required. As an
example consider the farfield of a small acoustic noise source. It has been shown

by Kinsler et al. [30] that in the acoustic farfield the distinguishing
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characteristics of a simple noise source is its source strength. The source
strength is defined as the surface integral of the normal velocity over the source.
Thus, the details of the velocity distribution on the source are not important.
Two sound sources with different velocity distributions but equal source
strengths would be indistinguishable in the acoustic farfield. In SEA, which is
used as a noise prediction technique, the average values of energy are converted
into expressions for averaged displacement or velocity in a system. These

average values can be used to estimate the acoustic radiation of a structure.

One may apply this idea of space average values to the power and energy
equations for a beam. Expanding the expressions for the time averaged shear

and moment power, equations (4.2.23) and (4.2.24), gives

<g>, = ——;—EIwRe{ij*[j |A [2eH* AR e TR A eIt Ayt (1o

_jBA‘erklx_j IB Ize—2k._»x_jBC*e—(l—j)zlx_jBD*e(1+j)z.3x
_CA*e-(l—j)zg_CB*e—(H-j)zlx_ lC lze—2k,x_CD*e—2jk.3x
+DA M Hi)mx  pptet-ilixy potelikr | |22k (4.2.46)

and

<q>p = —EluRe(jk [ic 7 [A [fe**jAB"e ¥ A C"e 1 o 1ol
+jBA‘e2jk1x_j |B |ze—2k.2x_BCte_(l_j)zlx_*_BD*e(l_*,j)zﬂx
_jCA*e—(l—j)Zc_H CB*e—(1+j)zxx+ lC Ize—Zklx_CD*e_zjk_zx

_jDAte(l+j)z1x+jDB*e(1—j)z-3x+DC*e2jk~:x_ ID |2e2k,x]} (4.2.47)
When the sum of the shear and moment power expressions in equations (4.2.46)

and (4.2.47), is spaced averaged by
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X+ A

<> =+ [ <q>do
>\ X

the average power <a> in a beam is found to be

<> =
E;I: {47T(k13—k1k22)[ A lzezkﬁx“ 1B Ize—2kex]+(k12k2_k23)[ ID |292k1x+4”‘ [¢ Ize—zklx]
ky*—k, ’k,?
+2 . [Re(CD  )[cos2kyx—cos2k,(x+X)]+Im(CD ) [sin2k,x—sin2ky(x+N)]]
2

+2k12k2e;k‘x[Re(AC*)sinklx—Im(AC*)cosk1x+Re(CB*)sinklx—Im(CB*)cosklx]
+2k12k2e(2"+k‘x) [Re(AD )sink,x—~Im(AD t)cosklx+Re(DB‘)sinklx—lm(DB')cosklx]}
(4.2.48)
In integrating the sums of equations (4.2.46) and (4.2.47) to derive equation

(4.2.48) the following approximations, based on light damping, were used

3, Ty Tk, (4.2.49)
V= 2T 2T (4.2.50)
kK k
et —1 = efm (4.2.51)
et 1= (4.2.52)
. k
e
e & —1x4r—2 (4.2.53)
ky
ks
N ky
e Bl B Y e (4.2.54)



68

Similarly, the space averaged gradient of the total energy density is found by

integrating the derivative of equation (4.2.44) as

g d<e>
do

d<e>
dx

X
=§' do

" — +

which results in the expression

S<e2 _ BL yry e |A 65 B [ o e 04 D el
X 4
+Re(CD‘)[cos2k2(x+>\)—c052k2x] +Im(CD‘)[sin2k2(x+>\)—sin2k2x]}

(4.2.55)

The presence of the nearfield terms in the displacement solution for a beam
complicates the power flow and energy density expressions to the point where no
simple relationship exists between the average power flow, equation (4.2.48), and
the average gradient of the energy density, equation (4.2.55). In section 3.2.3 an
expression relating the power flow in a rod to the gradient of energy density was
developed. This relationship allowed the development of equation (3.2.36) which
models the energy density in a rod. In working with the space averaged power
and energy equations for a beam it was found that a similar equation relating
power flow and the gradient of the energy density could be developed only if the
nearfield effects could be neglected. In section 4.2.2 it was shown that at a
sufficiently high frequency, the displacement solution for a beam, equation
(4.2.14), is well approximated over most of the beam’s length by the farfield

solution, equation (4.2.38). If the analysis is restricted to frequencies where the
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farfield displacement solution is a good approximation, then the equations

describing the average power flow and energy density gradient simplify to
<q>g = Blw{k, [ |A %= — |B |%e~2)} (4.2.56)

where <<_1>ﬁ- is the average farfield power flow and

d<e> -
—— = EX{l "I JA |25 — [B [27)) (4.2.57)

where <;>3 is the average farfield energy density. The assumptions used in
calculating equations (4.2.56) and (4.2.57) are the same as used in calculating the
spaced averaged power flow plus the following assumption based on light
damping

2
k- kk,? =31 — %—) ~ k3 (4.2.58)

Dividing equation (4.2.56) by (4.2.57) and solving for <(;>ﬂ‘ yields the

relationship

—4Cb2 d<;>ﬂ'
dx

<@g = (4.2.59)

Thus, the average farfield power flow in a beam is proportional to the gradient

of the average farfield energy density.

The relationship between power flow and energy density in a beam developed

by Nefske and Sung (2] is, in the present notation
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—4Cb2 d<e>ﬁ‘
nw dx

<g>g = (4.2.60)

Note that equations (4.2.59) and (4.2.60) are almost identical. The only
difference between the two equations is that equation (4.2.59) relates spaced
averaged power and energy density while equation (4.2.60) relates local values of
power and energy density. In their work, Nefske and Sung apparently ignore
the spatial variation of energy density which exists in a transversely vibrating
beam. Thé gradient of the energy density in a beam varies between positive and
negative values, as shown in figure (4.2.9). Thus, in writing an expression for
which the power flow is proportional to the local gradient in energy density, as
shown in equation (4.2.60), it would be found that the power flow would change
signs (directions) in a region where no additional power is added. This would be
a violation of the conservation of energy.
4.2.5 Energy Balance in a Beam

Figure (4.2.10) shows an energy balance done on a differential beam element.
Using average values of enefgy density and power flow, a control volume
analysis of power flow in a beam element in figure (4.2.10) leads to a energy
balance

d<e> _  9<g>
o B

— <y, (4.2.61)

where

<7-T>diss is the time and averaged dissipated power.
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For time and space averaged farfield values of power flow and energy density
one may use the relationship given in equation (4.2.59) to replace <<-1> by a

term proportional to the first derivative of <;>5 with respect to x. The time

derivative of energy is equal to zero for steady state conditions, and thus

equation (4.2.61) may be written

dc? di<e>; -
7w - dx2 - 7rdiss =0 (4.2.62)

4.2.8 Power Dissipation in a Beam

At steady state, equation (4.2.62) shows the average power dissipated is
proportional to the second derivative of the average energy density. Calculating

the second derivative of energy density, the average dissipated power is

- Suf 2k
Tdiss ﬁa—wn{ |A |2e*~ |B |27} (4.2.63)

The average energy density over a wavelength is

<e>g = %“’2{ |A [P |B |27 (4.2.64)

Dividing equation (4.2.63) by (4.2.64) and solving for 7_"diss gives the result that
;rdiss =nw <e>¢ (4.2.65)

Thus the space averaged power dissipated in a beam is proportional to the

average energy density. Equation (4.2.65) is identical in form to (3.2.35) which
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relates local power disspation to the local energy density in a rod.

4.2.7 Governing Equations for the Energy Density and Power Flow in a
Beam |

Substituting equation (4.2.65) into (4.2.62) and rearranging terms gives the

approximate governing equation for the farfield space averaged energy density in

a beam
d?<e>y -
—_dx2 — $<e>p =0 (4.2.686)
where
— v
2Cb

The assumptions used in developing equation (4.2.66) are the same as those used
in section 4.2.4 to develop equation (4.2.48) along with the assumption that the
displacement in the beam is well modeled by the traveling wave solution in

equation (4.2.38).

The general solution to equation (4.2.66) is

<e>g = Cye* + Cpe~¥* (4.2.67)

where the constants C, and C, are determined by applying the boundary

conditions, either a specified energy density or power flux condition. The power

flow is calculated by finding the derivative of <;>ﬁ‘ as discussed in equation

(4.2.59)
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<q>g = —2¢,(Cye®* — Cpe—?¥) (4.2.68)

4.3 Summary

In developing the power and energy density equations, it was found that two
complications arose in the beam analysis in chapter 4 which did not occur in the
rod analysis in chapter 3. The first complication in the beam analysis was the
existence of a nearfield in the displacement solution, as shown in equation
(4.2.20). The second complication was the harmonic, spatial variation of energy

density in a beam, as shown in figure (4.2.9).

In section 4.2.2 the conditions for which the nearfield terms in the beam
displacement solution could be neglected were determined. Thus, under certain-
conditions the displacement solution can be approximated by the farfield terms.
It was also shown that the spatial variation in the farfield energy density could
be removed by integrating the farfield energy density over a wavelength of

vibration to achieve a local space average.

Equation (4.2.59) shows that under the assumptions that hysteretic damping

is small n << 1:
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1) |k | > [k

2) the displacement solution in a beam is well modeled by the

farfield solution as shown in equation (4.2.38).
3) <(—1>ﬂ' is .approximated by equation (4.2.56).

d<e>g
T is approximated by equation (4.2.57).

Using these assumptions, it was found that the space averaged power flow in a
beam is proportional to the space averaged gradient of energy density.
Furthermore, the control volume analysis shown in figure (4.2.10) along with the
relationship between space averaged power dissipation and space averaged

energy density allows the development of equation (4.2.66) which models the

energy distribution in a beam.

In their study of power flow in beams, Nefske and Sung ignored the
harmonic, spatial variation in energy density which exists in a vibrating beam.
Thus, in deriving a relationship between the power flow and the gradient of
energy density in a beam, equation (4.2.60), Nefske and Sung used local values

of power and energy density instead of space averaged values.
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Figure 4.2.1 - Transversely Vibrating Beam Excited by a Distributed Forcing
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Figure 4.2.2 - Sign Conventions for Positive Moment and Shear Force in a
Transversely Deflected Beam



Figure 4.2.3 - Transversely Vibrating Beam Excited by a Harmonic Point
Force at x, with General Spring Boundary Conditions
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Figure 4.2.4 - Transversely Vibrating Beam from Figure (4.2.3) Split into Two
Components to Allow the Harmonic Point Force to be Applied as
a Boundary Condition
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Figure 4.2.5 - Infinite, Transversely Vibrating Beam Excited by a Harmonic
Point Force at x,
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Figure 4.2.8 - Ratio of the Magnitude of the Nearfield Term to the Farfield

Term in Equation (4.2.32) for x>0 as a Function of Position in
Wavelengths
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Figure 4.2.7 - Ratio of the Sum of the Magnitudes of the Nearfield Terms to
the Sum of the Magnitudes of the Farfield Terms as Shown in
Equation (4.2.39) for Beam Section 2 in Figure (4.2.3) with Free-
Free Boundary Conditions as a Function of Position
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Figure 4.2.9 -
Transversely Vibrating Beam Shown in Figure (4.2.8)
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Figure 4.2.10 - Energy Balance on a Differential Element in a Transversely
Vibrating Beam Excited by a Harmonic Point Force
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CHAPTER 5 - COUPLING ENERGY SOLUTIONS

5.1 Introduction

The objective of power flow analysis is to provide a means by which the
propagation of vibrational power through a structural/acoustic system can be
studied. The governing equations which model power flow and energy density in
individual rods and beams were developed in chapters 3 and 4. However, to
analyze the power flow in a built up structure a method of coupling the
solutions for individual rod and beam elements must be developed. A complete
coupling scheme will provide the necessary boundary conditions so that the
unknown constants in the energy solutions for rods and beams, equations
(3.2.37) and (4.2.67) can be solved. However, even in simple configurations,
coupling rods and beams for this energy formulation without using an exact
solution, can be a formidable task. One of the major difficulties in calculating
the coupling parameters of a complex system is accurately describing the
resonant behavior of a built up structure and its components.

5.2 Energy Density Jump Conditions

Figure (5.2.1) shows the simple case of two rods joined rigidly at the ends,
undergoing longitudinal vibration. The input and output power fluxes in figure
(5.2.1) are assumed to be known. From equation (3.2.37) the energy density

solutions for rod 1 and rod 2 are
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<e>; = Cpe’* 4 Ce v (5.2.1)
and
_ Pax —ox
<e>, =Cgze'™ + C,e (5.2.2)
where
¢1 =7 —
1 &
and
w
Yy = N2 —
Co

The four unknown constants in equations (5.2.1) and (5.2.2) require four

boundary conditions to completely define the problem.

To illustrate one method of coupling the energy solutions for two rigidly
connected rods, the analogous heat transfer problem will be discussed. The
analogous heat transfer problem for the two coupled rods is a simple 1-D
thermal conduction through two connected fins with a convective heat loss,
Qeopys 28 shown in figure (5.2.2). In one dimensional thermal conduction, the

relationship between the heat flux and the temperature is [36]

qy(x) = —Kk —— (5.2.3)
where:
T(x) is the rod temperature.
qi(x) is the thermal heat flux in the x direction.

K is the thermal conductivity of the material.
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The general temperature solution to the conduction/convection problem in

figure (5.2.2) is

f(x) =D,e™™ + Dye ™ (5.2.4)

and
92(){) = Daemgx + Dse—.m‘2x (5.2.5)

where;

T is the ambient temperature.

The values of m, and m, are functions of the convection coefficient, material

conductivity and fin geometry. Note the similarities between equations (5.2.1),

(5.2.2), (5.2.4) and (5.2.5).

As with equations (5.2.1) and (5.2.2) the solutions for the temperature
distributions require specification of four boundary conditions to solve for the
four unknown constants in equations (5.2.4) and (5.2.5). Two of the boundary
conditions in figure (5.2.2) are specified heat fluxes at the ends, q;, 4 and Qout, t-
At the fin interface, x = x,, the assumption used in heat transfer is that there
exists a continuity of both temperature

91()(0) = 92(}(0) (5.2.6)

and heat flow

Qrz,t = Qpe(Xo) = Q24(X,) (5.2.7)
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The continuity of heat flow in equation (5.2.7) implies the coupling of the fins in
figure (5.2.2) is conservative. Thus, any heat (energy) leaving one fin at the
interface x=x, must enter the other fin. The boundary conditions in equations
(5.2.6) and (5.2.7) along with the heat fluxes at the ends and a given value for
T complete the specification of the heat transfer problem shown in figure
(5.2.2) and allow the constants D, through D, in equations (5.2.4) and (5.2.5) to

be evaluated.

In the rod vibration problem, figure (5.2.1), a conservative coupling between
rods 1 and 2 may also be assumed. Thus the power flow out of rod 1 in the x
direction at x = x, must be equal to the power flow into rod 2 in the x direction

at x =x,

ap =<g>; | =<g>, | (5.2.8)

X=X, X=X,

Equation (5.2.8) provides the third boundary condition needed to couple the
vibrating rod system. The fourth condition needed to solve for the unknown

constants in equations (5.2.1) and (5.2.2) is more elusive.

In the case of the conducting fins, figure (5.2.2), a continuity of the primary
variable, temperature, at the coupling location was used as the fourth boundary
condition. However, in the structure to structure coupling shown in figure
(5.2.1), the primary variable, energy density, is not continuous at x =X, A
"jump" condition in energy density occurs at the rod-rod interface. The actual

jump in energy levels at x = x, depends on the material properties and cross
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sectional area of the two rods. The energy jump also depends on the amount of

kinetic and potential energy density at the coupling location.

In the case of two rigidly coupled rods, a continuity of both velocity

ot x-xo— ot X=X, ( - )

and axial force, which can be expressed as
ES), 20L | =(ES ik | 5.2.10
®S) 5~ ) =Es, 22 | (5:2.10)

must be maintained at the interface. Using the continuity conditions in
equations (5.2.9) and (5.2.10), relationships between the potential <V> and
kinetic <T>> energy densities for rods 1 and 2 at the coupling location can be
developed. Using the definition of kinetic energy density given in equation
(3.2.21) and the velocity condition in equation (5.2.9) it can be shown that the

relationship between the kinetic energy density of rod 1 and rod 2 at x = X, is

pS
<T>, | _ Sk <T>, | (5.2.11)
X=X, (pS)2 X=X, :

Similarly, using the definition of potential energy density in a rod, equation
(3.2.20), and the continuity of force in equation (5.2.10), a relationship between

the potential energy densities at the coupling location can be shown to be

<> | = (ES), <>, | (5.2.12)
1 X=X, (ES)I X=X,
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Adding equations (5.2.11) and (5.2.12) the total emergy density of rod 1 at

X =X, is

(pSh (ES),
< = T —= 2.
e>, x_lxo (55)s <T>, x-|x°+ (ES), <V>, x_Ixo (5.2.13)

Equation (5.2.13) can be put in a more useful form by writing the kinetic energy

density of rod 2 at x =x_ as

<T>, | =a<e>, | (5.2.14)

X=X, X=X,

and the potential energy density of rod 2 as

V>, | =b<e>, | (5.2.15)

X=X, X=X,

where

0<a<1

b=1-2a

Substituting equations (5.2.14) and (5.2.15) into equation (5.2.13) gives the
relationship between the total energy densities of rod 1 and 2 at the rod-rod

interface as

<e>, x_lxo = {a% + b—i%]‘«»2 xeo (5.2.16)

Equation (5.2.16) is the jump condition in energy denmsity which exists at the
interface. The variable "a" in equation (5.2.14) is the ratio of kinetic energy
density to the total energy density in rod 2 at x =x,. "b" is the ratio of

potential energy density to the total energy in rod 2 at x =x,.
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Figures (5.2.3)-(5.2.5) are plots of the energy densities in the two coupled
rods, shown in figure (5.2.1), driven by a harmonic point force at x = x,. Rod 2
has a free end condition at x=x, (i.e. o=0 ). In figures (5.2.3)-(5.2.5), the

parameters for the two coupled rods are

lengthofrod 1 =5m
lengthof rod 2 =5m
(ES), =6 X107 N
(ES), =3 X 10" N
(0S), = 2.358 kg /m
(0S)y = 1.179 kg /m

Thus for the plots in figures (5.2.3)-(5.2.5) the ratios in equation (5.2.16) are

(PS) _ 2.358 _
(pS)y  1.179

and

(ES), _ 3xa0’
(ES);  6x 107

1
2

The first plot, figure (5.2.3), illustrates a case where the driving frequency of the
input is w= 11093.1 rad/sec. At this frequency, the potential energy density is
zero at the interface, x=5. Thus, b=0 and the energy density is all kinetic
energy density, a=1. In this case where a=1 and b=0 equation (5.2.16)

indicates that the jump condition at x = x, is
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PS
<e> | = (p A <e>, | =2<e>, | (5.2.17)

X=X, ( S)2 X=X, X=X,

At x =X, the energy density in rod 1 is twice that in rod 2. This behavior is
illustrated in figure (5.2.3). The second plot, figure (5.2.4), demonstrates another
case where the driving frequency is w= 12677.8 rad/sec. At this frequency, the
kinetic energy density is zero, a=0, at the interface and the total energy density
is all potential energy density, b=1. With a=0 and b=1 equation (5.2.16)

predicts that

= = 5.2.18
<e>, x_IXO &), < X_IXO 5 <e>2 x.lx,, (5.2.18)

In this case equation (5.2.18) shows that the energy density in rod 1 at x =x_ is

one half the total energy density in rod 2. Again the result in equation (5.2.18)

is illustrated in figure (5.2.4).

The last example, shown in figure (5.2.5), is a case where the driving
frequency is w= 11885.44 rad/sec and at the interface, half the energy density in

; . . . 1
rod 2 is kinetic energy density, a=-;-, and half is potential energy density, b=-2—.

The jump condition from equation (5.2.16) is

1 | (pS) (ES),
=— > = 1.26<e> 5.2.19
<1 x-lxo 2 {(Ps)z " (ES), <o x-lxo e x-lxo ( )

which is illustrated in figure (5.2.5).
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If the value of either a or b in equation (5.2.16) were known, the jump
condition between <e>; and <e>, at x =x, could be calculated. It would
follow that the problem shown in figure (5.2.1) would be completely defined and
the constants in equations (5.2.1) and (5.2.2) could be evaluated. Unfortunately,
calculating the percentage of potential and kinetic energy density at a coupling
location would require a complete classical analysis of the system in figure
(5.2.1). If a classical analysis is available, there is no need for the simplified

theory in chapter 3.

Equation (5.2.16) is still a useful relationship in that even without knowing

the exact values of a and b, it can be used to set bounds on the ratio of the local

> at the coupling location. The maximum ratio of <e>,

energy densities
e>2

to <e>; at x, is

<e> _ (pS) -(ES)2
{<e>z l}m 'm{(ps» ' (ES), } (5.2.20)

where the operator ma.x{

——-}gives the largest of the two values in

the brackets. The minimum ratio of <e>; to <e>, is

<e>y sy (ES),
{<e>z 'L “m‘“{(ps» ' (ES), } (5.2.21)

(kS)1  (ES), | | :
, =——— rgives the smallest of the two values in
(k8); * (ES),

where the operator min{

the brackets.
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For a given set of known power flux end conditions and at a specific
frequency, the ratios in equations (5.2.20) and (5.2.21) can be used to set upper
and lower bounds on the energy density levels and power flow in the coupled rod
system in figure (5.2.1). For example, consider the system in figure (5.2.1) with
the same rod parameters used for the test cases shown in figures (5.2.3)-(5.2.5).
For this example, it will be assumed that the power flow into rod 1 in the x
direction at x=x, is q;; =1 and the power flowing out of rod 2 in the x direction
at X=X, i3 Qg =0. A conservative coupling between rods 1 and 2 will be
assumed which allows equation (5.2.8) to be used as the third boundary

condition. Thus, three of the four necessary boundary conditions are

<> | =1
X=X;
<>, | =0
X=X»
<> | =<q>, |
X=X, X=X,

From equation (5.2.20) and the given system parameters, the maximum

value of the ratio between <e>; and <e>, at x, is

<e> S
St = oSk _, (5.2.22)
<e>y x=Xo oy (pS)Z
The minimum ratio from equation (5.2.21) is
<e> ES
Ll = (ESh _ 1 (5.2.23)
<e>y x=x,}, (ES) 2

Equations (5.2.22) and (5.2.23) can be used to provide the fourth boundary
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condition needed to solve for the unknown constants in equations (5.2.1) and

(5.2.2). For one solution, the fourth boundary condition, from equation (5.2.22),

is

<e>; | =2<e>, | (5.2.24)

X=X, X=X,

For the second solution, the fourth boundary conditions from equation (5.2.23)

is

<e> | =%<e>2 | (5.2.25)

X=X, X=X,

Figures (5.2.6) and (5.2.7) show the upper and lower bounds on the power
flow and energy density at a driving frequency of w= 11885.44 rad/sec as
calculated from the boundary conditions in equations (5.2.24) and (5.2.25). At
the same frequency, with the same power flux end conditions and a rigid,
conservative coupling of rods 1 and 2, any combina.tio_n of a and b in equation
(5.2.16) would result in a power flow solution and energy density levels which

would fall within the bounds illustrated in figures (5.2.6) and (5.2.7).

Figures (5.2.6) and (5.2.7) demonstrate that while equation (5.2.16) cannot
provide exact information about the power flow and energy density levels, it can
provide useful information about the dynamic response of the coupled rod
system. A similar analysis of the local energy densities of two rigidly coupled
beams would produce results analogous to those found in equations (5.2.11),

(5.2.12) and (5.2.16). However, the coupling junction of two dissimilar beams is
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a discontinuity. Thus, the nearfield terms in the beam displacement solution
cannot be neglected when local coupling methods are studied since the nearfield
terms can be of the same magnitude as the farfield terms at a discontinuity.
Modifications must be made to the farfield energy density solutions developed in
chapter 4 to include the nearfield effects at a coupling junction.
5.3 Coupled Rods

Figure (531) shows two rods vibrating longitudinally, coupled by a linear

spring of spring rate op;. From equation (3.2.36) the energy solutions for rods 1

and 2 are
¥1x —-{1x
<e>1 = Cle + Cze (5.3.1)
<e>, = Cse%x + C,,,e“d"zx (5.3.2)
where
w
o =n —
1 1 ¢
and
w
Yy =1y .

The coupling schemes to be introduced in this section will provide the necessary
boundary conditions to solve for the unknown constants in equations (5.3.1) and
(5.3.2) by calculating the power flow, q;,, between rods 1 and 2. By assuming a
conservative coupling, the power flowing out of rod 1 at x =x, is equal to the

power flowing into rod 2 at x =x,. The coupled structure in figure (5.3.1) can
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be split into two components, as shown in figure (5.3.2), where a power flux is
specified on both ends for each component. Knowing the power flux on both

ends of each rod will allow the constants in equations (5.3.1) and (5.3.2) to be

solved.
5.3.1 Coupling Rods Using Receptance

The receptance method is an exact solution by which the vibrational
response of a built up structure can be analyzed by studying the dynamic
characteristics of its individual component parts. Using receptances to calculate
the power transferred between coupled systems has been suggested by both
Pinnington and White [18] and Cuschieri {37} in their work with power flow
solutions. A good introduction to the receptance method is found in Soedel’s
book on the vibration of plates and shells [29]. As defined by Soedel, the
receptance of a structure is " the ratio of a steady state deflection response at a
certain point to a harmonic force or moment input at the same or different
point.”" Actually, in a power flow analysis it is more convenient to use mobility
functions (oy;) which are the ratio of a steady state velocity response at a certain

point to a harmonic force input at the same or different point

_ velocity response at location i
ij =

. - (5.3.3)
harmonic input at location j

Though mobility functions are used in this analysis the coupling technique is

still referred to as the receptance method.
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Consider the coupled rod system in figure (5.3.3). The receptance method
allows the coupled system in figure (5.3.3) to be analyzed by studying the
vibrational characteristics of the two components shown in figure (5.3.4). In this
analysis ¢4; will represent a mobility function of rod 1, ﬂij will represent a

mobility function of rod 2. The mobility of rod 1 in figure (5.3.4) is

al

Vet vy,
o = - =
1) | Fajejwt Fa.j

(5.3.4)

where:

V¢! is the velocity of rod 1 at point ai.

Fajej“’t is the point force acting on rod 1 at point aj.
For example, o, is the ratio of the velocity of rod 1 at x=al due to a harmonic
point force acting at x=a2. For a given set of boundary conditions the mobility
of rod 1 is easily calculated using a classical solution. In figure (5.3.4) rod 1 is
excited by two forces. The input force F, et acts on rod 1 at x=al while a
reaction force, Fazej“’t due to the coupling with tﬁe spring-rod system 2, acts on
rod 1 at x=a2. Using the definition of mobilities, equation (5.3.4), the velocities
at x=al and x=a2 are

Vet = (ayFyy + ap,F p)e" (5.3.5)

and

Va2ejwt = (a2lFal + C‘/22F'¢1.2)ej“"t (5'3'6)
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For the spring-rod system 2 in figure (5.3.4) Soedel [29] has shown that the
displacement at x,, xboej‘”t of the spring due to a harmonic force input Fboejwt is

1

(1 + 01,1 8p0)Fpoe™* (5.3.7)
911

Xpoe " =

where

Baq is the receptance of rod 2 at the spring attachment point.

Converting equation (5.3.7) to use a mobility function instead of receptance

function gives

1
L1

Vipoe* = (3w + 0,1 Ba9)Fpoe™* (5.3.8)

where
By is the mobility of rod 2 at the spring attachment point.

From equation (5.3.8) the mobility of the spring-rod system in figure (5.3.4) is

Vboejwt 1 .
T o (Jw + o1.104,) (5.3.9)
b0 1

1600

Using equation (5.3.9), the velocity of the spring at b0 due to a harmonic input

is

Vboeth = ,BooFboeth (5.3.10)

In figure (5.3.4) where rod 1 is attached to the spring, there is a continuity of

velocity
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V20" = Vi gl (5.3.11)
and a balance of forces
F 6"t = —F el (5.3.12)

Using the continuity of velocity, equation (5.3.11), equations (5.3.6) and (5.3.10)

can be equated
(091Fay + poF 0}t = BpoF e (5.3.13)
Substituting the force balance in equation (5.3.12) into equation (5.3.13) and

solving for the reaction force in the spring gives

F ejwt =
b0 Q99 + Boo

—O‘“—]Falej“’t (5.3.14)

Equation (5.3.14) shows the reaction force between rod 1 and the spring-rod
system 2 due to a harmonic force input to rod 1 at point al. The power input

to rod 1 from the force F,;e™" is
1 x 1 *
Gin = ERG{FnVax = ;Re{Fal[allFal + onF ] } (5.3.15)

Substituting equations (5.3.12) and (5.3.14) into equation (5.3.15), q;, can be

written as

1 2 Qg Qg
Gp = = |Fay [*Rejay———— 5.3.16)
in 2 al 11 oy +[300 (

The power flowing between system 1 and 2 in figure (5.3.4) is

CONE
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1 * 1 *
Q2 = ;Re{FbOVbO }= Py |Fyo [*Re{Boo } (5.3.17)

From equation (5.3.14), the magnitude of |Fy,|? is

|F,, | (5.3.18)

Substituting equation (5.3.18) into the expression for q;; the relationship

between the power input to rod 1 and the power transferred between systems 1

and 2 is
2
o Re(f,
Q2 = = (Soo) Qg (5.3.19)
IO‘22 + Boo Re la Qg Qg
e et t e’} U
H Qg + Boo

In the coupled rod system shown in figure (5.3.1) the power flowing into rod
1, qjp, and the power flowing out of rod 2, q,,, are assumed to be known and
thus represent two boundary conditions. A conservative coupling provides the
third boundary condition. Equation (5.3.19) is the fourth boundary condition
needed to fully specify the coupled rod problem and allow the unknown
constants in equations (5.3.1) and (5.3.2) to be solved.
5.3.2 Introduction to Statistical Energy Analysis

Another technique which can be used to couple the energy density solutions
for rods and beams is the wave transmission approach. In most applications,
the wave transmission approach is used to couple subsystems in a SEA model.
Therefore, to understand how the wave transmission approach can be used to

couple the simplified energy density solutions, it is necessary to understand how
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it is used in Statistical Energy Analysis.

As discussed in chapter 2, Statistical Energy Analysis (SEA) is an analytical
technique which is used to model the flow of power and distribution of
vibrational energy in acoustical, structural and acoustical/structural systems.
One of the original investigators of SEA, Lyon [38], wrote that "SEA is based
on the concept that constructed systems form a statistical population, and the
problem of design is to estimate statistics of the dynamical response of that
population.” In other words, the goal of Statistical Energy Analysis is to predict
the average values of a system response when the excitation is a randomly

distributed, broadband frequency source.

A general SEA model is shown in figure (5.3.5). The model in figure (5.3.5)
consists of two coupled subsystems each with its own power input, g;, ; and g, 2.
In SEA, the power input is generally assumed to be a broadband frequency
source which is spatially distributed in a random manner over the subsystem.
Each subsystem is assumed to dissipate a certain amount of power,
T diss a0d Ty giss- There is also power flowing between the two systems. qp
indicates the net power flowing from system 1 to system 2 while gy, is the net

power flow from system 2 to system 1.

The power inputs in 2 SEA model are assumed to be known values. The
input power to a system is either measured experimentally or predicted using an
analytical technique. The power dissipated in a subsystem is modeled as being

proportional to the total energy in the subsystem
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i diss = WNaiBi tot (5.3.20)

where;
T diss 18 the power dissipated in the ith subsystem.
w is the center frequency of the broadband input.
‘Ngi is the loss factor associated with the ith subsystem.

E; tot is the total energy in the ith subsystem.

Note the similarities between how power dissipation is modeled in SEA and how
power is dissipated in the simplified models of equations (3.2.35) and (4.2.65).
The major difference between the SEA model of power dissipation and that of
the simplified models is that power dissipation in SEA is a global parameter
based on the total energy in a subsystem. The simplified models for a rod and
beam model power dissipation in a local sense. The local power dissipated in

the simplified models is proportional to the local values of energy density.

One of the basic assumptions of SEA is that for randomly excited coupled

subsystems, the power flow between subsystems i and j is proportional to the

t E',tot
and —

i,to

difference in the average modal energies, and flows from the

subsystem of higher modal energy to the subsystem of lower modal energy.
Here N, is the approximate number of modes excited in the frequency band.

The power flow between subsystems in SEA is written as

Ei,tot _ Ej,tot (5 3 21)
04 n; e

q; = Wﬂijni{
J
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where:
q;; is the power flow from subsystem i to j.
m;; is the coupling loss factor.
n; is the modal density of the ith subsystem at w.
The modal density of a continuous structure is the approximate number of

natural frequencies, per hertz or per radians/second, found in a given frequency

bandwidth.

Equation (5.3.21) is based on the following assumptions:
1) Each mode of vibration is equally excited, i.e. equally energetic.
2) Coupling is mode to mode.
3) Coupling is based on global energy levels, not local energy densities.

4) Each mode is assumed to have a natural frequency which is uniformly

probable over a frequency bandwidth.

Performing a control volume analysis of subsystems 1 and 2 in figure (5.3.5)

gives the power balances

Q1,in = T diss + a2 (5'3'22)

and

Q2 in = T2 diss +an (5'3‘23)

It can also be shown through a power balance that
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Q12 = —qg (5.3.24)
thus

92/in = Ty diss — 12 (5.3.25)

Substituting the power dissipation expression, equation (5.3.20), and the power
flow term, equation (5.3.21), into the energy balances in equations (5.3.22) and
(5.3.25) results in a set of simultaneous equations which model the flow of power

in the system depicted in figure (5.3.5)

n,
Wihg1 + Wy —Wh
) g ’{El,tot} {‘h,in}
n, Ez,t.ot - 92, in
—Whg Whge + W’712n_
2

(5.3.26)
The modal densities n; in equation (5.3.26) can be calculated analytically for
many structural members. Lyon has calculated and tabulated the modal

densities for a number of common structures [7].

One of the most important parameters in SEA, and one of the most difficult
to evaluate, is the coupling loss factor M- Due to their importance, a large
portion of the work done in SEA has been devoted to calculating the coupling
loss factors for various systems. Many times however, the systems being studied
are too complicated to easily calculate analytical loss factors. When analytical
solutions are not available it is sometimes necessary to experimentally measure
the values of 7m;j- Various investigations of coupling loss factors were reviewed in

chapter 2.
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When all the terms in equation (5.3.26) are known, the total energies in
subsystems 1 and 2 can be calculated by solving the matrix equation (5.3.26).
Using conversion factors in Lyon’s book [7], the total energies in subsystems 1
and 2 can then be used to calculate more useful dynamic responses such as
average values of displacement, velocity, stress etc. The total energies can also
be substituted into equation (5.3.21) to calculate the power flow between

subsystem 1 and 2.

In this brief introduction, some of the important aspects of SEA have been
discussed. In the following sections, two examples of coupled subsystems will be
examined for which analytical coupling loss factors have been developed. These
coupled subsystems will illustrate how SEA coupling parameters can be applied
to the power flow solutions in chapters 3 and 4. It is important when using the
coupling parameters from a SEA model that the user remain aware of the
assumptions made in deriving the SEA coupling loss factors discussed here and
in chapter 2. These assumptions include limiting the analysis to broadband
frequency inputs and negiecting the resonant behavior of finite structures.

5.3.3 Coupling Rods Using a Wave Transmission Approach

Consider again the coupled rod system in figure (5.3.2). The general SEA
mode] in figure (5.3.5) will be used to analyze the coupled rods. Rod 1 in figure
(5.3.2) will be represented by subsystem 1 in the SEA model while rod 2 will be
represented by subsystem 2. Note that the spring in figure (5.3.2) is not

included in either subsystem 1 or 2 in the SEA model. The spring connecting
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the rods will come into the Statistical Energy Analysis model through the

coupling loss factor, 7;,.

The matrix equation (5.3.26) now models the energy distribution in the
coupled rod system in figure (5.3.2). The energy value E ,; in equation (5.3.26)
is the total energy in rod 1 and E, . is the total energy in rod 2. Since in figure
(5.3.2) there is no external source acting on rod 2, the power input Q2 in
equation (5.3.26) is zero. Due to the similarities in the SEA power dissipation
expression, as shown in equation (5.3.20), and the simplified power dissipation
expression for a rod, shown in equation (3.2.35), the power dissipation factors,
N41 and 744, in equation (5.3.26) will be approximated as the hysteretic damping
coefficients used for rods 1 and 2. The modal densities for longitudinally

vibrating rods, n, and n,, are (7]

n = — (5.3.27)
where:
n; is the modal density in rod i.
L; is the length of rod i.

¢; is the phase speed in rod i.

The only remaining unknown in equation (5.3.26) is the coupling loss factor
Mz- In a study of coupling loss factors, Remington and Manning [17]
developed an expression for 7;, which controls the flow of vibrational power in a

'SEA model of two coupled rods. Remington and Manning based their coupling
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equation on the "wave transmission apprbach" which, as discussed in chapter 2,
allows the coupling of continuous structures by approximating the input
impedance of finite structures by that of infinite structures. The infinite
impedance of rod 1 is [8] |

Z1oo = (S)ey (5.3.28)

while the infinite impedance of rod 2 is
Zyoo = (pS)ye, (5.3.29)
where
(p8); is the density per unit length of rod i.

Remington and Manning also showed the impedance of a spring attached to the

infinite rod 2 is

Zoseo = Lgoy ] ——2—— 1 (5.3.30)

Using infinite impedances, Remington and Manning calculated the coupling
loss factors for the system in figure (5.3.4) to be

2

1 |1
Re{f
PShLy Iaoo + P00 ec} L1 (0S), Qg 2

4 (0S)y |0 + Bsco

o

“ie = (

(5.3.31)
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where

1
Qo = ——
1oco
1
ﬁoo - Z2oo
1
Bsoo =
. ° Z2Soo

The coupling loss factor in equation (5.3.31) was found, by Remington and
Manning, to compare well with an exact solution when the exact solution was

averaged over frequency.

All the terms in the square matrix of equation (5.3.26) can now be calculated
and the total energies E,.;and E,;; can be solved. The values of
E; tot and Ey 14 may then be substituted into equation (5.3.21) and the power
flow between rods 1 and 2 evaluated.

5.3.4 Comparing Coupling Solutions for a Rod

To compare the receptance method and the wave transmission approach, the
power flow between the two rods in figure (5.3.1) has been calculated using the
coupling solutions presented in sections 5.3.1 and 5.3.3. Figure (5.3.6) shows the
power flow q;5, calculated from using the receptance method and wave
transmission approach, equations (5.3.19) and (5.3.31), as a function of
frequency with a unit power input, q;=1. For the example in figure (5.3.6) the

system parameters are
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length of rod 1 =5m
length of rod 2 =5m
(ES); = (ES), =6 X 10" N
(p8); = (8), = 2.358 i(g/m
011 =3 X 10" N/m
M =1, =001
Figure (5.3.6) illustrates the expected inability of the wave transmission coupling
solution to model the resonant behavior of the coupled rod system. The wave
transmission approach could not therefore be used to accurately predict the
power flow for a single frequency input. However the wave model appears to be
a good approximate frequency average of the exact solution and could be used
for a broadband frequency source. The receptance solution is an exact solution
and is able to model the resonant behavior of the coupled rod system and
therefore can be ﬁsed for either a single frequency or broadband power input.
5.4 Coupled Beams
Figure (5.4.1) shows two simply supported beams vibrating transversely,
coupled by a torsional spring of spring rate 0. The power input to beam 1
from the transverse harmonic point source, g;,, is assumed to be known. From

equation (4.2.67) the farfield energy solutions for beams 1 and 2 are

<e>yp=Cpe’™ + Cpe ™ (5.4.1)

CeSyq = Cge®™ + Cpe ™ (5.4.2)
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where
h w
¢1 - 2Cb1
and
Ny W
(152 =
2Cb2

As with the coupled rod examples in section 5.3 the coupling schemes to be
introduced Ain this section will pllovide the necessary boundary conditions to
solve for the unknown constants in equations (5.4.1) and (5.4.2) by calculating
the power flow, q;5, between beams 1 and 2 in figure (5.4.1). A conservative
coupling between beams 1 and 2 is assumed.
5.4.1 Coupling Beams Using Receptance

Power flow between the beams in figure (5.4.1) is transmitted purely by the
moment and angular velocity at the coupling location. The simple supports of
the two beams prevent any transverse velocity at the ends. Thus the power flow
associated with the shear force, as defined in equation (4.2.21), is zero at the
supports. Since the two beams in figure (5.4.1) are coupled only by a moment,
the procedure of calculating the power flow between beams 1 and 2 with
receptances will be very similar to the process used for the coupled rods in

section 5.3.1.

Using the receptance method, the coupled system in figure (5.4.1) can be split
into its two components as shown in figure (5.4.2). The mobility of beam 1 in

figure (5.4.2) is
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Vet v
oy = —2— - === (5.4.3)
Fa.jejw Faj

where:

Vaie-i“’t is the linear or angular velocity of beam 1 at point ai.

Fajej“’t is the point force or moment acting on beam 1 at point aj.
Note in equation (5.4.3) that V,;e™* can represent either a linear or angular
velocity while Faje'i“’t can be either a transverse force or moment. The mobility
for beam 1 is calculated using a classical beam displacement solution. In figure
(5.4.2) beam 1 is acted upon by two forces. The transverse point force F, e/t
acts on beam 1 at x=al while a reaction moment, F,,e/*%, due to the coupling
with the spring-beam system 2, acts on beam 1 at x=a2. Using the mobility
functions as defined in equation (5.3.3) the transverse velocity at x=al is

Vet = (o Fy + agpF ) (5.4.4)

and the angular velocity at x=a2 is

Vo2&t = (g Fyy + 0noF,p)e" (5.4.5)

In a procedure analogous to that used to calculate the mobility of the

spring-rod system 2, the mobility of the spring-beam system 2 in figure (5.4.2) is

Vi 1

Boo (jw + o10,,) (5.4.8)

where:

Vboej‘”t is the angular velocity of the torsional spring at point bO0.

Fyoe’™“" is the harmonic moment applied the torsional spring at point bO.
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Baq is the mobility of beam 2 at the spring attachment point.

From equation (5.4.8), the angular velocity of the torsional spring at b0 is
Vot = ByoF o6 (5.4.7)
In figure (5.4.2), where beam 1 is attached to the spring, there is a continuity
of angular velocity |
Vg€t = Vel (5.4.8)
and a balance of moments
F e = —F et (5.4.9)

From this point the derivation is exactly the same as the one used in section
5.3.1. Using the continuity of angular velocity, equation (5.4.8), and the moment

balance in equation (5.4.9), the power flow between beams 1 and 2 in figure

(5.4.1) is
2
o Re(5,
Q12 = 2 ) Qin (5.4.10)
|a22 + Boo Qg Qg
Re|on 09 + Boo

In the coupled beam system shown in figure (5.4.1) the power flowing into beam
1, qip, and the power flowing out of beam 2, q,,;, are assumed to be known and
thus represent two boundary conditions. A conservative coupling provides the
third boundary condition. Equation (5.4.10) is the fourth boundary condition
needed to fully specify the coupled beam problem and allow the unknown

constants in equations (5.4.1) and (5.4.2) to be solved.
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5.4.2 Coupling Beams Using a Wave Transmission Approach

The power flow between beam 1 and beam 2 in figure (5.4.1) can also be
calculated using a wave transmission approach. The general SEA diagram in
figure (5.3.5) will be used to model the energy distribution in the coupled beam
system. Beam 1 in figure (5.4.2) will be represented by subsystem 1 in the SEA

model and beam 2 will be represented by subsystem 2.

The matrix equation (5.3.25) now models the energy in the coupled beam
system in figure (5.4.1). The energy values E, ,,; and E, ., in equation (5.3.25)
are the total energies in beam 1 and 2. Since beam 2 has no external power
source, Qg;; is zero. Due to the similarities in the SEA power dissipation
expression, as shown in equation (5.3.20), and the simplified power dissipation
expression for a beam, shown in equation (4.2.65), the power dissipation factors,
741 and 74, in equation (5.3.26) will be approximated as the hysteretic damping

coefficients used for beams 1 and 2. The modal density for a beam is (7]

L.

1

n;

= 5.4.11
27!'Cbi ( )
where:
n; is the modal density in beam i.

L; is the length of beam i.

Cp; is the wave speed in beam 1i.

In a review of coupling loss factors, Crandall and Lotz [20] discussed some
work done by Scharton and Lyon {15] on developing a coupling loss factor 7;,

for the system in figure (5.4.1) using a wave transmission approach. Crandall



and Lotz found that Scharton’s and Lyon’s work leads to a coupling loss factor

of

27raT2n2 '
{(PS)1L12(EI)1}Vz{(t"s)lez(EI)z}y2

Whe = (5.4.12)

Using the result in equation (5.4.12), the matrix equation (5.3.25) can be solved
and the energy levels in beam 1 and beam 2 calculated. The energies
E} tot 20nd Eg 1y can then be substituted into equation (5.3.20) and the power
flow between beam 1 and beam 2 in figure (5.4.1) can be evaluated and the
energy densities in beams 1 and 2 can be found.
5.4.3 Con_xpa.ring Coupling Solutions for a Beam
The plot in figure (5.4.3) shows the power flow, q;,, as a function of
frequency for the coupled beam system in figure (5.4.1) using the coupling
solutions in sections 5.4.1 and 5.4.2. The system parameters used in figure
(5.4.3) are
length of beam 1 =0.5 m
length of beam 2 =0.5m
(EI), = (EI), = 500 Nm?
(kS)y = (pS), = 2.358 kg/m
op; =1 X 10° (Nm) /rad
m =Ny = 0.001
Figure (5.4.3) shows the inability of the wave transmission coupling solution in

section 5.4.2 to model the resonant behavior of the connected beam system. For
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a broadband frequency excitation the wave transmission coupling in figure
(5.4.3) might provide an acceptable approximation for power flow. The exact
solution from the receptance method can be used for single frequency or
broadband inputs. |
5.5 Summary

In this chapter the coupling of the energy solutions for the rods and beams
developed i_n chapters 3 and 4, was discussed. It was found that a discontinuous
jump in energy density occurs at a coupling location. This jump condition was
found to be related to the amounts of potential and kinetic energy density at the
coupling location. During the development of the simplified theory in chapters 3
and 4 it was hoped that the energy equations would lead to an efficient and
accurate method of coupling solutions for both single frequency and broadband
inputs. The key to the development of such a method is a relationship between
the local energy densities at the junction. quever, a simple relationship
between the local energy density has not yet been developed. It is recommended
that effort continue toward this objective using the energy relationships
developed in section 5.2. Nevertheless, it was shown in section 5.2 that even
though equation (5.2.16) cannot provide exact information about the power flow
and energy density in a coupled rod system, it can provide upper and lower
bounds of both power flow and energy density for a given set of power flux
boundary conditions. This information could be useful in designing complicated

built-up structures.
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The coupling methods presented in sections 5.3 and 5.4 are approximations
similar to common power flow analysis methods. The methods provide the
needed boundary conditions to couple the energy solutions by estimating the
power flow between coupled elements. The first coupling scheme discussed in
sections 5.3 and 5.4 was the receptance method. The receptance method is a
powerful tool which allows complex structures to be analyzed by studying the
resonant responses of its component parts. It is an exact solution and thus can
be used to accurately couple structures driven by both single frequency and
broadband inputs. It is not clear yet how a systematic procedure of combining
receptances for a general structure can be developed. Each built up structure
must be individually analyzed. For a complex structure, deriving the receptance
equations is currently a prohibitively difficult process but it is possible that
numerical methods might be used to compute the required information
accurately and efficiently. Once a system has been analyzed by the receptance
method the simplified theory can be used to show the energy distribution and

power flow throughout built-up structures.

The second method discussed for coupling structures was based on the wave
transmission approach used in Statistical Energy Analysis. The wave
transmission approach couples structures by approximating the input impedance
of a finite structure by the input impedance of an infinite structure. The input
impedance of an infinite structure has been shown to be a good frequency

average of impedance. However, since impedance varies significantly from its
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average value at a specific frequency, the wave transmission approach cannot
accurately couple structures excited by a single frequency excitation, but it can

be used to couple structures excited by a broadband frequency source.
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Figure 5.2.1. Rigidly Coupled, Longitudinally Vibrating Rods with Known
Power Flux Boundary Conditions, g;, and q,y, at x; and x,
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Figure 5.2.2. 1-D Heat Conduction Through Two Dissimilar Fins with a
Convective Heat Loss, q.,,, and Known Thermal Power Flux
Boundary Conditions, qj;; and qqy; ¢ at x; and x,
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Figure 5.2.3. Total, Potential and Kinetic Energy Densities in Two Rigidly
Coupled, Longitudinally Vibrating Rods, as Shown in Figure

(5.2.1), with Zero Potential Energy Density at the Coupling
Interface, x,
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Figure 5.2.4. Total, Potential and Kinetic Energy Densities in Two Rigidly
Coupled, Longitudinally Vibrating Rods, as Shown in Figure

(5.2.1), with Zero Kinetic Energy Density at the Coupling
Interface, x,
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Figure 5.2.5. Total, Potential and Kineti¢ Energy Densities in Two Rigidly
Coupled, Longitudinally Vibrating Rods, as Shown in Figure

(5.2.1), with Equal Amounts of Potential and Kinetic Energy
Density in Rod 2 at the Coupling Interface, x,
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Figure 5.2.8. Upper and Lower Bounds on the Power Flow Through Two
Rigidly Coupled, Longitudinally Vibrating Rods, as Shown in
Figure (5.2.1), with q;=1 and q,,;=0
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Figure 5.2.7. Upper and Lower Bounds on the Energy Density in Two Rigidly

Coupled, Longitudinally Vibrating Rods, as Shown in Figure
(5.2.1), with q;;=1 and q_,;=0
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Figure 5.3.1. Spring Coupled, Longitudinally Vibrating Rods with Known
Power Flux Boundary Conditions, q;, and qq,, at x; and x,
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Figure 5.3.2. Spring Coupled, Longitudinally Vibrating Rods from Figure
(5.3.1) Split into Two Components
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Figure 5.3.3. Spring Coupled, Longitudinally Vibrating Rods Excited by a
Harmonic Point Force
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Figure 5.3.4. Spring Coupled, Longitudinally Vibrating Rods from Figure
(5.3.3) Split into Two Components for Receptance Analysis
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Figure 5.3.5. General SEA Model of Two Coupled Dynamic Systems
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Figure 5.3.6. Comparison of the Calculated Power Flow Between the Coupled
Rods Shown in Figure (5.3.3) Using Solutions from the Receptance
Method, as shown in Equation (5.3.19), and the Wave
Transmission Approach, as Shown in Equation (5.3.31), as a
Function of Frequency
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Figure 5.4.1. Spring Coupled, Transversely Vibrating Beams Excited by a
Harmonic Point Force
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Figure 5.4.2. Spring Coupled, Transversely Vibrating Beams from Figure
(5.4.1) Split into Two Components for a Receptance Analysis
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Figure 5.4.3. Comparison of the Calculated Power Flow Between the Coupled
Beams Shown in Figure (5.4.1) Using Solutions from the
Receptance Method, as Shown in Equation (5.4.10), and the Wave
Transmission Approach, as Shown in Equation (5.4.12), as a
Function of Frequency
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CHAPTER 6 - POWER FLOW EXAMPLES

6.1 Introduction

In this chapter, the simplified solutions for power flow and energy density
developed in chapters 3 and 4 will be compared to exact solutions. This
comparison-will illustrate some of ;che differences in how the simplified and exact
theories model the power flow and energy density in coupled rods and beams. It
will also serve as an indication on the quality of the assumptions made in

developing the simplified theories.

For all the examples in this chapter, the coupled systems will be excited by a
harmonic point force as discussed in chapters 3 and 4. The magnitude of the
excitation force | F| will be adjusted for each example so that the total power
input to the systems is unity. The receptance method will be used to couple the
simplified energy density solutions.

8.2 Coupled Rods

Figure (6.2.1) shows two rods coupled by a linear spring of spring rate oL

Rod 1 is excited by a harmonic point source at the end x;=0. Rod 2 has a free

end condition at x,=10 m. The coupled rod parameters for this example are
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length of rod 1 =5 m
length of rod 2 =5 m
(ES), = (ES); =6 X 10’ N
E, =E, =200 X 10° N/m?
(pS); = (6S); = 2.358 kg /m
py = py = 7860 kg /m®
oy, =3 X 10" N/m

The exact power flow solution for a rod used in this section is shown in
equation (3.2.19). The exact energy density solution is shown in equation
(3.2.24). The simplified energy density and power flow solutions are shown in

equations (3.2.37) and (3.2.38) respectively.

Figures (6.2.2) and (6.2.3) show the power flow and energy density in the
coupled rod system, as shown in figure (6.2.1), with a excitation frequency of
w=6338.9 rad/sec. At this frequency the wavelength of vibration is equal to the
length of each rod, A =5 m. Note in figure (6.2.2) how the exact power flow
solution oscillates about the simplified solution. Identical energy density levels
are predicted from both the simplified and exact theories, as shown in figure
(6.2.3). The power flow and energy density levels for w=12677.79 rad/sec are

shown in figures (6.2.4) and (6.2.5). At this excitation frequency, the wavelength
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of vibration is one half the length of the rods, A=2.5 m. Again the simplified
and exact theories predict identical energy density levels as shown in figure
(6.2.5). Figures (6.2.6) and (6.2.7) plot the power flow and energy density with
w=25355.58 rad /sec, A=1.25 m while figures (6.2.8) and (6.2.9) plot the power
flow and energy density with w=38033.37 rad/sec, A=0.8333 m. Note that in all
the cases shown, as the excitation frequency gets higher, the simplified power
flow solutiqn gets closer to the exact solution. This indicates that the harmonic
terms in the exact power flow expression which are neglected in the simplified

solution become less important at higher frequencies.

Although the energy demnsity levels predicted by the exact and simplified
solutions in the four previous examples were identical, differences can occur.
Figure (6.2.10) and (6.2.11) illustrate the power flow and energy density for a
excitation frequency of w=7131.26 rad/sec, A=4.444 m. Note in figure (6.2.10)
that the simplified power solution does not pass directly through the center of
the exact solution. Subsequently, the energy density predictions of the two
solutions are not the same, though the error is relatively small. The explanation
for the difference in the energy density levels can be found in section 3.3 which

discussed the damping model used in the rod analysis.

It was pointed out in section 3.3 that the average power dissipated by the
exact and simplified solutions were identical only when integrated over an
integer number of wavelengths. Equations (3.3.15) and (3.3.17) demonstrated

this fact. In a given rod, the total power dissipated by the simplified solution,

-
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Tsmps €20 be calculated by integrating <7>4; = nw<e> over the length (L) of

the rod

Toimp = MW [ <e>dx = nw! [<T>dx + [ <V>dx} (6.2.1)
L L L

The total power dissipated by the exact solution, Te,., can be calculated by

integrating <mgy,.t>4iss = 2NwW<T> over the length of the rod

Mexact = 2nw[ <T>dx (6.2.2)
L

Subtracting equation (6.2.1) from equation (6.2.2), a relationship between the

total power dissipated by the exact and simplified solutions is shown to be

Texact — Tsimp = nw{f<T>dx - f<V>dX} (6.2.3)
L L

When there are an integer number of wavelengths in the rod, the total potential
and kinetic energies are equal. When the rod length is not an integer number of
wavelengths, the total potential and kinetic energy in the rod are not equal.
Equation (6.2.3) clearly shows that when there are an integer number of
wavelengths in the rod, the total power dissipated by the exact and simplified
solutions are exactly the same. When the rod length is not an integer number of
wavelengths, equation (6.2.3) gives the difference in the total power dissipated

by the exact and simplified solutions.

In the four cases shown in figures (6.2.2)-(6.2.9), the excitation frequencies

were such that were an integer number of wavelengths of vibration per rod
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length. Therefore the power dissipated by the exact and simplified solutions
over each rod was the same and the energy density predictions were identical.
However, with w=7131.26 rad/sec there are not an integer number of
wavelengths vibration per rod length. Therefore the exact and simplified power
dissipation over a rod length is not identical, which accounts for the

discrepancies in the energy density level predictions in figure (6.2.11).

The excitation frequencies used in the power flow and energy density
examples, shown in figures (6.2.2)-(6.2.9), are what would be considered the low
to mid-frequency range for the coupled rod system shown in figure (6.2.1). At
the highest excitation frequency of w=38033.37 rad /sec, the simplified solution is
in almost perfect agreement with the exact solution and will improve as the
frequency increases. However, when w=38933.37 rad/sec, the wavelength of
vibration is one sixth of the rod length and is in the frequency range where the
finite element method would begin to require a large number of elements to
maintain its accuracy. These examples show that the simplified solution for a
rod can be used to make accurate predictions at frequencies where the FEM
starts to be inefficient and thus bridge the gap between FEM and SEA.

8.3 Coupled Beams

Figure (6.3.1) illustrates two simply supported beams, coupled by a torsional

spring of spring rate op. Beam 1 is excited by a transverse, harmonic point

force at x=0.25 m. The coupled beam parameters for this example are
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length of beam 1 = 0.5 m
length of beam 2 =0.5m
(EI); = (EI); = 500 Nm?®
E, =E, = 200 X 10° N/m?
()1 = (¢S), = 2.358 kg /m
py = pp = 7860 kg/m®
op = 300 (Nm)/rad

N, = 1, = 0.001

The exact power flow solution for a beam is the sum of the shear <q>; and
moment <q>; power flow components as shown in equations (4.2.23) and
(4.2.24). The exact energy density solution is the sum of the potential and
kinetic energy densities as shown in equations {4.2.27) and (4.2.28). The
simplified energy density and power flow solutions for a beam, shown in
equations (4.2.67) and (4.2.68), represent spatial averaged, farfield
approximations of the exact solutions. The simplified solution is based on the
assumption that the total displacement solution for a beam is well approximated
by the farfield terms as shown in equation (4.2.38). In section 4.2.2 it was shown
that approximating the displacement solution in a beam by the farfield terms
becomes a better assumption as the frequency increases. It is expected therefore,
that the simplified solution for the energy density and power flow in a beam will

become a better average approximation as the excitation frequency increases.
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Figures (6.3.2) and (6.3.3) show the power flow and energ'y density in the
coupled beam system in figure (6.3.1) with a excitation frequency of 2300
rad/sec. At this frequency the wavelength of vibration is equal to the length of
each beam, A =0.5 m. As discussed in section 4.2.2, since the wavelength of
vibration is equal to the length of the beams, the total displacement solution for
a beam is not well approximated by the farfield terms. Thus, as illustrated in
figure (6.3.3) the simplified energy density solution is not a good average
approximation of the exact solution. The power flow and energy density levels
with w=9197.8 rad/sec are shown in figures (6.3.4) and (6.3.5). At this
frequency the wavelength of vibration is one half the length of the two beams,
A=0.25 m. At this higher frequency, the simplified energy density prediction in
figure (6.3.5) shows improvement over the prediction at w=2300 rad/sec.
Figures (6.3.6) and (6.3.7) plot the power and energy density for w=20695.5
rad/sec, A=0.167 m, while figures (6.3.8) and (6.3.9) plot the power flow and
energy density for w=36792.0 rad/sec, A=0.125 m. The power flow and energy
density in the final coupled beam example are shown in figures (6.3.10) and
(6.3.11). In these last two figures the frequency is w=82781.88 rad/sec, which
gives a wavelength of vibration of A=0.08333 m. From figures (6.3.2)-(6.3.11) it
is clear that the simplified theory for beams becomes more accurate as the
excitation frequency increases. At w=82781.88 rad/sec, the simplified energy
density, as shown in figure (6.3.11), is a good average approximation of the exact
energy density solution. The results in figures (6.3.2)-(6.3.11) are typical for the

power flow and energy density predictions in beams.
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In the coupled beam system in figure (6.3.1), there are 4 discontinuities. The
simple supports at x; and x, and the coupling at x, are all discontinuities. The
fourth discontinuity in figure (6.3.1) is at the forcing location, x=0.25 m. In
general, each discontinuity will have a nearfield effect associated with it. In
section 4.2.2, it was shown that for a free-free beam the farfield displacement
approximation in a beam becomes a good assumption when the distance between
discontinuities in the beam is of the order of four or more wavelengths of

vibration. The results in figures (6.3.2)-(6.3.11) support this conclusion.

The simplified energy density solutions for a beam can be applied to a beam
with any type of boundary condition. Figure (6.3.12) illustrates two beams
coupled by a torsional spring of spring rate op. Beam 1 has a clamped
boundary condition at x,=0 and is simply supported at x,=0.5 m. Beam 2 is
simply supported at x,=0.5 m and is clamped at x,=1 m. The beam parameters
for this example are the same as those used for the example in figure (6.3.1)

except that the coupling spring rate has been increased to

or=1 X 10° (Nm)/rad.

Figures (6.3.13)-(6.3.22) show the power flow and energy denmsity in the
coupled beam system shown in figure (6.3.12) at the same excitation frequencies
which were used for the coupled beam system in figure (6.3.1). These
frequencies are w=2300 rad/sec, w=9187.8 rad/sec, w=20695.5 rad /sec,
and 82871.88 rad/sec. The power flow and energy density predictions in figures

(6.3.13)-(6.3.22) further support the conclusion that the simplified solution for a
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beam becomes a better approximation as the excitation frequency increases.

The excitation frequencies used in the power flow and energy density
examples, shown in figures (6.3.2)-(6.3.11) and figures (6.3.13)-(6.3.22), are what
would be considered the low to mid-frequency range for the coupled beam
systems shown in figures (6.3.1) and (6.3.12). At the highest excitation
frequency of w=82781.88 rad/sec, the simplified solution does an excellent job in
predicting the average values of energy density and power flow and will improve
as the frequency increases. However, when w=82781.88 rad/sec, the wavelength
of vibration is one sixth of the beam length and is in the region where the finite
element method would begin to require a large number of elements to maintain
its accuracy. These examples show that the simplified solution for the beam can
be used to make accurate predictions of the average energy density levels at
frequencies where the FEM starts to be inefficient and thus bridge the gap
between FEM and SEA.

8.4 Summary

For the coupled rod system in section 6.2, it was found that the simplified
solutions for energy density and power flow compared well with the exact
solutions. As the excitation frequency increased, the power flow solution was
better approximated by the simplified solution. It was also shown that the
differences in energy density predictions for a rod were found to be a result of
how the exact and simplified solutions modeled the power dissipation in a rod.

Equation (6.2.3) shows that the difference in the total power dissipated by the
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simplified and exact solutions in a rod is proportional to the difference in the

total kinetic and potential energy in the rod.

The predictions of the power flow and energy density levels in the coupled
beam system in figure (6.3.1) were discussed in section 6.3. As expected from
the discussions in chapter 4, the simplified energy density and power flow
solutions became better average approximations as the excitation frequency

increased.

In both the coupled rod and coupled beam examples, the excitation
frequencies were in the low to mid-frequency ranges. From the accuracy of the
simplified solutions at the higher frequencies, it was concluded that the
simplified energy density solutions for both the rod and beam can be used to
bridge the mid-frequency gap where the FEM becomes too expensive and SEA is

unreliable.
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Figure 6.2.1 - Spring Coupled, Longitudinally Vibrating Rods Excited by a
Harmonic Point Force at x,=0 with a Free End Condition at

XZ=10
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Figure 6.3.1 - Simply Supported, Transversely Vibrating Beams Coupled by a
Torsional Spring and Excited by a Harmonic Point Force at

x==.25
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CHAPTER 7 - CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

In this work, the thermal analogy proposed by Nefske and Sung [2] to model
the mechanical power flow in acoustic/structural systems has been investigated.
From the classical displacement solutions for harmonically excited, hysteretically
damped rods and beams, power flow and energy density equations were derived.
Using assumptions based on small structural damping, it was found that the
mechanical power flow in rods and beams takes on some of the attributes of

thermal power flow in a heat conduction problem.

Chapter 3 investigated the power flow and energy density in a longitudinally
vibrating rod. Using the small damping assumption it was found that the local
power flow in a rod is proportional to the local gradient in energy density, as
shown in equation (3.2.31). The result in equation (3.2.31), along with the
power balance on a differential control volume in the rod, led to the
development of a Poisson’s equation which models the energy distribution in the
rod. From the governing Poisson’s equation, solutions for the energy density

and power flow were calculated.

The hysteretic damping model used in the simplified and exact energy

solutions was also discussed in chapter 3. It was found that hysteretic damping,
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in an exact analysis, models power dissipation in proportion to the kinetic
energy density. The simplified theory models power dissipation in proportion to
the total energy density. The difference in how the exact and simplified
solutions model power dissipation explains why the exact power flow solution

has harmonic components while the simplified power flow solution does not.

Chapter 4 investigated the power flow and energy density in a transversely
vibrating beam. The nearfield terms in the displacement solution complicated
the beam analysis. To use the thermal analogy it was found that the beam
analysis had to be restricted to frequencies where the nearfield terms in the
displacement solution were negligible over most of the beam. In an investigation
of the power flow in a beam, Nefske and Sung [2] derived a relationship which
modeled the local power flow as proportional to the gradient in local energy
density. This relationship is shown in equation (4.2.60). The deterministic
approach used in this study proved that because of the harmonic spatial
variation in energy density, a relationship between the power flow and the
gradient in energy density in a beam could be derived only if space averaged
values of power flow and energy density were modeled. The correct relationship
between power flow and energy density in 2 beam is shown in equation (4.2.59).
Equation (4.2.59) was then used to derive a Poisson’s equation which models the

spaced averaged energy density distribution in a vibrating beam.

Difficulties encountered when coupling the power flow and energy density

solutions for rods and beams were discussed in chapter 5. It was found that
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resonant behavior of finite structures complicated the coupling process. The
energy solutions have not yet led to an efficient and accurate coupling scheme.
However, it was shown that in certain situations, the local energy densities at a
coupling location can provide useful information about the dynamic response of
coupled structures. Two existing methods of coupling structures were discussed.
The first coupling scheme was based on the receptance method. The second
method was based on the wave transmission approach. The receptance method
allowed coupling of structures driven by single frequency and broadband
frequency inputs. The wave transmission approach is a more efficient coupling
solution than the receptance method, but it is iimited to brcadband
excitations. Both the receptance method and the wave transmission approach

can be numerically implemented.

As discussed in chapter 2, Nefske and Sung did not explicitly prove a
relationship between the power flow and energy density in a one dimensional
structure. They could not therefore prove under what conditions the new power
flow method could be used. The major contribution of this investigation is that
it provides the means to determine the conditions for which the new power flow
method is valid. In the development of the governing power flow and energy
density equations in chapters 3 and 4, each simplifying assumption is discussed
and justified. Thus, the validity of each assumption can be individually
assessed, allowing one to determine whether or not the new power flow method

is applicable to a given physical situation.
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Statistical Energy Analysis is a global power flow analysis. It cannot be used
to predict spatial variations of energy density and power flow in a given
subsystem. The simplified power flow method however, is a local analysis. It
can be implemented to describe the local variations in energy density and power
flow, which would be particularly useful in cases of multiple local power inputs
and local damping treatments. In addition, while SEA is limited to broadband
frequency excitation, the simplified power flow solutions can be used in

situations where the system response is dominated by resonant behavior.

The power flow examples in chapter 6 proved that the simplified theory
could yield accurate predictions of the energy density levels in both rods and
beams. From the results in chapter 6, it was concluded that the new power flow
method can be used to bridge the mid-frequency range gap where the finite
element method is inefficient and Statistical Energy Analysis is unreliable.

7.2 Recommendations

To apply the results for power flow and energy density solutions in chapters
3 and 4, an efficient and accurate coupling scheme must be developed. Work
should be continued towards developing a relationship between the local energy
densities at a coupling location using the energy relationships developed in

section 5.2.

Since the nearfield effects are always important near a discontinuity, it will
be necessary to include the nearfield effects when developing local coupling

methods for beams. A more complicated analysis of equations (4.2.48) and
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(4.2.49) might yield an accurate coupling solution for beams. Perhaps the
interactions of two connected beams near a coupling junction can be described

by uncoupled farfield and nearfield energy density and power flow expressions.

Once an efficient coupling procedure is developed, the simplified power flow
analysis could be easily implemented numerically. Since the governing equations
for the simplified power flow analyses are Poisson equations, they are easily

solved by a standard heat transfer finite element code as demonstrated by

Nefske and Sung.

Finally, power flow equations similar to those developed in chapters 3 and 4
for other types of structures, such as two dimensional plates and three
dimensional spaces should be developed. Such studies might provide some

insight not found in the one dimensional analyses.
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