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ABSTRACT

Wohlever, James Christopher. MSME, Purdue University. August 1988.

Vibrational Power Flow Analysis of Rods and Beams. Major Professor: Dr.

R.J. Bernhard, School of Mechanical Engineering.

A new method to model vibrational power flow and predict the resulting

energy density levels in uniform rods and beams is investigated. This method

models the flow of vibrational power in a manner which is analogous to the flow

of thermal power in a heat conduction problem.

The classical displacement solutions for harmonically excited, hysteretically

damped rods and beams are used to derive expressions for the vibrational power

fiow and energy density in the rod and beam. Under certain conditions, the

power flow in these two structural elements will be shown to be proportional to

the gradient of the energy density. Using the relationship between power flow

and energy density, an energy balance on differential control volumes in the rod

and beam leads to a Poisson's equation which models the energy density

distribution in the rod and beam.

Coupling the energy density and power flow solutions for rods and beams is

also discussed. It is shown that the resonant behavior of finite structures

complicates the coupling of solutions, especially when the excitations are single

frequency inputs. Two coupling formulations are discussed. The first coupling



xvii

formulation is basedon the receptancemethod. The second coupling scheme is

based on the traveling wave approach used in Statistical Energy Analysis. The

receptance method is the more computationally intensive method but is capable

of analyzing single frequency excitation cases. The traveling wave approach

gives a good approximation of the frequency average of energy density and

power flow in coupled systems, and thus_ is a efficient technique for use with

broadband frequency excitation.



CHAPTER 1 - INTRODUCTION

The path by which vibrational (mechanical) power propagates through a

structure is an issue of great interestto an engineer concerned with minimizing

vibration or noise levels.In many physical situations,vibrations from a remote

piece of machinery are transmitted along a structural framework and radiated

into an inhabited environment as sound. An example of structure-borne sound

is the engine vibrations of an aircraftwhich travel along the wing and are

eventually radiated as sound into the passenger cabin. In a complicated

structure, such as an aircraftor building,the abilityto map how power flows

through the system would greatly facilitateeffortsto control structure-borne

sound. As discussed by Lu [1],when the main paths of power flow are

identified,damping treatments or structuralmodifications can be optimized to

give the highest vibration (acoustic)reductions while minimizing both the cost

and weight of the vibration controltreatment.

Many complex structures can be modeled as a combination of simple,

connected component structures. The dynamic response of a building frame for

example, might be analyzed as a system composed of connected beam and plate

elements. This type of subdivision is the basis of the popular finite element

methods. To study how power flows from one part of the building to another, it
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is necessary to understand how an individual beam or plate element conducts

mechanical power. Once the power flow in an individual element is understood,

it is then necessary to develop a capability to couple the elements into the

desired configuration.

Much of the current dynamic structural analysis is done using traditional

finite element methods (FEM) [2,3]. However, in complicated acoustic/structural

systems the finite element method is usually limited to low frequency analysis.

As the frequency increases, the wavelength of vibration decreases. Thus to

properly model higher order modes, either the order of the interpolating

functions in the FEM must be increased or the size of the elements in the finite

element mesh must be decreased [4]. As a result, for accurate high frequency

studies, finite element models can quickly become too large for efficient

application.

Statistical Energy Analysis (SEA) has become a generally accepted technique

for modeling the high frequency, dynamic response of acoustic/structural

systems in which high modal density exists. Statistical Energy Analysis treats

each component of a built up system as a statistical population of mode groups,

and calculates the average dynamic response of the component parts. However,

due to simplifying assumptions made in the development of SEA, its accuracy at

lower and middle frequencies is limited. In addition, SEA gives no information

about the spatial variation of dynamic response within a given subsystem and is

generally only valid in the case of a broadband frequency excitation.



The inadequaciesof the finite element method and Statistical Energy

Analysis have prompted researchers to search for alternative methods of power

flow analysis in acoustic/structural systems. This work investigates a new power

flow method which could ultimately bridge the mid-frequency range gap where

the finite element method is too expensive and Statistical Energy Analysis is

unreliable. This alternative power flow method models the flow of mechanical

power in a manner which is analogous to the flow of thermal power in a heat

conduction problem. The new power flow method has the advantage over the

displacement formulations used in the finite element method in that only energy

variations are modeled. Since energy variations are simpler than displacement

variations, even for higher order modes, the power flow formulation will be an

efficient method at high frequency while providing information about the spatial

variation of dynamic response within a subsystem. The power flow formulation

is also applicable to both single frequency and broadband frequency excitations.

The objectives of this study will be to investigate the power flow in simple

one dimensional structures and examine

density and power flow in such structures.

the relationships between energy

In addition, the energy and power

flow relationships for coupled simple structures will be studied. Ultimately,

these methods should be formulated for numerical methods such that

complicated, built-up structures can be modeled. Chapter 2 is a brief literature

review of previous work done in vibrational power flow analysis. It will discuss

the motivation which led to the development of an alternative power flow
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analysis technique. In chapter 3, the classical longitudinal displacement solution

of a harmonically excited, hysteretically damped rod is used to develop

expressions for the power flow and energy density in a rod. In chapter 4, the

classical displacement solution for a transversely vibrating beam is used to

develop expressions for the power flow and energy density in a beam. The

classical displacement solutions used in chapters 3 and 4 will allow direct

assessment of the simplifying assumptions used to develop the governing energy

equations for both rods and beams. Chapter 5 will discuss the problems

encountered in coupling simple structures using the energy solutions developed

in chapters 3 and 4. Some examples comparing the simplified power flow

theories developed in chapters 3 and 4 to exact solutions will be presented in

chapter 6. Chapter 7 will contain a discussion of results along with

recommendations for future research.



CHAPTER 2 - LITERATURE REVIEW

The concept of vibrational power flow through a conductive medium has

been considered and utilized for many years. Over one hundred years ago, Lord

Rayleigh [5] described the "communication" of vibrational energy between two

coupled acoustic systems. However, it has only been in the last twenty five years

that the study of vibrational power flow in structural systems has received

appreciable attention in the technical literature. This chapter is a short review

of some analytical techniques which have been developed for modeling the flow

of vibrational power in acoustic/structural systems.

2.1 Statistical Energy Analysis

Statistical Energy Analysis is an analytical technique used to model the flow

of power and distribution of vibrational energy in built up acoustic, structural

and acoustic/structural systems. SEA models a complex structure as a

statistical population of coupled subsystems or mode groups. Each subsystem

acts as an energy reservoir with the ability to both store energy and dissipate

power. When the power input to each subsystem is a known value, the solution

of a SEA model predicts the total energy in each subsystem. The total energy in

a subsystem can then be converted into space and time averaged dynamic

responses of such physical parameters as displacement, velocity etc.



One of the earliest works in SEA wasa study doneby Lyon and Maidanik [6]

on the power flow between two conservatively coupled,one degreeof freedom

oscillators (subsystems). Lyon and Maidanik found that when the oscillators

were driven by two independent white noise sources(broadband frequency

sources):

1) The power flow between the two coupled oscillators-is proportional to the

difference in the vibrational energies of the two oscillators.

2) The flow of power is from the oscillator of higher energy to the oscillator of

lower energy.

3) The power dissipated by an oscillator is proportional to the total energy in

that oscillator.

SEA model predictions are based on conservation of power. Power into a

subsystem must be dissipated or transmitted to connected subsystems. By

predicting power flow from a subsystem of higher energy to a subsystem of

lower energy, SEA models the flow of vibrational power in a structure in a

manner similar to the flow of heat (thermal energy) in a thermal conduction

problem.

SEA was soon extended to multi-degree of freedom and continuous dynamic

systems. A complete treatise on Statistical Energy Analysis by Lyon [7], which

includes an extensive annotated bibliography on work done in SEA before 1976,



remains the most comprehensivebook available, though several other short

introductions to SEA have been written by Woodhouse [3], Cremer et al. [8],

Maidanik [9] and Fahy [10]. In addition to these introductory guides to

Statistical Energy Analysis, several general SEA computer codes, SEAM [11] and

COSMIC SEA [12], are available.

Lyon [7] discusses many aspects of SEA, including how built-up systems are

modeled, the estimation of dynamical responses from energy values and the

evaluation of SEA system parameters. The system parameters in a SEA model

include loss factors, modal densities and coupling loss factors. Examples of the

evaluation of loss factors and modal densities in plates and shells can be found

in work done by Ranky and Clarkson [13] and Clarkson and Pope [14].

A large number of the studies of SEA have been concerned with developing

coupling loss factors. The coupling loss factor is a constant of proportionality

which models the tendency of power to flow between two connected structures

in a SEA model. A common technique to couple structures in SEA is a method

known as the "wave transmission approach". The wave transmission approach,

introduced by Scharton and Lyon [15], allows the coupling of continuous

systems by approximating the frequency averaged, input impedance of a finite

structure to be that of an infinite structure. The input impedance of a finite

structure is strongly influenced by its resonant behavior. Analytical solutions

for the input impedance of finite structures can therefore be quite complex and

are generally available only for special cases. The input impedance is also quite



sensitive to slight perturbations in the subsystem. The input impedance of an

infinite structure however, exhibits no resonant behavior and is generally a

simple function of the material properties and the wave speed in the subsystem.

Several authors have presented specific examples which justify modeling finite

structures by similar structures of infinite extent. In his book on SEA, Lyon [7]

showed the input impedance of a simply supported plate, when averaged over

the plate area and over frequency, approached the impedance of an infinite

plate. In a separate study, Pinnington and White [16] found that the point

mobility of a finite beam, which is the reciprocal of the point impedance, when

averaged over frequency is equal to the point mobility of an infinite beam.

Cremer et al. [8] generalized the impedance results by showing that for a

frequency average, the impedance of a finite structure approaches that of a

similar infinite structure. Approximating finite structures by infinite structures

greatly simplifies the task of modeling coupled structures.

Remington and Manning [17] calculated the coupling loss factor for two rods

vibrating longitudinally, coupled by a linear spring, using the wave transmission

approach. Remington and Manning compared their approximate coupling loss

factor to an exact closed form solution and found good agreement when the

exact solution was averaged over frequency.

Scharton and Lyon [15] also used the wave transmission approach to

calculate a coupling loss factor for two simply supported beams coupled by a

torsional spring. Newland [18] calculated a coupling loss factor for the same
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coupled system studied by Scharton and Lyon.

coupling loss factor from a

frequency shift method" [19].

Newland however, calculated his

method he introduced known as the "natural

The natural frequency shift method is a technique

by which a coupling loss factor can be calculated for the case of light coupling

by evaluating the changes in the natural frequency when two continuous systems

are coupled. Crandall and Lotz [20] compared the beam-beam coupling loss

factors calculated by Scharton and Lyon and Newland and found that in the

case of light coupling the loss factors calculated by each were identical.

However, -Crandall and Lotz also showed that in the case of strong coupling, the

coupling loss factors developed by the two methods did not agree with one

another. Crandall and Lotz did not evaluate the accuracy of either method in

the case of strong coupling. Later, Davies and Wahab [21], improved the

coupling loss factors for strong coupling between the simply supported beams by

making approximations on an exact closed form solution based on whether high

or low modal overlap existed.

Due to the inherent difficulty involved in their calculation, analytical

solutions for the loss factors and coupling loss factors for structural elements

may only be partially complete or not available at all. In many applications, the

loss factors and coupling loss factors for structural systems must be confirmed or

measured experimentally. In comparing SEA predictions with experimental

results for cylinder-plate-beam structures, Ghering and Raj [22] concluded that

SEA is most reliable when "benchmarked against experimental data so that loss
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factors and other parameters can be properly adjusted." In a review of the

evaluation of loss and coupling loss factors, Maidanik and Brooks [23] discussed

a number of different methods to experimentally determine the loss factors and

coupling loss factors for coupled dynamic systems. Maidanik and Brooks

explained how loss factors and coupling loss factors could be evaluated by

measuring both the input power and resulting energy levels in an experimental

set up and back solving for the desired loss parameters. This in situ approach

of calculating the loss factors and coupling loss factors was demonstrated by

Bies and Hamid [24] in calculating the loss factors and coupling loss factors for

two coupled plates.

Statistical Energy Analysis has a number of important shortcomings. Since

SEA is based on statistical modeling of average system responses, it cannot

accurately predict the resonant behavior found in most structures. SEA is

generally limited to high frequency, broadband analysis where resonant behavior

is less important. In addition, SEA cannot predict the spatial variation of

energy in a given subsystem.

which exists in a subsystem.

The output of a SEA model is the total energy

Therefore only average values of displacement,

velocity etc. can be calculated. Finally, SEA does not have the capability to

model localized or boundary damping mechanisms or local power inputs. These

weaknesses in Statistical Energy Analysis have prompted a number of

researchers to study vibrational power flow outside the realm of SEA.
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2.2 Further Studies in Power Flow

Goyder and White [25] studied the mechanical power flow from machinery

into a foundation of beam stiffened plates. Citing work of Skudrzyk [26],

Goyder and White modeled the beam-plate foundation as an infinite structure.

In effect, Goyder and White assumed that the foundation on which the vibrating

machinery was set, was large enough that the propagating waves moving away

from the source were attenuated enough so that there were no reflections. Using

a spatial Fourier transformation, Goyder and White were able to perform an

exact analysis of the infinite model. They found that the power carried by

torsional, longitudinal and flexural waves decays exponentially from the source

in an infinite, damped beam. Goyder and White also tabulated formulas to

calculate the frequencies at which the point mobility of finite beams and plates

are well approximated by their infinite counterparts. They found that in a

beam-plate foundation, if the input was applied to the beam and was a

transverse force or moment, the total power input to the foundation is

controlled only by the properties of the beam. As the wave moves away from

the power source more power is transmitted by the plate than by the beam.

Pinnington and White [16] continued the work of Goyder and White by

investigating the power input to vibration insulators used for vibration control

of machinery. Using the mobility model for a beam like insulator, Pinnington

and White found that for a force excitation, maximum power is input at the

resonant frequencies of the insulator. A velocity excitation has a maximum

power input at the antiresonant frequencies.



Independent of the work done by Goyder and White, Belov et al. [27]

investigated the optimization of a damping treatment on a beam stiffened plate

by modeling the power flow in the plate. To account for the reflections when a

wave traveling in a plate encounters a beam, Belov et al. developed reflection

coefllcients which coupled flexural and longitudinal modes of vibration in the

plate. Belov et al. likened the spread of energy in a vibrating structure to the

flow of heat in a thermal conduction problem. Using a power balance, Belov et

al. developed a set of differential equations "of the heat-conduction type" to

model the flow of power in the beam plate structure. Solving this set of

differential equations for various arrays of beam patterns Belov et al. optimized

the damping treatment on the plate by minimizing the average spectral energy

leaving the plate boundaries.

The power flow analyses discussed in this section, though adequate for the

specific systems for which they were designed, are not applicable to arbitrary

systems. A more useful power flow analysis would be a general method which

could be used to accurately model the power flow in a wide range of

acoustic/structural systems. The approach to power flow analysis taken by

Nefske and Sung, which is discussed in the next section, may be a step in the

direction towards a more general and accurate power flow analysis.

2.3 Finite Element Power Flow Analysis

A new method to model the power flow and energy density in structures was

recently developed by Nefske and Sung [2]. Nefske and Sung began their
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analysis with a simple power balance on a differentialcontrol volume in a

conductive medium. They based their work on the hypothesis that the power

flow in a conductive medium is proportional to the gradient of the energy

density. This assumption isanalogous to Fourier'slaw in heat conduction which

states that the flow of heat in a material is proportional to the temperature

gradient. Using this hypothesis for power flow and assuming that the power

dissipated at a point is proportional to the local energy density, Nefske and

Sung were able to use a farfieldpropagating wave analysisto determine energy

conduction parameters. These conduction parameters, which are analogous to

the thermal conductivity for a heat conduction problem, serve as the constant of

proportionality between the power flow and the gradient of energy density.

Using these conduction parameters, Nefske and Sung found they could model

the power flow and energy density in a simply supported beam with a one

dimensional Poisson's equation. The boundary conditions for thisproblem were

known power fluxes. They solved their heat conduction formulation of the

vibrating beam problem using a standard MSC/NASTRAN finiteelement code

[28]. Nefske and Sung demonstrated the abilityof their power flow method to

accurately calculatethe displacement of a vibrating beam at frequencieswhere a

traditional displacement finiteelement formulation could not be used. They

also showed how their method could predict the spatial variation of

displacement in a beam where SEA could only predict an overall average

displacement.
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Although Nefske and Sung demonstrated the accuracy of their thermal

power flow method for specific cases, the basic premise of their work, which was

the relationship between the power flow and energy density in a conductive

medium, was never proven explicitly. Thus, there was no way to determine

under what conditions the finite element power flow method is valid.

2.4 Summary

As discussed in chapter 1, this study continues the work of analyzing power

flow in simple one dimensional structures. In this study however, relationships

between the flow of mechanical power and the energy density in rods and beams

will be derived from the classical displacement solutions of harmonically excited,

hysteretically damped rods and beams. The advantage of deriving the power

flow and energy equations from the classical displacement solutions is that the

displacement solutions give deterministic relationships which can be used to

evaluate the accuracy of the resulting power flow and energy equations. After

certain simplifying assumptions are made it will be shown that for certain

conditions the power flow in rods and beams can be approximated as being

proportional to the gradient in the energy density. The exact nature of the

displacement solutions indicate how generally these conditions can be applied.

This capability to evaluate the assumptions will give guidelines to determine the

conditions for which the analysis is valid. Similarly, the classical displacement

solutions will be used to investigate coupling the energy density solutions of

rigidly connected, 1-D structures. Local coupling relationships will be explored.

In addition, traditional coupling methods will be discussed and evaluated. The
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ultimate objective is to implement these coupling methods using numerical

methods and thus provide an alternative to FEM and SEA in predicting the

energy density levels in built-up, vibrating structures.
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CHAPTER 3 - THEORETICAL DEVELOPMENT FOR RODS

3.1 Introduction

In this chapter, the governing equations used to model the power flow

through rods will be developed. The power flow and energy density equations

will be developed from the classical solutions of displacement in a harmonically

driven rod. This analysis is an effort to find a more efficient

structural/acoustical model for power flow at medium and high frequency

vibration where standard finite element methods become impractical.

The rod is one of the simplest cases of vibrational energy transmission

because the equation of motion is a one dimensional second order differential

equation with respect to both time and position. After the rod energy equations

are developed, similar energy equations will be derived for a beam in chapter 4.

Some complications will arise in the beam equations due to the fourth order

nature of the equations of motion.

3.2 Rod Equations

The equation of motion for a rod, such as the one shown in figure (3.2.1),

excited by a general forcing function is

EcS _2U(x't)_x2 = pS 02U(x't)-_t2 f(x,t) (3.2.1)
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where:

U(x,t) is the longitudinal displacementin a rod.

f(x,t) is the distributed forcing function per unit length.

pS is the density per unit length.

EcS is the rod stiffness.

The spring end conditions in figure (3.2.1) represent general boundary

• conditions. For example an infinite spring rate _rL represents a fixed end while a

zero spring rate is a free end. The analysis will allow general impedance

boundary conditions.

In this investigation the forcing function will be modeled as a harmonic point

force. The harmonic nature of the driving force will simplify the analysis by

allowing the time dependency in the governing equation of motion (3.2.1) to be

removed. A harmonic point force, f(x,t), may be mathematically represented as

f(x,t) = F 6(X--Xo)e j_t (3.2.2)

where:

6(X-Xo) is a dirac delta function.

6(x-xo)---O if x =_ x o

and

C_

f 6(X-Xo)dx = 1
--OQ

F is the magnitude of forcing function.

is the excitation frequency (rads/sec).
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A damping term, which modelsa hystereticenergy absorption mechanismin

the rod, may be introduced into the rod formulation by using a complex

modulus of elasticity. The complex modulusEc is

Ec = E(1 + jy) (3.2.3)

where

77is the hysteretic damping coefficient.

Since the force is harmonic, it follows that in steady state vibration, the

displacement U(x,t) will also be harmonic in

variables technique, U(x,t) may be written as

U(x,t)= u(x)#

time. Using a separation of

(3.2.4)

Since damping has been introduced into the formulation, u(x) will be complex to

account for phase differences between the force and the displacement.

Combining equations (3.2.1) through !3.2.4) and canceling e j'_'t gives the

governing equation

d2ux__ + ¢_2 (l-j_) u(x)- --F

dx 2 c2 (1 + 72) EcS
 (X-Xo) (3.2.5)

where

-- _ which is the square of the phase speed.

Equation (3.2.5) can be written more concisely if a complex wavenumber k is

defined as
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Thus, the equation of motion is

(3.2.6)

d2u(x) k2u(x) __ --F
dx 2 -{- Ec S _(X--Xo) (3.2.7)

In many applications, the point force will be applied at the end of the rod.

In such circumstances the force is most easily dealt with by applying it as a

boundary condition. When the excitation is at a boundary, the equation of

motion becomes homogeneous

+ k2u(x)= 0 (3.2.s)
dx2

and has a simple solution of the form

u(x) = Ae -jkx -b Be jkx (3.2.9)

The constants A and B in equation (3.2.9) are complex and are determined by

applying the boundary conditions.

The boundary conditions for a rod in longitudinal vibration are either a

prescribed displacement or strain. The displacement condition at a point x=x o

is

U(Xo)= Uo (3.2.10)

where u o is a known constant. A fixed end condition is modeled as u o = 0. A

known time harmonic velocity condition at an end is modeled as a constant not
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equal to zero. As discussedby Soedel [29], the relationship between the

magnitude of an axial point force in a rod and the resulting strain, e, is

du I F (3.2.11)
e°- dx X=Xo- ES

For the strainboundary condition only the real part of the complex modulus E c

is used. The real part of the modulus is assumed to be a valid approximation

since in this analysis light structural damping, 7/<:<1, will be considered.

Though using only the real part of the complex modulus is not necessary, it will

simplify the analysis. The important effects of the damping in the complex

modulus are included in the complex wavenumber k, as defined in equation

(3.2.6).

When a point force is applied at an interior point on a rod, it is necessary to

divide the rod into two parts at the point of force application in order to find

the analytical solution. Figure (3.2.2) shows a rod excited by a harmonic source

at x----xo. Figure (3.2.3) shows the rod split into two sections at x---x o. Each rod

section has its own displacement solution

and

Ul(X) = Ae -jkx+ Be jkx x, < x < xo (3.2.12)

Note equations (3.2.12) and (3.2.13) contain four unknown constants. Therefore

four boundary conditions must be applied in order to completely specify the

problem. At x----x1 and x=x 2 either a displacement or slope end condition must

u2(x ) =Ce -jkx+De jkx x o <x <x 2 (3.2.13)
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be specified. At x----xo both a displacement and slope condition must be applied

to supply the two remaining boundary conditions.

The first boundary condition at x----xo is continuity of displacement

Ul(xo)= u2Cxo)

The second condition at x----xo is a balance of forces. The internal longitudinal

forces in both rods one and two must balance the applied force F. From

equation (3.2.11) the force boundary condition is

dUl du 2
I -(ES)2-- [ =F (3.2.15)(ES)i dx X=Xo dx X=Xo

Using the four boundary conditions, the constants A, B, C and D can be

found. The complete solution for displacement in a rod section as a function of

position and time is

U(x,t) = (Ae-jkX+BeJkx)eJ_t (3.2.16)

3.2.1 Power and Energy Equations for a Rod

As discussed in the introduction, one of goals of this analysis is to develop

equations which relate the power flow and energy density in a rod. The solution

given in equation (3.2.16) will be used to express the energy density and power

flow in forms which are easily manipulated. As noted by Kinsler et al. [30] the

time averaged power flow and energy density are usually of more interest then

the instantaneous values. This analysis will concentrate on time averaged

values.
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In a rod where only axial forces are present, the power, q, defined locally as

the force at a point times the velocity, is written in terms of the displacement as

q =-Es  u(x,t) (3.2.17)
0x 0t

where:

-ES °_U(x't) is the axial force.

c_U(x't) is the longitudinal velocity.
0t

The time averaged product of the force and velocity is [31]

<(force)(velocity)> = 1 Re[(force)(velocity)']
2

(3.2.18)

where

< > is a time averaged quantity.

Here the expression (velocity)* is the complex conjugate of the

Substituting equations (3.2.16) and (3.2.17) into equation (3.2.18),

averaged power flow <q> at a point can be expressed as

velocity.

the time

<q> = 1 _ES{kl [ IA [2e2k-_x--IB 2e-2k_-x]--2k2[Im(AB*)cos2klx-Re(AB*)sin2k,x]}
2

(3.2.19)

where

k = k 1 + jk 2
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The energy density is the sum of the potential (V) and kinetic (T) energy

densities. For a rod, the potential and kinetic energy densities are

V= 2

and

lT= 2

Following the steps used to derive the time averaged power flow, the time

averaged potential and kinetic energies are

<V> = 1 ES ]k ]2{ ]A [_e2k_+ ]B ]2e-2k'_x--2tRe(AB*)cos2klX+Im(AB*)sin2klx]}
4

(3.2.22)

and

1 pS¢o2{ ]A ]2e2k_x+ IB ]2e-2k-'x+2[Re(AB*)cos2klX+Im(AB*)sin2klX]}
<T> = 4

(3.2.23)

The total time averaged energy density at a point, <e>, is the sum of the

kinetic and potential energy density. The total energy density is

<e> = 1 {]A ]2e2k#+ ]B ]2e-2k#}{ES Ik ]2 + pSofl}
4

1 * * ]2
-- _-{Re(AB )cos2klX+Im(AB )sin2kix]}{ES [k -- pS_ 2}

3.2.2 Simplifying the Power and Energy Expressions for a Rod

Equation (3.2.6) defines the square of the complex wavenumber.

small damping in the rod

(3.2.24)

Assuming
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the real and imaginary parts of the wavenumber are approximately

and

kl _ ___w (3.2.25)
C

k2___w = r/k
2c --2 1 (3.2.26)

Thus, in this analysis it will be assumed that the imaginary part of the

wavenumber is small compared to the real part. This assumption will be used

to simplify the analysis and was found to be an excellent approximation for

values of damping found in common structural materials such as steel.

Applying the assumption that Ik 1 I>> ]k2 [ to the expression for power flow,

equation (3.2.19), it can be assumed that the second term involving the sine and

cosine functions is significantly smaller than the first term and may be

neglected. Thus, the power is approximately

(q> _ 1 wESkl{ [A [2e2k'-'x--Is [2e-2kcx} (3.2.27)
2

To illustrate the difference in the power flow expressions shown in equations

(3.2.19) and (3.2.27), consider the harmonically excited rod in figure (3.2.4). The

rod in figure (3.2.4) is driven by a harmonic point force at x o and has a free end

condition at xp Figure (3.2.5) shows the difference between the exact power flow,

equation (3.2.19), and the approximate solution given in equation (3.2.27) when



25

the following rod parameters are used

length of rod = 5 m

ES = 6 X 107 N

pS = 2.358 kg/m

p = 7860 kg/m s

= 0.01

= 12677.79 rad/sec

The magnitude of the excitation force has been adjusted so that the power flow

into the rod at x o is unity. Note in figure (3.2.5) that since there is a free end

condition, no power can leave the rod at x 1. Equation (3.2.27) approximates the

power flow as the sum of two exponential functions. The approximate solution

passes through the middle of the exact solution. The component of power flow

which is neglected is significantly smaller than the retained terms. In addition,

the neglected terms are harmonic functions in space and the approximate

solution represents the spatial average of the exact power flow. It will be shown

in section 3.3 that the harmonic component of the exact solution for power flow

is due to the type of damping used in this model. It is also important to note

that with a single power source, (e.g. a single harmonic input), the magnitude of

the power flowing through a point in the rod monotonically decreases as one

moves away from the power source as expected due to conservation of energy.

Figure (3.2.6) is a plot of the exact, time averaged potential, kinetic and

total energy densities from equations (3.2.22), (3.2.23) and (3.2.24), using the
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same rod parameters as the power flow solutions used in figure (3.2.5). The

potential and kinetic energies in figure (3.2.6) are spatial harmonic functions

which are out of phase by 180 degrees. The reason for this phase shift is the

form of the displacement solution, equation (3.2.16), and the nature of how

potential and kinetic energies are stored. Equation (3.2.20) shows that the

potential energy is proportional to the square of the first derivative of

displacement with respect to x, while the kinetic energy is proportional to the

square of the zeroeth derivative of displacement with respect to x. Though

difficult to see in figure (3.2.6), a slight negative gradient does exist in the total

energy density indicating the dissipation of power.

The light damping assumption allows a simplification of the energy density

expression shown in equation (3.2.24). Using the light damping assumption, the

square of the magnitude of the wavenumber is approximately

c 2

Thus it can be shown that

ES[k[2_ES ----ES _ -pS_

Substituting equation (3.2.28) into (3.2.24) the time averaged

density may be written approximately as

<e> _ 21 pS,_2{ IA 12e2k *+-[B 12e-2k'x}

(3.2.28)

total energy

(3.2.29)
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When the damping is light and the time averaged values are computed, the

harmonic components of the potential and kinetic energy densities are

essentially equal in magnitude but the negative of one another. The important

result of' such behavior is that when added together, the harmonic portions of'

the potential and kinetic energy densities cancel and the exact total energy

density is well approximated by the simple expression given in equation (3.2.29).

The importance of having no significant harmonic components in the total

energy density will become more apparent when the energy density equations for

the beam are developed.

3.2.3 Relationship Between Power and Energy Density in a Rod

The gradient of the approximate energy density is

d<e> _ pS_2ke{ ]A [2Jk__x_ [B [ee-ek_x} (3.2.30)
dx

Dividing the approximate expression for time averaged power, equation (3.2.27),

by equation (3.2.30), and solving for <q>, a simple relationship between local

power flow and the energy gradient for rods is found to be

c2 d<e>
<q> = (3.2.31)

_7_ dx

The assumption used in deriving equation (3.2.31) is that hysteretic damping is

small <<1, andthus, IklI>> I.
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3.2.4 Energy Balance in a Rod

Figure (3.2.7) shows an energy balance for a differential rod element. The

time rate of change of energy within the control volume must be equal to the

net power entering the volume minus the power dissipated within the volume.

The resulting balance is

where:

c3e 0q (3.2.32)
cgt -- _X -- 7Fdiss

e isthe energy within the differentialcontrol volume.

q isthe net power flow at a point.

zrdissisthe power dissipatedwithin the differentialcontrolvolume.

Using the relationship between the power flow and energy found from the

analyticalrod solution,equation (3.2.31),the gradient of power flow in equation

(3.2.32)can be expressed in terms of the second derivativeof the energy density.

Also, the time derivative of energy density in equation (3.2.32)is zero since

power flow isbeing studied in a steady state condition. Thus, the time averaged,

steady state form of equation (3.2.32)is

c2 d2<e>
_Tr>diss= 0

_7_z dx 2
(3.2.33)

3.2.5 Power Dissipation in a Rod

At steady state, equation (3.2.33) shows that the power dissipated at a point

is proportional to the second derivative of energy density at that point.

Calculating the second derivative of energy density, the power dissipated at a
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point, from equation (3.2.33) is

<_>di_ = 1pS_r/a;l [A J2e2k_

z _

(3.2.34)

Dividing the expression for energy density as given by equation (3.2.29)by

equation (3.2.34)and solving for dissipatedpower leads to the relationship

_71"_di _ ----- rl(_ _e_ (3.2.35)

Thus the energy dissipated at a point is proportional to the energy density at

that point, given the assumptions used to derive equations (3.2.29) and (3.2.33).

The expression for power dissipation which Nefske and Sung [2] use in their

power flow analysis is identical to equation (3.2.35). However, Nefske and Sung

developed their power dissipation term from a Statistical Energy Analysis (SEA)

assumption that the dissipated power is proportional to the total energy in a

system.

3.2.6 Governing Equations for the Energy Density and Power Flow in a Rod

All the necessary equations needed to describe power flow and energy density

in a rod have now been developed. Substituting the term for power dissipation,

equation (3.2.35), into equation (3.2.33) and rearranging terms, the approximate

governing equation of the energy distribution in a rod is
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dx 2
- _<e> = 0 (3.2.30)

where

_=7]--
c

The assumption used in deriving equation (3.2.36) is that hysteretic damping is

small_ << 1, andthus, Ik_I >> Ik2I.

The general solution to equation (3.2.36) is

_e_ ----Cle ¢'x _ C2e -¢x (3.2.37)

where the constants C 1 and C 2 are determined by applying the boundary

conditions, either a specified energy density or power flux condition. The power

flow is calculated by substituting equation (3.2.37) into equation (3.2.31) which

results in the expression

<q> -- --C(Cle¢ 'x - C2e -¢x} (3.2.38)

In this work the boundary conditions will all be power fluxes. This is similar to

SEA where input power to a structure is a known parameter but energy levels

generally are not.

3.3 Effect of Damping Model

Predicting the damped response of a structure can be approached on several

different levels [321. The most deterministic approach is to study damping on a
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microscopic scale. A micromechanistic view attempts to predict the behavior by

modeling the interactions between grains in the material and losses due to grain

deformation. Though this is the most scientific approach it is usually limited to

very special cases of geometry and loading, and is often too complex for efficient

application to a mathematical model.

macroscopic study of damped behavior.

More common approaches rely on a

The macroanalytical approach models

damping by modifying equations of motion and material properties in an

attempt to simulate the observed damped response of structures. However, since

damping mechanisms are not completely understood on a macroscopic scale,

modeling damping in this manner is not a deterministic process. Certain

engineering assumptions are generally made to predict the damped response of a

dynamic systems in a cost effective and reasonably accurate manner. Two

examples of macroscopic damping schemes are the well known viscous and

hysteretic damping models.

In this study, hysteretic damping was introduced into the rod and beam

analysis through a complex modulus of elasticity. A hysteretic damping model

was chosen over a viscous damping model because a constant hysteretic loss

factor predicts results which are more consistent with experimental studies than

a constant viscous loss factor [32].

The equations developed in section 3.2 describing power flow and energy in

rods are functions of the type and degree of damping used. In spite of the

apparent exact nature of the equations of motion, the uncertainty of how to
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accurately model damping introduces a level of error into these relations. It is

difficult to determine how closely the exact and simplified solutions for power

and energy match what happens in real systems.

Figure (3.2.5) illustrates'how the simplified solution for power flow in a rod,

equation (3.2.27), differs from the apparent exact solution of equation (3.2.19).

The simplified model decays exponentially away from the power source. The

exact curve oscillates about this simplified model. The explanation of why these

curves differ can be found by studying the power dissipation terms.

The power dissipation in the exact solution for a rod is more readily

understood by using an equivalent viscous damping model. Consider the

equation of motion for a rod, equation (3.2.1). A viscous damping term may be

introduced into the forcing function, f(x,t), in equation (3.2.1) as

aU(x,t) (3.3.1)
f(x,t) ----F6(x--Xo)e j_t -- _v

where

rlv is the viscous damping coefficient.

Substituting this force into equation (3.2.1) and removing the time dependence,

the equation of motion is

dx _ _ - j (x) -- -_ 6(x--xo)
(3.3.2)

In equation (3.3.2), the modulus of elasticity is a real value since viscous

damping is being modeled. Following the same procedures used in section 3.2,
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the equation of motion can be simplified to

d2u

+ kv2u(x)= o (3.3.3)

where the complex viscous wavenumber k v is defined

(3.3.4)

Assuming again that the viscous damping is small, the components of k v may be

written approximately as

k,.__ -- (3.3.s)
£

'Y/v

kv2 _ (3.3.6)
2pSc

Comparing the real and imaginary parts of the hysteretic wavenumber in a

rod, equations (3.2.25), (3.2.26), to their counterparts for viscous damping given

above, equivalent viscous damping implies that

kl = kvl (3.3.7)

k2 = kv2 (3.3.8)

For the equalities to be satisfied the equivalent viscous damping coefficient in

terms of the hysteretic damping factor is

r/v = pSwrl (3.3.9)

It is important to note that for a constant hysteretic loss factor, 77, the
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equivalent viscous damping is a function of frequency. The result in equation

(3.3.0) is derived by Soedel [29].

The local viscous damping force in equation (3.3.1) is

(3.3.1o)F_ = _

The power dissipated by the damping mechanism is the damping force times the

local velocity

From equation (3.2.21), the time averaged kinetic energy in a rod is

(3.3.12)

Thus, the dissipated power and kinetic energy are related as

277v

<7rexact]>diss- pS <T_ (3.3.13)

Using the equivalent damping factor in equation (3.3.9), this relationship may be

rewritten as

<Tl'exact_diss _-= 2_?(z<T_ (3.3.14)

Equation (3.3.14) indicates that the exact solution predicts that the power

dissipated at a point is directly proportional to the local kinetic energy density.

Equation (3.3.14) can be verified by plotting the potential and kinetic energy

densities, shown in figure (3.2.6), with the exact power flow solution, shown in
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figure (3.2.5). Such a plot is shown in figure (3.3.1). Note in figure (3.3.1) that

at a maximum of kinetic energy the slope of the power flow is also maximum.

From the discussion in section 3.2.4, it was shown that at steady state, the

power dissipated at a point is equal to the negative of the slope of the power

flow. Where the kinetic energy is zero the slope of the power flow is zero,

indicating no power is dissipated. The harmonic component of the exact power

flow is due to the spatial variation of the kinetic energy.

The simplified theory for power flow does not distinguish between potential

and kinetic energies. It models the total energy density in the rod. Because the

simplified model does not differentiate between energy types, it could not be

expected to model power dissipation as proportional to the kinetic energy alone

as the exact solution does. Equation (3.2.35) shows that in the simplified model

the power dissipated at a point is proportional to the total energy density.

is

The average power dissipated over a wavelength using the exact formulation

- 1 f 1 1 [A [2e2k:_--[B [2e-2k_<T'exact>diss--_ <_exact>do'= "_-(r]_)PS°32 "_2

_ e(A_B )sinklo'-Im(AB )c°skl°" xl

(3.3.15)

where X is a wavelength of vibration and is defined for light damping as

2_r 27r

k k 1

The harmonic terms in equation (3.3.15) go to zero when evaluated between x
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and x+k. Thus, the exact average power dissipated over a wavelength is

<_rex_ct>dis s _ 1 [2e2k_
4k2_ ' (r/cd)pSw 2{ [A --

x+X

[B 12e-2k_} [ (3.3.16)
X

A. similar calculation for power dissipation using the simplified model gives

<_'>diss 1 [2e2k.,a
-- 4k2X- (r/ce)pSJ{ IA " -

x+X

IB I'e-2k-'} I (3.3.17)
X

The average power dissipated over a wavelength, or an integer number of

wavelengths, by the simplified and exact solutions is identical in spite of the fact

that the spatial profiles of the two power flow solutions are different. It is

important to

solutions are

wavelengths.

note that the power dissipated by the exact and simplified

identical only when integrated over an integer number of

This is because in equation (3.3.15), the harmonic portions of the

exact solution go to zero only when integrated over an integer number of

wavelengths. In essence, the simplified model averages the power absorption

over a wavelength.

A similar comparison of the exact and simplified theories for a beam, to be

discussed in chapter 4, would produce results analogous to those for a rod. For

the exact solution of a beam, power is dissipated in proportion to the local

kinetic energy levels while the simplified theory models the dissipation of power

in proportion to the average total energy density.

Due to the uncertain nature of damping models, it is difficult to say if the

exact or simplified solution is a more accurate representation of the power
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dissipation. Experimental data on the detailed spatial variation of power flow in

rods or beams are not widely published in literature. For purposesof medium

to high frequency analysesof energy in structures, the simplified solution models

the actual power absorption mechanism in rods and beams well enough to

predict accurateaverageenergyand power flow values.

3.4 .Summary

Equation (3.2.31) shows that for the assumption that hysteretic damping is

small 77_ 1:

Ik, I >> Ik, I.

2) <q> is approximated by equation (3.2.27).

3) _e_ is approximated by equation (3.2.29).

Using these assumptions it was found that the power flow in a rod is

proportional to the gradient of energy density. Furthermore, the control volume

analysis shown in figure (3.2.7) along with the relationship between power

dissipation and energy density allows the development of a Poisson's equation

(3.2.36) which models the power flow and energy distribution in a rod. Thus,

the thermal conduction analogy, which was discussed in the introduction, for

studying the power flow and energy density in a rod is a valid model for

conditions of small hysteretic damping.
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With respect to damping models, equation (3.3.14) showed that in the exact

solution, hysteretic damping results in power dissipation in proportion to the

local kinetic energy. The simplified theory models power dissipation in

proportion to the total energy density. Thus, the difference of power flow

between the exact and simplified power flow solutions can be attributed to the

different ways in which each models power dissipation. However, at medium to

high frequencies, these differences are small and the simplified model is a good

engineering model of power flow in rods.
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f(x,t)

U(x,t)

X

Figure 3.2.1 - Longitudinally Vibrating Rod Excited by a Distributed Forcing

Function with General Spring Boundary Conditions
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X 1

j_t

_) ®

X
0

X
2

Figure 3.2.2 -Longitudinally Vibrating Rod Excited by a Harmonic Point

Force at x o with General Spring Boundary Conditions

I I
X 1 X O X O X 2

Figure 3.2.3 - Longitudinally Vibrating Rod from Figure (3.2.2) Split into Two

Components to Allow the Harmonic Point Force to be Applied as

a Boundary Condition
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F G (X-Xo)e j_ t

I

I
Xo=O x:=5

Figure 3.2.4 -Longitudinally Vibrating Rod Excited by a Harmonic Point

Force at x o with a Free End Condition at x I
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Figure 3.2.5 - Comparison of the Power Flow Solutions for the Longitudinally

Vibrating Rod Shown in Figure (3.2.4) Using an Exact Solution,

Shown in Equation (3.2.19), and the Approximate Solution,

Shown in Equation (3.2.27)
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Figure 3.2.6 - Exact Potential, Kinetic and Total Energy Density Solutions for

the Longitudinally Vibrating Rod Shown in Figure (3.2.4) Using

the Solutions Shown in Equations (3.2.22), (3.2.23) and (3.2.24)
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j_t
6 (x-xo)e

dx

q

dx

_qt> q_
_x

Figure 3.2.7 -Energy Balance on a Differential Element in a Longitudinally

Vibrating Rod Excited by a Harmonic Point Force
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Figure 3.3.1 -Exact Solutions for the Power Flow and Potential and Kinetic

Energy Densities in a Longitudinally Vibrating Rod
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CHAPTER 4 - THEORETICAL DEVELOPMENT FOR BEAMS

4.1 Introduction

In thischapter, the governing equations used to model power flow through a

beam will be developed. As for the rod analysis,the power flow and energy

density equations willbe developed from the classicalsolutions of motion of a

harmonically excitedbeam.

4.2 Beam Equations

The equation of motion for a uniform Bernoulli-F, uler beam, figure (4.2.1),

excited by a general forcing function is

where:

eU(x,t) a U(x't) = f(x,t)
EcI °':_4 + pS _2 (4.2.1)

U(x,t) is the tranverse displacement of beam.

EcI is the flexural rigidity of beam.

pS is the density per unit length.

f(x,t) is the distributed forcing function per unit length.

The spring end conditions shown in figure (4.2.1) represent general boundary

conditions. The torsional spring rates crT control the relationships between the

moments and angular displacements at the ends. The transverse spring rates crL

control the relationships between the shear forces and linear displacements at
i¢i
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the ends.

For this investigation the beam excitation will be modeled as a harmonic

point force. The excitation will be a transverse force acting perpendicular to the

neutral axis and is defined mathematically as

fCx,t) ----F_(x--xo)e j_t (4.2.2)

Damping in the beam will be introduced using a hysteretic model which results

in a complex modulus of elasticity E¢, as shown in equation (3.2.3).

Following a procedure similar to that used for the rod analysis, only steady

state harmonic conditions will be investigated. Thus, the time dependence of

the beam equation of motion will be removed by a separation of variables

technique. Substituting equations (3.2.4) and (4.2.2) into (4.2.1) and removing

the time dependence gives

_ _ pS (1 -jn) u(x) = F-E-_(X-Xo) (4.2.3)
dx 4 EI (1 + 772) EcI

Equation (4.2.3) may be further simplified by defining a complex wavenumber k

for a beam such that

k4 = j pS (1 - in)
EI (1 +72)

which results in an equation of motion

d%(x) _ k%(x) - F
dx4 _-j _(X-_o)

(4.2.4)

(4.2.5)
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When forcesare applied at the boundary, equation (4.2.5)ishomogeneous

- k4u(x) =0 (4.2.8)
dx4

and has a solution of the form

u(x) = Ae -jkx + Be jkx _- Ce -kx -{- De kx (4.2.7)

In general, the constants A, B, C and D are complex numbers which are

determined by applying the boundary conditions.

The four unknown constants in the beam displacement solution require

specification of two boundary conditions at each end of the beam to pose the

problem correctly. For a transversely vibrating beam, the appropriate boundary

conditions are displacement, slope, moment and shear force. The displacement

condition for a beam at x---x o is

A specified slope is

U(Xo)= uo (4.2.8)

where u o and Oo are known constants, and are often zero. From elementary

beam theory, the second and third derivatives of u(x) are related to the internal

moment (M) and shear force (F) respectively as

d2u M
- (4.2.10)

dx 2 EI

du

x_xo= O° (4.2.9)
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and

d3u F

dx s EI (4.2.11)

The sign conventions for positive moment and shear are shown in figure (4.2.2).

For the moment and shear boundary conditions only the real part of the

complex modulus E c is used. The real part of the modulus of elasticity is again

assumed to be a valid approximation of the modulus for light damping.

important damping effects are included in the complex wavenumber k.

certain combinations of the boundary conditions can be used.

the beam the two boundary conditions must be given as [29]

The

Only

At each end of

d3u F
U(Xo) ----u o or _ I -- (4.2.12)

dx s x-xo EI

and

du

XJXo = _o or
I - M (4.2.13)

dx 2 x=xo EI

For a point force applied along the beam, analytical solutions are found by

dividing the beam into two sections. Figure (4.2.3) shows a beam driven by a

transverse harmonic point force. As with the rod, the solution procedure

requires the beam to be divided into two sections at the location of the driving

force, as shown in figure (4.2.4). Each of the two beam sections now have its

own displacement solution
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ul(x) = (Ae-jkx+ Bejkx+ Ce-kx+ Dekx)

x x <x <x o

(4.2.14)

and

u2(x ) = (Ee-J kx ÷ Fe jkx + Ge -kx q- He kx)

x o <x <x 2

(4.2.15)

At x = x 1 and x = x2, one boundary condition from both equations (4.2.12) and

(4.2.13) must be specified. At the point where the two beam sections are joined,

x =x o , four boundary conditions must be enforced. Three of the four

conditions are the continuity of displacement, slope and moment relationships

Ul(xo)= u2(Xo) (4.2.18)

du 1 du 2
[ -- [ (4.2.17)

dx X-Xo dx x-x,_

d2Ul d2u2
(EI)I [ = (EI)2 [ (4.2.18)

dx 2 X=Xo dx 2 x=x,,

The fourth condition at x=x o is a balance of forces. The internal shear forces in

both beams at the coupling location must balance the applied shear force F such

that

d3Ul d3u2
(EI)I - (EI)2 F (4.2.19)

Using the four continuity relationships and two boundary conditions at each end
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of the beam, the problem in figure (4.2.3) is completely defined and the eight

constants in equations(4.2.14)and (4.2.15)can be found. The completesolution

for a beam section asa function of both position and time has the form

U(x,t) = (Ae -jkx + Be jkx + Ce -kx + DekX)e j_t (4.2.20)

4.2.1 Power and Energy Equations for a Beam

Power in a transversely vibrating beam is transmitted by two separate

mechanisms. This is in contrast to a rod vibrating longitudinally in which all

the power is transported by the internal axial force, equation (3.2.17). Power

flow in a beam is transmitted by shear and moment mechanisms. The time

averaged power associated with the shear force <q>s is

= 2 [ 0x 3 ) (4.2.21)

where:

EI
Ox 3 is the shear force.

c0__U_Uis the transverse velocity.
_t

The time averaged power carried by the moment <q>m is

(4.2.22)
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where:

EI 02U
c_x2 is the moment.

_U

- c3x--_ is the angular velocity.

Substituting the displacement solution U(x,t) into equations (4.2.21)

(4.2.22) the expressions for shear and moment power may be written as

and

<q>s = -1EIwRe(]k3[jAe-jkx - jBe j_ - Ce-_ + De kx]

[Ae -jkx + Be jkx + Ce -kx + DekX] *} (4.2.23)

and

<q>m = 1EIw Ik 12Re{jk[Ae -jkx -{- Be jkx - Ce -kx - De kx]
2

[jAe-J kx _ jBe jkx + Ce -kx _ DekX] *} (4.2.24)

The total energy density in a transversely vibrating beam is the sum of its

potential energy density (V)

and kinetic energy density (T)

T = 2PS (4.2.26)

Substituting the displacement solution equation (4.2.20) into equations (4.2.25)

and (4.2.26) and calculating time averaged values of potential and kinetic energy
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results in the relationships

and

<'V> -- 1EI [ks [2Re{[Ae-J_ -k- Be jkx - Ce -kx -- De kx]
4

[Ae -jkx + Be jkx _ Ce -_ _ DekX] *} (4.2.27)

<T> = lpS_Re{[Ae-Jla + Be j_ + Ce -_ + De kx]

[Ae -j_ + Be jla + Ce -in + DekX] *} (4.2.28)

4.2.2 Nearfield and Farfield Terms

The complex wavenumber for a

Assuming damping in the beam is small

beam is defined in equation

77<<:1

the real part of k 4 is much larger than the imaginary part. Using this

assumption, the real and imaginary part of the wavenumber k can be shown to

be approximately

and

1

kl _ [ EI _ - cb
(4.2.29)

where

k2 _--"q-4 _ "_" ----4][ 77 kl (4.2.30)

Cb wave velocity in a beam.
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Theseexpressions are excellent approximations for small damping.

The displacement solution for a longitudinally vibrating rod, equation

(3.2.16), is the sum of two traveling wave solutions. The partial solution of the

form e j(_t-_) is commonly referred to as a "right traveling wave", while the

partial solution ej(_t+_) is a "left traveling wave". Actually since k is a complex

number the term ej(_t-_)may be rewritten in the form

eJ{_t-kx) ____eJ(_t--kl x) ek_ (4.2.31)

Equation (4.2.31) represents a right traveling wave whose magnitude is decaying

exponentially ( k2 is a negative quantity ).

The displacement for the beam, equation (4.2.20), is a four term solution.

Four terms are necessary since the governing differential equation for the beam

is fourth order with respect to x. The first two terms in equation (4.2.20) are

identical in form to the displacement solution for the rod, and consequently they

represent exponentially decaying traveling wave solutions. Since k 2 is small, the

rate of decay is small and this portion of the displacement has come to be

known as the farfield solution. The last two terms in equation (4.2.20), the

exponential functions, are commonly referred to as the nearfield solution since

the effect of these terms is significant only near a boundary.

The terminology "nearfield solution" implies that with respect to the total

displacement solution the nearfield terms are generally only important "near"

some type of discontinuity. In this formulation a discontinuity includes all the
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classicalend conditions where the beam terminates, e.g. clamped end, free end,

pinned end, mass loaded end, etc.In addition discontinuitiescan occur where

two differentbeams are coupled and at the location of a driving force.

The nearfieldterms in equation (4.2.20)complicate the displacement solution

for a beam. Ifitwere true that the farfieldterms were always much largerthan

the nearfieldterms the beam analysis could be simplified by neglecting the

nearfieldterms. However, in separate studieson the measurement of structure-

borne wave intensity,Pavic [34]and Noiseux [35]found that, at a discontinuity,

the magnitude of the nearfieldterms can be of the same order as the farfield

terms. In their text on structure-borne sound, Cremer et al. [8] discussed the

role of the nearfield solution in transverse beam vibration. Cremer et al.

explained that the nearfieldisnecessary in order that the displacement solution,

equation (4.2.14),can satisfythe equilibrium conditions at a discontinuity. The

fartheraway a point in a beam isfrom a discontinuity,the lesssignificantisthe

contribution of the nearfieldto the totalsolution u(x). Goyder and White [25]

discussed the importance of the nearfieldin a study of power flow in infinite

structures. Goyder and White derived the displacement solution for an infinite

beam driven by a harmonic point force,as shown in figure (4.2.5). Using a

spatialFourier transformation and contour integral Goyder and White derived

the displacement solutionfor x._0 in terms of a farfieldand nearfieldterm
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u(x) -----Ae -jkx -_ Ce -k_ -- Ae -jk_x e k_ + Ce -k_x e-jk_

where the constants A and C were shown to be

(4.2.32)

and

i= JF
4EIk 3

-F
C-

4EIk s

Note the magnitude of A and C are the same. Thus, the magnitude of

displacement in the vicinity of the drive point, x=0, will be equally dependent

on both the nearfield and farfield effects. However, both terms in equation

k._x
(4.2.32) decay exponentially as x increases. The farfield term decays as e -

while the nearfield term decays as e -k_x. Since Ikl I>> Ik2 I the nearfield term

will decay much more quickly than the farfield term. As an example, consider

the case of an infinite beam made of steel. The hysteretic damping coefficient

for steel is commonly assumed to be of the order r] = 0.001 [32]. Making use of

the relationship between the wavenumber and wavelength

2_"

k 1 _k - _, (4.2.33)

where

), is the wavelength of vibration.

the exponential decay terms in equation (4.2.32) can be written as
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and

X

-klx --2rr_-
e _-_e (4.2.34)

e k_x e- ktx -'_-x= = e (4.2.35)

It was pointed out earlier that at the drive point _he magnitude of the nearfield

and farfield terms in equation (4.2.32) were the same. Using the expressions in

equations (4.2.34) and (4.2.35) it is found that one wavelength from the drive

point in a steel beam, x ----X, the magnitude of the nearfield term is less than

two percent of the farfield term. At x = 2X the ratio of the two is less than

0.0004 percent. Figure (4.2.6) shows a plot of the ratio of the magnitude of the

nearfield term in equation (4.2.32) to the magnitude of the farfield term, for

x_0, as a function of position in wavelengths for a infinite steel beam. Goyder

and White concluded that for large values of kx the nearfield term in equation

(4.2.32) could be neglected. Figure (4.2.6) and equations (4.2.34) and (4.2.35)

support this conclusion.

For small damping, the displacement solution for the infinite beam, equation

(4.2.32), is essentially the sum of a right

exponentially decaying function. The two

traveling wave solution plus an

term solution is sufficient for an

infinite beam since there is no discontinuity in the beam to reflect the wave and

create a left traveling wave. The displacement solution for a finite beam,

equation (4.2.14), consists essentially of a right and left traveling wave solution

plus two exponential functions. Both a right and left traveling wave solution
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are required in a finite beam to account for reflections which occur when a

propagating wave encountersa discontinuity. The finite beam also requirestwo

nearfield solutions to allow the boundary conditions at each end of the beam to

be satisfied.

The displacement solution for beam section 2, shown in figure (4.2.4), is

u2(x ). For light damping, the magnitude of the traveling wave solution,

Ae-Jkx W Be j_ is essentially constant over the length of the section since the

decay terms are small. The nearfield solution Ce -kx is associated with the left

boundary, x----Xo, on beam section 2 while the nearfield solution De kx is associated

with the right boundary at x --x_. Except for the case when the beam section

length is much less than the wavelength of vibration, it can be shown that the

nearfield solution associated with one boundary is negligible at the other

boundary. For example, consider the case shown in figure (4.2.4) where the

wavelength of vibration is equal to twice the length of beam section 2. At x----xo

the magnitude of the partial nearfield solution associated with that boundary,

Ce -_, can be of the same order as the magnitude of the traveling wave portion

of the total displacement solution. However, at the other boundary, x -- x2, the

magnitude of Ce -kx°" is about four percent of its value at x---xo, and therefore can

be neglected near x--x 2. At the same time, at x----x 2 the magnitude of the

partial nearfield solution associated with the right boundary, De kx_, can be of the

same order of magnitude as the traveling wave solution but is negligible near

x----xo. The concept of nearfield solutions being associated with a particular
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boundary, allows approximations of the total displacement solution near a

discontinuity. It can be argued that if the length of beam section 2 in figure

(4.2.4) is greater than one half the wavelength of vibration, in the vicinity of the

the total displacement solution u2(x ) can be writtenleft boundary, x---Xo,

approximately as

U2L(X) = Ae -jkx + Be jkx + Ce -kx (4.2.36)

Equation (4.2.36) is based on the assumption that the nearfield solution De _ is

negligible near x----xo. By the same reasoning the displacement solution near the

right boundary, x -- x2, can be written approximately as

U2R(X) -- Ae -jkx + Be jkx + De kx (4.2.37)

As the driving frequency of the forcing function increases, the

approximations in equations (4.2.36) and (4.2.37) become better. As the driving

frequency increases, the wavenumber, which is proportional to the square root of

frequency, also increases. AS the wavenumber increases the wavelength of

vibration decreases and the effective region of the nearfield solution gets smaller.

When the driving frequency is high enough, such that the length of beam

section 2 for the case in figure (4.2.4) is ten wavelengths long

(x 2 = 10_,)and Xo==0, the partial nearfield solution Ce -kx is significant only in

the region 0 _x _.05x 2 while De kx is significant only in the region

•95x 2 ___x __ x 2. At this frequency, the nearfield solutions are significant on only

one tenth of the total beam section 2. This means that on the region
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•05x2 <x < .95x2 the displacement solution

approximately by the traveling wave solution

for section 2 can be written

U2FF(X ) = Ae-J kx .{. Be jk_ (4.2.38)

The validity of equation (4.2.38) is based on the assumption that the partial

nearfield solutions are negligible over most of the beam.

As a final example of the relative importance of the nearfield and farfield

terms to the total displacement solution, consider the case of the harmonically

excited beam shown in figure (4.2.3) with no end constraints, i.e. a free-free

beam, with the following beam parameters.

x 1 = -0.5 m

x o =0

x 2 = 0.5 m

EI -= 500 Nm 2

pS = 2.358 kg/m

p = 7860 kg/m 3

q = 0.001

A free end condition can be accomplished by setting the spring rates of the

system shown in figure(4.2.3)to zero. Figure (4.2.7)isa plot of the ratioof the

magnitude of the nearfieldsolution to the magnitude of the farfieldsolution
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[Ce-kX [ + [Dek_ I

[Ae_Jkx i + iBeJkx [ (4.2.39)

for beam section 2 in figure (4.2.4), as a function of position. The four curves in

figure (4.2.7) correspond to the four cases where the wavelength of vibration

equals 2x2, x2, .5x2, and .25x 2. When k----2x2---1 and _------x2=0.5 figure (4.2.7)

suggests that the effects of the nearfield terms are important over the entire

beam section length. Thus approximating the displacement using only the

farfield terms, equation (4.2.38), is not valid anywhere on the beam. For the

case when )_-_.5x2==0.25 , equation (4.2.38) is a good approximation over the

middle section of the beam but not near the boundaries. When k---.25x2---0.125

however, figure (4.2.7) indicates that the farfield displacement solution is valid

over the region .05_.x_.45, or approximately eighty percent of the beam length.

As the wavelength of vibration gets smaller, the farfield displacement solution

becomes valid over more of the beam.

The arguments and figures in section 4.3.3 demonstrate how to determine

which conditions and ranges the displacement solution for a transversely

vibrating beam is well modeled by the farfield solution. Neglecting the nearfield

displacements in power flow analysis is fairly common in the literature. Nefske

and Sung [2], Goyder and White [25], Pavic [34], and Noiseux [35], at some

point in their analyses assumed the nearfield effects were negligible.
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4.2.3 Energy Density in a Beam

The expressions for the time averaged potential and kinetic energies for a

beam in terms of wave amplitudes are

<V> = 1EI ]k 2 ]2{ IA 12e2k_+ IB 12e-2k_x+ IC 12e-2k_x+ ID 12e2k_x
4

--Z * * Z X * * *

--2e _X[Re(AC )cosz2x÷Im(AC )sinz2x]-2e' [Re(AD )coszlx+Im(AD )smz,x]

--2e-'"[Re(CB*)coszlx+hn(CB*)sinzlxl-2e'_X[Re(DB*)cosz2x+Im(DB*)sin(z2x)]
• $ * *

+2[Re(AB )coS2klX+Im(AB )sin2klx]+2[Re(CD )cos2k2x+Im(CD )sin2k2x]}

(4.2.40)
and

<T> = 41-'pS_{ IA 12e2k_+ IB 12e-2k'_+ ]C 12e-2k"+ ID ]2e2k'_

--Z._ • ZlX •+2e - IRe(At)cos, x+ (AC )slnz x]+2e [Re( )cOSZlX÷Im( )sm,.lX]
--ZI x * * . _q[: * • ,

÷2e [Re(CB )coszlx+Im(CB )smzxx]+2e" [Re(DB )cosz2x+Im(DB )smz2x ]

• $ $ * .

+2[Re(AB )cos2klx+Lm(AB )sin2klx]+2[Re (CD)cos2k2x+Im(CD )sm2k2x ]

(4.2.41)

where

and

zI = k 1 + k2 = kl(1 - _)

z2--k l-k 2=kI(I + 4"_-)

To illustrate the distribution of the energy density components in a transversely

vibrating beam, consider the harmonically excited beam in figure (4.2.8). The

beam in figure (4.2.8) is excited by a transverse point force at x o and is simply

supported at both ends. Figure (4.2.9) is a plot of the exact potential, kinetic



63

and total energy densities when the following beam parameters are used.

X 1 _0

x o _- 0.25 m

x_ ----0.5 m

EI ffi 500 Nm 2

pS ffi 2.358 kg/m

p ----7860 kg/m 3

7} ----0.001

w = 36791.95 rad/sec

The potential and kinetic energy densities in figure (4.2.9) are calculated from

equations (4.2.40) and (4.2.41). The total energy density is the sum of the

potential and kinetic energy densities. Over most of the beam length the

potential and kinetic energies are in phase with each other and of the same

magnitude. The only place where the potential and kinetic energies are out of

phase or of different magnitude is near the point force. Such behavior near the

point force is the result of the nearfield effects. Figure (4.2.9) shows that the

total energy density in a beam is a spatial harmonic function. This is in

contrast to the distribution of energy density in a rod where the total energy

density has no significant harmonic components.

Using the assumption of light damping, some simplifications may be made to

the exact energy density solution. When r/_l the magnitude of Ik 2 12 may be

written approximately as
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[k_[_ _ J E2-_I (4.2.42)

Thus, the following relationship may be written

EI ]ks ]__ EIJE_I = ;SJ (4.2.43)

The total time averaged energy density at a point is calculated by adding

equations (4.2.40) and (4.2.41). Substituting equation (4.2.43) into the potential

energy expression, equation (4.2.40), and adding the potential energy to the

kinetic energy, equation (4.2.41), the approximate total time averaged energy

density <e> is

<e> = lpS_{ [A [2e2kg+ IB [2e-2k_-t-[C [2e-2k'x+ [D 12e2k'x

+2 [Re(AB*)cos2klx-bIm(AB*)sin2klx] +2 [Re(CD*)cos2k2x+Im(CD*)sin2k2x] }

(4.2.44)

The assumptions used in deriving equation (4.2.44) are that hysteretic damping

is smallT/<<l, thus, Ik 212_ pS andE c_E.
EI

There are several differences between the approximate total energy density

function for a rod, equation (3.2.29), and the approximate total energy density

for a beam, equation (4.2.44). There are two nearfield terms in equation (4.2.44)

which will only be important near the boundaries. For the beam, a harmonic

farfield function

2[Re(AB*)cos2klx ÷ Im(AB*)sin2klx ] (4.2.45)

exists. It has been shown that when damping is light the harmonic portions of
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the potential and kinetic energies in a rod were out of phase with one another

and therefore add to zero when the potential and kinetic expressions were

summed. Investigation of the expressions for potential and kinetic energies for a

beam, equations (4.2.40) and (4.2.41), shows that both the potential and kinetic

energies have harmonic terms which are in phase with each other. Thus, when

the potential and kinetic energies are added, the harmonic function in equation

(4.2.45) is not canceled as it is in a rod.

The spatially harmonic portions of the time averaged potential and kinetic

energies are in phase with one another due to the potential energy storage

mechanism in a beam. Equation (4.2.25) shows that the potential energy in a

beam is proportional to the square of the second derivative of displacement with

respect to x. In a rod the potential energy is proportional to the square of the

first derivative of displacement with respect to x.

energy is proportional to the displacement with

In both cases the kinetic

respect to x. In a beam

therefore, the maximum time averaged values for both the farfield potential and

kinetic energies occur at the same location in the beam. For a rod these

maximum values were out of phase with each other.

4.2.4 Simplifying the Power and Energy Expressions for a Beam

In general, none of the terms in equation (4.2.44) are negligible. However, in

many applications the exact spatial profile of energy may not be required. As an

example consider the farfield of a small acoustic noise source. It has been shown

by Kinsler et al. [30] that in the acoustic farfield the distinguishing
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characteristicsof a simple noise source is its source strength. The source

strength isdefined as the surface integralof the normal velocity over the source.

Thus, the detailsof the velocity distributionon the source are not important.

Two sound sources with different velocity distributions but equal source

strengths would be indistinguishablein the acoustic farfield.In SEA, which is

used as a noise prediction technique, the average values of energy are converted

into expressions for averaged displacement or velocity in a system. These

average values can be used to estimate the acoustic radiation of a structure.

One may apply this idea of space average values to the power and energy

equations for a beam. Expanding the expressions for the time averaged shear

and moment power, equations (4.2.23) and (4.2.24), gives

<q>s = -- 1-EIwRe{jk3[J ]A ]2e2k_x+jAB*e-2jk'x+jAC*e-(l+J)z_x+jAD*e(1-J)z_x
2

•,-,--* 2jklx • ]2e-2k_x--jt_A e --3 IB -jBC*e-(1-J)z_x-jBD*e(l+J)z_x

--CA*e-(1-J)z_-CB*e-(1+J)z'x--IC 12e-2k'X-CD*e -2jk_x

+DA*e(l+J)z'x+Ds*e(1-J)z2XWDC*e2jk-'x+ [D [2e2k'x]} (4.2.46)

and

<q>m = --1EIc_Re{j k Ik ]2[j [A ]2e2k#--jA_B*e-2jk'x--AC*e-(l+J)z'-'X+AD*e(1-J)z'x
2

j.,-,--* 2jklx •_2k e --j[B [2e-2k'2X-BC*e-(1-J)z'XwBD*e(l+J)z-'x

-jCA*e-(1-J)z"-+jCB*e-(l+J)z'x+ IC [2e-2k'X--CD*e-2jk_x

-jDA*e(l+J)z'X+jDS*e(1-J)z_x+Dc*e2Jk"x- [D [2e2k'x] } (4.2.47)

When the sum of the shear and moment power expressions in equations (4.2.46)

and (4.2.47), is spaced averaged by
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x+X- 1
<q>-- k f <q>d_

X

the average power <q> in a beam is found to be

<q> =

EI_ {4_(k?-kxk/)[ IAI'e'k_- IBI'e-_k'_l+(kl'k,-k23)[ID I'e 2klX+4"- IC IZe-'k'Xl
4r

k14-kl_k2 2
+2 [ae(CD*)[cos2k2x--cos2k2(x+X)l+Im(CD*)[sin2k,x---sin2k2(x_X)ll

k_

-k I * " * * *

+2k/k_e 1[Re(AC)sink_x-Im(AC)cOSklx+ae(CB)sinklX-Im(CS)coskxx]

q-2kl2k2e(2rr+klx) [Re(AD *)sinkxx--Im(AD*)cOSklX+Re(DB*)sinklx--Im(DB*)eOSklX] }

(4.2.48)

In integrating the sums of equations (4.2.46) and (4.2.47) to derive equation

(4.2.48) the following approximations, based on light damping, were used

z1 _ z2 _ k 1 (4.2.49)

k- 2_" _ 2_.___._ (4.2.50)
k k 1

e 4'_ -- 1 _ e4rr (4.2.51)

e-4_ - 1 _ --1 (4.2.52)

ko

4,r--:-- k2
e k, _ I _- 47r_ (4.2.53)

kl

k. 2

-4,r_ k2
k, (4.2.54)e --i _--4_

kl
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Similarly, the space averaged gradient of the total energy density is found by

integrating the derivativeof equation (4.2.44)as

d<e> _ I x_ d<e>
dx >, d_

X

which results in the expression

do"

d<e> _ El {47&14k2[ iA 12eRk__ IB 12e-2k'°x]- IC 12e-2k'x+ID 12e(4_+2k`x)
dx •41r

-{-Re(CD*)[cos2k2(x+)x)--cos2k2x ]+Im(CD*)[sin2k2(x-l-)x)-sin2k2x]}

The presence of the nearfield terms in the displacement solution for a beam

complicates the power flow and energy density expressions to the point where no

simple relationship exists between the average power flow, equation (4.2.48), and

the average gradient of the energy density, equation (4.2.55). In section 3.2.3 an

expression relating the power flow in a rod to the gradient of energy density was

developed. This relationship allowed the development of equation (3.2.36) which

models the energy density in a rod. In working with the space averaged power

and energy equations for a beam it was found that a similar equation relating

power flow and the gradient of the energy density could be developed only if the

nearfield effects could be neglected. In section 4.2.2 it was shown that at a

sufficiently high frequency, the displacement solution for a beam, equation

(4.2.14), is well approximated over most of the beam's length by the farfield

solution, equation (4.2.38). If the analysis is restricted to frequencies where the
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farfield displacement solution is a good approximation, then the equations

describing the average power flow and energy density gradient simplify to

<q>_ = EIw{kl3[ [A [2e2k_ -- [B [2e-2k'_x]} (4.2.56)

where <q>ff is the average farfield power flow and

dx
-- EI{kl4k2[ [A I2e 2k2x - [B IMe-2k' ]) (4.2.57)

i

where <e>ff is the average farfield energy density. The assumptions used in

calculating equations (4.2.56) and (4.2.57) are the same as used in calculating the

spaced averaged power flow plus the following assumption based on light

damping

?72

kl 3 --klk2_ = klS(l - "_) _ kl 3 (4.2.58)

Dividing equation (4.2.56) by (4.2.57) and solving for <q>ff

relationship

yields the

- --4Cb 2 d<e_

<q>ff-- r/w dx (4.2.59)

Thus, the average farfield power flow in a beam is proportional to the gradient

of the average farfield energy density.

The relationship between power flow and energy density in a beam developed

by Nefske and Sung [2] is, in the present notation
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--4Cb 2 d<e>ff

<q>ff -- r/_ dx (4.2.60)

Note that equations (4.2.59) and (4.2.60) are almost identical. The only

difference between the two equations is that equation (4.2.59) relates spaced

averaged power and energy density while equation (4.2.60) relates local values of

power and energy density. In their work, Nefske and Sung apparently ignore

the spatial variation of energy density which exists in a transversely vibrating

beam. The gradient of the energy density in a beam varies between positive and

negative values, as shown in figure (4.2.9). Thus, in writing an expression for

which the power flow is proportional to the local gradient in energy density, as

shown in equation (4.2.60), it would be found that the power flow would change

signs (directions) in a region where no additional power is added. This would be

a violation of the conservation of energy.

4.2.5 Energy Balance in a Beam

Figure (4.2.10) shows an energy balance done on a differential beam element.

Using average values of energy density and power flow, a control volume

analysis of power flow in a beam element in figure (4.2.10) leads to a energy

balance

where

0<e>
-- -- <Tr>diss (4.2.61)

_t _x

<_>diss is the time and averaged dissipated power.
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For time and space averaged farfield values of power flow and energy density

one may use the relationship given in equation (4.2.59) to replace <q> by a

term proportional to the first derivative of <e>ff with respect to x. The time

derivative of energy is equal to zero for steady state conditions, and thus

equation (4.2.61) may be written

4Cb2 d2<e>ff

r/W dx 2

m

_diss = 0 (4.2.62)

4.2.8 Power Dissipation in a Beam

At steady state, equation (4.2.62) shows the average power

proportional to the second derivative of the average energy density.

the second derivative of energy density, the average dissipated power is

_di_- ----2SJ2 _7{ IA 12e2k'x- IB [2e-2k"x}

The average energy density over a wavelength is

dissipated is

Calculating

(4.2.63)

<e>t f _ psi{ IA 12e2k._,x- IB ]2e-2k:x } (4.2.64)
2

Dividing equation (4.2.63) by (4.2.64) and solving for 77"dissgives the result that

7rdiss = rl_ <e>ff (4.2.65)

Thus the space averaged power dissipated in a beam is proportional to the

average energy density. Equation (4.2.65) is identical in form to (3.2.35) which
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relateslocal power disspationto the local energy density in a rod.

4.2.7 Governing Equations for the Energy Density and Power Flow in a
Beam

Substituting equation (4.2.65) into (4.2.62) and rearranging terms gives the

approximate governing equation for the farfield space averaged energy density in

a beam

where

dx 2
= 0 (4.2.88)

2c b

The assumptions used in developing equation (4.2.66) are the same as those used

in section 4.2.4 to develop equation (4.2.48) along with the assumption that the

displacement in the beam is well modeled by the traveling wave solution in

equation (4.2.38).

The general solution to equation (4.2.66) is

_e_ff ----C1eCx -t- C2 e-¢x (4.2.67)

where the constants C 1 and C 2 are determined by applying the boundary

conditions, either a specified energy density or power flux condition. The power

flow is calculated by finding the derivative of _e_ff as discussed in equation

(4.2.59)



73

<q>ff = --2Cb(C1e_x-- C2e-_ x) (4.2.68)

4.3 Summary

In developing the power and energy density equations, it was found that two

complications arose in the beam analysis in chapter 4 which did not occur in the

rod analysis in chapter 3. The first complication in the beam analysis was the

existence of a nearfield in the displacement solution, as shown in equation

(4.2.20). The second complication was the harmonic, spatial variation of energy

density in a beam, as shown in figure (4.2.9).

In section 4.2.2 the conditions for which the nearfield terms in the beam

displacement solution could be neglected were determined. Thus, under certain

conditions the displacement solution can be approximated by the farfield terms.

It was also shown that the spatial variation in the farfield energy density could

be removed by integrating the farfield energy density over a wavelength of

vibration to achieve a local space average.

Equation (4.2.59) shows that under the assumptions that hysteretic damping

is small 77_ 1:
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I I.

2) the displacement solution in a beam iswell modeled by the

farfieldsolution as shown in equation (4.2.38).

3) <q>ff is approximated by equation (4.2.56).

d<e>ff .

4) dx Is approximated by equation (4.2.57).

Using these assumptions, it was found that the space averaged power flow in a

beam is proportional to the space averaged gradient of energy density.

Furthermore, the control volume analysis shown in figure (4.2.10) along with the

relationship between space averaged power dissipation and space averaged

energy density allows the development of equation (4.2.66) which models the

energy distribution in a beam.

In their study of power flow in beams, Nefske and Sung ignored the

harmonic, spatial variation in energy density which exists in a vibrating beam.

Thus, in deriving a relationship between the power flow and the gradient of

energy density in a beam, equation (4.2.60), Nefske and Sung used local values

of power and energy density instead of space averaged values.
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Figure 4.2.1 - Transversely Vibrating Beam Excited by a Distributed Forcing

Function with General Spring Boundary Conditions
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Figure 4.2.2 -Sign Conventions for Positive Moment and Shear Force in a

Transversely Deflected Beam
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Figure 4.2.3 -Transversely Vibrating Beam Excited by a Harmonic Point

Force at x o with General Spring Boundary Conditions
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Figure 4.2.4 - Transversely Vibrating Beam from Figure (4.2.3) Split into Two

Components to Allow the Harmonic Point Force to be Applied as

a Boundary Condition
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Figure 4.2.5 - Infinite, Transversely Vibrating Beam Excited by a Harmonic

Point Force at x o
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Figure 4.2.{} -Ratio of the Magnitude of the Nearfield Term to the Farfield

Term in Equation (4.2.32) for x_0 as a Function of Position in

Wavelengths
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Free Boundary Conditions as a Function of Position
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Figure 4.2.8 - Simply Supported, Transversely Vibrating Beam Excited by a

Harmonic Point Force at x o
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Figure 4.2.9 -Exact Potential, Kinetic and Total Energy Densities in the

Transversely Vibrating Beam Shown in Figure (4.2.8)
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Figure 4o2o10 -Energy Balance on _ Differential Element in a Transversely

Vibrating Beam Excited by a Harmonic Point Force
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CHA.PTER S - COUPLING ENERGY SOLUTIONS

5.1 Introduction

The objective of power flow analysis is to provide a means by which the

propagation of vibrational power through a structural/acoustic system can be

studied. The governing equations which model power flow and energy density in

individual rods and beams were developed in chapters 3 and 4. However, to

analyze the power flow in a built up structure a method of coupling the

solutions for individual rod and beam elements must be developed. A complete

coupling scheme will provide the necessary boundary conditions so that the

unknown constants in the energy solutions for rods and beams, equations

(3.2.37) and (4.2.67) can be solved. However, even in simple configurations,

coupling rods and beams for this energy formulation without using an exact

solution, can be a formidable task. One of the major difficulties in calculating

the coupling parameters of a complex system is accurately describing the

resonant behavior of a built up structure and its components.

5.2 Energy Density Jump Conditions

Figure (5.2.1) shows the simple case of two rods joined rigidly at the ends,

undergoing longitudinal vibration. The input and output power fluxes in figure

(5.2.1) are assumed to be known. From equation (3.2.37) the energy density

solutions for rod 1 and rod 2 are
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and

<e>l = Cle _x A- C2e -_x (5.2.1)

where

<e> 2 _-C3e ¢2x-4-C4e-¢_x (5.2.2)

and

W

Cl

/

_ = _2
C2

The four unknown constants in equations (5.2.1) and (5.2.2) require four

boundary conditions to completely define the problem.

To illustrateone method of coupling the energy solutions for two rigidly

connected rods, the analogous heat transfer problem will be discussed. The

analogous heat transfer problem for the two coupled rods is a simple 1-D

thermal conduction through two connected fins with a convective heat loss,

_onv, as shown in figure (5.2.2).In one dimensional thermal conduction, the

relationshipbetween the heat fluxand the temperature is[36]

where:

dT

qt(x) =-_ dx (5.2.3)

T(x) is the rod temperature.

qt(x) is the thermal heat flux in the x direction.

is the thermal conductivity of the material.
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The general temperature

figure(5.2.2)is

and

solution to the conduction/convection problem in

_l(X)- Die m_x -{.D2e -m_x (5.2.4)

where:

_2(x) ----Dse m-°x+ Dse -m=x

dg(x)= T(x) --Too

Too isthe ambient temperature.

(5.2.5)

The values of m 1 and m 2 are functions of the convection coefficient, material

conductivity and fin geometry. Note the similarities between equations (5.2.1),

(5.2.2), (5.2.4) and (5.2.5).

As with equations (5.2.1) and (5.2.2) the solutions for the temperature

distributions require specification of four boundary conditions to solve for the

four unknown constants in equations (5.2.4) and (5.2.5). Two of the boundary

conditions in figure (5.2.2) are specified heat fluxes at the ends, qin,t and qout, t-

At the fin interface, x--Xo, the assumption used in heat transfer is that there

exists a continuity of both temperature

OlCxo) = 02(Xo) (5.2.6)

and heat flow

qlZ3 = qlt(Xo)= q2t(Xo) (5.2.7)
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The continuity of heat flow in equation (5.2.7) implies the coupling of the fins in

figure (5.2.2) is conservative. Thus, any heat (energy) leaving one fin at the

interface x--x o must enter the other fin. The boundary conditions in equations

(5.2.{}) and (5.2.7) along with the heat fluxes at the ends and a given value for

T¢_ complete the specification of the heat transfer problem shown in figure

(5.2.2) and allow the constants D 1 through D 4 in equations (5.2.4) and (5.2.5) to

be evaluated.

In the rod vibration problem, figure (5.2.1), a conservative coupling between

rods 1 and 2 may also be assumed. Thus the power flow out of rod 1 in the x

direction at x = x o must be equal to the power flow into rod 2 in the x direction

at x = x o

q12 -- <q)l I = <q)z I (5.2.8)
X_X o X_X o

Equation (5.2.8) provides the third boundary condition needed to couple the

vibrating rod system. The fourth condition needed to solve for the unknown

constants in equations (5.2.1) and (5.2.2) is more elusive.

In the case of the conducting fins, figure (5.2.2), a continuity of the primary

variable, temperature, at the coupling location was used as the fourth boundary

condition. However, in the structure to structure coupling shown in figure

(5.2.1), the primary variable, energy density, is not continuous at x = x o. A

"jump" condition in energy density occurs at the rod-rod interface. The actual

jump in energy levels at x = x o depends on the material properties and cross
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sectional area of the two rods. The energy jump also depends on the amount of

kinetic and potential energy density at the coupling location.

In the case of two rigidly coupled rods, a continuity of both velocity

c3U1 c3U2

-'_-'- I - [ (5.2.9)
X_X o _ X_X o

and axial force, which can be expressed as

C_ 1 c_U 2

I = (ES)2 [ (5.2.10)(ES)I _ ,-,o _ ,=Xo

must be maintained at the interface. Using the continuity conditions in

equations (5.2.9) and (5.2.10), relationships between the potential _V> and

kinetic _T_ energy densities for rods 1 and 2 at the coupling location can be

developed. Using the definition of kinetic energy density given in equation

(3.2.21) and the velocity condition in equation (5.2.9) it can be shown that the

relationship between the kinetic energy density of rod 1 and rod 2 at x = x o is

(ps)l
<T>I I - <W> 2 ] (5.2.11)

X-Xo (ps)2 x-x,

Similarly, using the definition of potential energy density in a rod, equation

(3.2.20), and the continuity of force in equation (5.2.10), a relationship between

the potential energy densities at the coupling location can be shown to be

(ES)2
_V_>lX-Xol-(ES) 1 _>2 xffix,,I (5.2.12)
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Adding equations (5.2.11)

X _---X o is

and (5.2.12) the total energy density of rod 1 at

<e>l I (pSh (ESh
X-Xo-(pS)2 <T>_ X-Xo[ + (ES)----__V>2 X-Xo[ (5.2.13)

Equation (5.2.13) can be put in a more useful form by writing the kinetic energy

density of rod 2 at x = x o as

<T>2 _ I = a<e>2 I (5.2.14)
XBXo X_X o

and the potential energy density of rod 2 as

where

<V>2 I =b<e>2 ] (5.2.15)
I_I o l,,,,l o

0<a<l

b=l-a

Substituting equations (5.2.14) and (5.2.15)into equation (5.2.13) gives the

relationship between the total energy densities of rod 1 and 2 at the rod-rod

interface as

t (PS)I b_}<e>2 =+ (

Equation (5.2.16) is the jump condition in energy density which exists at the

interface. The variable "a" in equation (5.2.14) is the ratio of kinetic energy

density to the total energy density in rod 2 at x =x o. "b" is the ratio of

potential energy density to the total energy in rod 2 at x = x o.
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Figures (5.2.3)-(5.2.5) are plots of the energy densitiesin the two coupled

rods, shown in figure (5.2.1), driven by a harmonic point force at x = x 1. Rod 2

has a free end condition at x---x_ (i.e. CrL=0 ). In figures (5.2.3)-(5.2.5), the

parameters for the two coupled rods are

length of rod 1 = 5 m

length of rod 2 = 5 m

(ES)I = × 107 N

(ES)2 = 3 × 107 N

(PS)I = 2.358 kg/m

(pS)== 1.179kg/m

771 = _72 = 0.01

Thus for the plots in figures (5.2.3)-(5.2.5) the ratios in equation (5.2.16) are

and

(PS)I 2.358

(PS)2 1.179
-2

(ES)2 3 × I0 v 1

(ES), 6X10 7 2

The first plot, figure (5.2.3), illustrates a case where the driving frequency of the

input is _ 11093.1 rad/sec. At this frequency, the potential energy density is

zero at the interface, x=5. Thus, b=0 and the energy density is all kinetic

energy density, a=l. In this case where a=l and b'-'-'0 equation (5.2.16)

indicates that the jump condition at x = x o is
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(ps)l
<e>l ] -- <e>2 [ =2<e> 2 ] (5.2.17)• .o (ps), X_Xo X_X o

At x ----x o the energy density in rod 1 is twice that in rod 2. This behavior is

illustrated in figure (5.2.3). The second plot, figure (5.2.4), demonstrates another

case where the driving frequency is _ 12677.8 rad/sec. At this frequency, the

kinetic energy density is zero, a--0, at the interface and the total energy density

is all potential energy density, b=l. With a--0 and b=l equation (5.2.16)

predicts that

(ES)2 1

<e>l I (Es), <e>= (5.2.18)XUXo _ Xi[Zo _ XJXo

In this case equation (5.2.18) shows that the energy density in rod 1 at x = x o is

one half the total energy density in rod 2. Again the result in equation (5.2.18)

is illustrated in figure (5.2.4).

The last example, shown in figure (5.2.5), is a case where the driving

frequency is _ 11885.44 rad/sec and at the interface, half the energy density in

_1 and half is potential energy density, b--1.
rod 2 is kinetic energy density, a- 2 , 2

The jump condition from equation (5.2.18) is

!l(;s)' (Es)=} ----1.25<e> 2 [ (5.2.19)
X_X o

which is illustrated in figure (5.2.5).
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If the value of either a or b in equation (5.2.1{}) were known, the jump

condition between <e> 1 and <e> z at x----x o could be calculated. It would

follow that the problem shown in figure (5.2.1) would be completely defined and

the constants in equations (5.2.1) and (5.2.2) could be evaluated. Unfortunately,

calculating the percentage of potential and kinetic energy density at a coupling

location would require a complete classical analysis of the system in figure

(5.2.1). If a classical analysis is available, there is no need for the simplified

theory in chapter 3.

Equation (5.2.16) is still a useful relationship in that even without knowing

the exact values of a and b, it can be used to set bounds on the ratio of the local

_e> 1

energy densities <e>2 at the coupling location. The maximum ratio of <e> x

to <e> 2 at x o is

where the operator max (pS) 2 , (ES) 1

the brackets. The minimum ratio of <e> 1 to <e> 2 is

<e>l L • [(PS)I (ES)2 }<e> 2 ,J-o i --mm_(--p'_2 ' (ES)I

where the operator min (pS)= ' (ES)I

the brackets.

<e>1 _ _(PS)I (ES)2 } (5.2.20)

gives the largest of the two values in

(5.2.21)

gives the smallest of the two values in
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For a given set of known power flux end conditions and at a specific

frequency, the ratios in equations (5.2.20) and (5.2.21) can be used to set upper

and lower bounds on the energy density levels and power flow in the coupled.rod

system in figure (5.2.1). For example, consider the system in figure (5.2.1) with

the same rod parameters used for the test cases shown in figures (5.2.3)-(5.2.5).

For this example, it will be assumed that the power flow into rod 1 in the x

direction at x-----x1 is qin --1 and th e power flowing out of rod 2 in the x direction

at x--x 2 is %ut --0. A conservative coupling between rods 1 and 2 will be

assumed which allows equation (5.2.8) to be used as the third boundary

condition. Thus, three of the four necessary boundary conditions are

X_X I

<q_2 [ = 0
X_X 2

<q>l [ = <q>2
X_Xo

I
X_X o

From equation

value of the ratio between <e> i and <e>_ at x o is

<e>l J I -- (PS)l,-,o = (PS)2
The minimum ratio from equation (5.2.21) is

(5.2.20) and the given system parameters,

-2

the maximum

(5.2.22)

<e>1 _ (ES)2 i

(ES)l- 2 (5.2.23)

Equations (5.2.22) and (5.2.23) can be used to provide the fourth boundary
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condition needed to solve for the unknown constants in equations (5.2.1) and

(5.2.2). For one solution, the fourth boundary condition, from equation (5.2.22),

is

<e>l I =2<e>2 [ (5.2.24)
X_X o X_X o

For the second solution, the fourth boundary conditions from equation (5.2.23)

is

<e>l xJxo -- 2 <e>2 x-[Xo (5.2.25)

Figures (5.2:6) and (5.2.7) show the upper and lower bounds on the power

flow and energy density at a driving frequency of _ 11885.44 rad/sec as

calculated from the boundary conditions in equations (5.2.24) and (5.2.25). At

the same frequency, with the same power flux end conditions and a rigid,

conservative coupling of rods 1 and 2, any combination of a and b in equation

(5.2.16) would result in a power flow solution and energy density levels which

would fall within the bounds illustrated in figures (5.2.6) and (5.2.7).

Figures (5.2.6) and (5.2.7) demonstrate that while equation (5.2.16) cannot

provide exact information about the power flow and energy density levels, it can

provide useful information about the dynamic response of the coupled rod

system. A similar analysis of the local energy densities of two rigidly coupled

beams would produce results analogous to those found in equations (5.2.11),

(5.2.12) and (5.2.16). However, the coupling junction of two dissimilar beams is
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a discontinuity. Thus, the nearfieldterms in the beam displacement solution

cannot be neglected when localcoupling methods are studied since the nearfield

terms can be of the same magnitude as the farfieldterms at a discontinuity.

Modifications must be made to the farfieldenergy density solutionsdeveloped in

chapter 4 to include the nearfieldeffectsat a coupling junction.

5.3 Coupled Rods

Figure (5.3.1)shows two rods vibrating longitudinally,coupled by a linear

spring of spring rate _L1- From equation (3.2.36)the energy solutionsfor rods 1

and 2 are

_e_ 1 = CIe_x + C2e -_x (5.3.1)

<e>_ = Cse_x --I-C4e -_'_x (5.3.2)

where

and

el

/

=
C2

The coupling schemes to be introduced in this section will provide the necessary

boundary conditions to solve for the unknown constants in equations (5.3.1) and

(5.3.2) by calculating the power flow, q12, between rods 1 and 2. By assuming a

conservative coupling, the power flowing out of rod 1 at x = x o is equal to the

power flowing into rod 2 at x -x o. The coupled structure in figure (5.3.1) can
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be split into two components, as shown in figure (5.3.2), where a power flux is

specified on both ends for each component. Knowing the power flux on both

ends of each rod will allow the constants in equations (5.3.1) and (5.3.2) to be

solved.

5.3.1 Coupling Rods Using Receptance

The receptance method is an exact solution by which the vibrational

response of a built up structure can be analyzed by studying the dynamic

characteristics of its individual component parts. Using receptances to calculate

the power transferred between coupled systems has been suggested by both

Pinnington and White [16] and Cuschieri [37] in their work with power flow

solutions. A good introduction to the receptance method is found in $oedel's

book on the vibration of plates and shells [291. As defined by Soedel, the

receptance of a structure is " the ratio of a steady state deflection response at a

certain point to a harmonic force or moment input at the same or different

point." Actually, in a power flow analysis it is more convenient to use mobility

functions (_ij) which are the ratio of a steady state velocity response at a certain

point to a harmonic force input at the same or different point

velocity response at location i (5.3.3)
c_iJ - harmonic input at location j

Though mobility functions are used in this analysis the coupling technique is

still referred to as the receptance method.
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Consider the coupled rod system in figure (5.3.3). The receptance method

allows the coupled system in figure (5.3.3)to be analyzed by studying the

vibrationalcharacteristicsof the two components shown in figure(5.3.4).In this

analysis _j will represent a mobility function of rod 1, _ij will represent a

mobility function of rod 2. The mobility of rod 1 in figure(5.3.4)is

Vaiej_t Vai

c_ij- Faj_, t - Fa j (5.3.4)

where:

Vai ejwt is the velocity of rod 1 at point ai.

Faje j_t is the point force acting on rod 1 at point aj.

For example, c_12 is the ratio of the velocity of rod 1 at x--_al due to a harmonic

point force acting at x---a2. For a given set of boundary conditions the mobility

of rod 1 is easily calculated using a classical solution. In figure (5.3.4) rod 1 is

excited by two forces. The input force Fal ej_'t acts on rod 1 at x-----al while a

reaction force, Fa2e jWt due to the coupling with the spring=rod system 2, acts on

rod 1 at x_-a2. Using the definition of mobilities, equation (5.3.4), the velocities

at x--al and x----a2 are

and

Val ej't = (C_llFal -]- c_12Fa2)eJ_t (5.3.5)

Va2eJ_"t = (ce21Fal -[- _22Fa2)e J_'t (5.3.S)
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For the spring-rod system 2 in figure (5.3.4) Soedel[29] hasshown that the

displacementat xo, Xb0ej_'tof the spring dueto a harmonic force input Fb0ejwtis

where

• 1 -
Xb0ej_'t -- _(1 + CrLl_22)Fb0eJWt (5.3.7)

_2_ is the receptance of rod 2 at the spring attachment point.

Converting equation (5.3.7) to use a mobility function instead of receptance

function gives

where

Vb0 ej_t= ]" (jw + ffL1_22)Fb0 ej_'t (5.3.8)
ell

_22 is the mobility of rod 2 at the spring attachment point.

From equation (5.3.8) the mobility of the spring-rod system in figure (5.3.4) is

Vb0 ej_'t 1

_00 - F.o0eJ_t - CrL1(J_ + _L1_22) (5.3.9)

Using equation (5.3.9), the velocity of the spring at b0 due to a harmonic input

is

Vb0 ejwt = _00Fb0 ej_t (5.3.10)

In figure (5.3.4) where rod 1 is attached to the spring, there is a continuity of

velocity
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Va2@ _t ---_ Vbo _°st (5.3.11)

and a balance of forces

Fa2e j_'t = --Fb0eJ wt (5.3.12)

Using the continuity of velocity, equation (5.3.11), equations (5.3.6) and (5.3.10)

can be equated

(_21Fal -{- _22Fa2)e j_t -- _ooFbo ej_t (5.3.13)

Substituting the force balance in equation (5.3.12) into equation (5.3.13) and

solving for the reaction force in the spring gives

FboeJ _t _-- O_21

_22 + _00 JaleJwt (5.3.14)

Equation (5.3.14) shows the reaction force between rod 1 and the spring-rod

The power inputsystem 2 due to a harmonic force input to rod 1 at point al.

to rod 1 from the force Fal ej_'t is

1 , 1 •qin = 2Re{FalVal }= Re{Fal[C_liFa] + a12Fa21 } (5.3.15)

Substituting equations (5.3.12) and (5.3.14) into equation (5.3.15), qia can be

written as

O_12 Ol21
1 [F_I 12Re _Ii

qin -----2 _11 +/300
(5.3.16)

The power flowing between system 1 and 2 in figure (5.3.4) is
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1 2 *__. _ IFb0 [ Re{_0o }q12 Re{Fb°Vb°*} 2 (5.3.17)

From equation (5.3.14), the magnitude of IFb0 [2 is

IFb0r = IF , 12
+ Z00

(5.3.18)

Substituting equation (5.3.18) into the expression for q12 the relationship

between the power input to rod 1 and the power transferred between systems 1

and 2 is

q12 ----
2

_21 Re(_oo)

Re C_ll c_22 +_oo

qin (5.3.19)

In the coupled rod system shown in figure (5.3.1) the power flowing into rod

1, qin, and the power flowing out of rod 2, Clout, are assumed to be known and

thus represent two boundary conditions. A conservative coupling provides the

third boundary condition. Equation (5.3.19) is the fourth boundary condition

needed to fully specify the coupled rod problem and allow the unknown

constants in equations (5.3.1) and (5.3.2) to be solved.

5.3.2 Introduction to Statistical Energy Analysis

Another technique which can be used to couple the energy density solutions

for rods and beams is the wave transmission approach. In most applications,

the wave transmission approach is used to couple subsystems in a SEA model.

Therefore, to understand how the wave transmission approach can be used to

couple the simplified energy density solutions, it is necessary to understand how
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it is used in Statistical Energy Analysis.

As discussed in chapter 2, Statistical Energy Analysis (SEA) is an analytical

technique which is used to model the flow of power and distribution of

vibrational energy in acoustical, structural and acoustical/structural systems.

One of the original investigators of SEA, Lyon [38], wrote that "SEA is based

on the concept that constructed systems form a statistical population, and the

problem of design is to estimate statistics of the dynamical response of that

population." In other words, the goal of Statistical Energy Analysis is to predict

the average values of a system response when the excitation is a randomly

distributed, broadband frequency source.

A general SEA model is shown in figure (5.3.5). The model in figure (5.3.5)

consists of two coupled subsystems each with its own power input, qin,1 and qin,2"

In SEA, the power input is generally assumed to be a broadband frequency

source which is spatially distributed in a random manner over the subsystem.

Each subsystem is assumed to dissipate a certain amount of power,

_l,diss and 71"2,diss. There is also power flowing between the two systems, q12

indicates the net power flowing from system 1 to system 2 while q21 is the net

power flow from system 2 to system 1.

The power inputs in a SEA model are assumed to be known values. The

input power to a system is either measured experimentally or predicted using an

analytical technique. The power dissipated in a subsystem is modeled as being

proportional to the total energy in the subsystem
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where;

7ri,diss ----C_diEi,to t

_i,diss is the power dissipated in the ith subsystem.

w is the center frequency of the broadband input.

r/di is the loss factor associated with the ith subsystem.

El,to t is the total energy in the ith subsystem.

(5.3.20)

Note the similarities between how power dissipation is modeled in SEA and how

power is dissipated in the simplified models of equations (3.2.35) and (4.2.65).

The major difference between the SEA model of power dissipation and that of

the simplified models is that power dissipation in SEA is a global parameter

based on the total energy in a subsystem. The simplified models for a rod and

beam model power dissipation in a local sense. The local power dissipated in

the simplified models is proportional to the local values of energy density.

One of the basic assumptions of SEA is that for randomly excited coupled

subsystems, the power flow between subsystems i and j is proportional to the

difference in the average modal energies, Ei't°t and Ej't°t and flows from the

N i Nj

subsystem of higher modal energy to the subsystem of lower modal energy.

Here N i is the approximate number of modes excited in the frequency band.

The power flow between subsystems in SEA is written as

qij-_ _TijnilEi't°t[n i Ej't°t}nj (5.3.21)
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where:

qij is the power flow from subsystem i to j.

r/ij is the coupling loss factor.

n i is the modal density of the ith subsystem at w.

The modal density of a continuous structure is the approximate number of

natural frequencies, per hertz or per radians/second, found in a given frequency

bandwidth.

Equation (5.3.21) is based on the following assumptions:

1) Each mode of vibration is equally excited, i.e. equally energetic.

2) Coupling is mode to mode.

3) Coupling is based on global energy levels, not local energy densities.

4) Each mode is assumed to have a natural frequency which is uniformly

probable over a frequency bandwidth.

Performing a control volume analysis of subsystems 1 and 2 in figure (5.3.5)

gives the power balances

and

ql,in = 7rl,diss nt" q12 (5.3.22)

q2,in = _2,diss -{- q21 (5.3.23)

It can also be shown through a power balance that
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thus

q12------q21 (5.3.24)

q2,in _--- 71"2,diss -- q12 (5.3.25)

Substituting the power dissipation expression, equation (5.3.20), and the power

flow term, equation (5.3.21), into the energy balances in equations (5.3.22) and

(5.3.25) results in a set of simultaneous equations which model the flow of power

in the system depicted in figure (5.3.5)

nl
_'_7dl "4- 0._12 --(-JJ712_

n2

nl

--_rr}12 _n']d 2 -_ C_1712-
n2

(5.3.26)

The modal densities n i in equation (5.3.26) can be calculated analytically for

many structural members. Lyon has calculated and tabulated the modal

densities for a number of common structures [7].

One of the most important parameters in SEA, and one of the most difficult

to evaluate, is the coupling loss factor r]ij. Due to their importance, a large

portion of the work done in SEA has been devoted to calculating the coupling

loss factors for various systems. Many times however, the systems being studied

are too complicated to easily calculate analytical loss factors. When analytical

solutions are not available it is sometimes necessary to experimentally measure

the values of Uij. Various investigations of coupling loss factors were reviewed in

chapter 2.
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When all the terms in equation (5.3.26) are known, the total energies in

subsystems 1 and 2 can be calculated by solving the matrix equation (5.3.26).

Using conversion factors in Lyon's book [7], the total energies in subsystems 1

and 2 can then be used to calculate more useful dynamic responses such as

average values of displacement, velocity, stress etc. The total energies can also

be substituted into equation (5.3.21) to calculate the power flow between

subsystem 1 and 2.

In this brief introduction, some of the important aspects of SEA have been

discussed. In the following sections, two examples of coupled subsystems will be

examined for which analytical coupling loss factors have been developed. These

coupled subsystems will illustrate how SEA coupling parameters can be applied

to the power flow solutions in chapters 3 and 4. It is important when using the

coupling parameters from a SEA model that the user remain aware of the

assumptions made in deriving the SEA coupling loss factors discussed here and

in chapter 2. These assumptions include limiting the analysis to broadband

frequency inputs and neglecting the resonant behavior of finite structures.

5.3.3 Coupling Rods Using a Wave Transmission Approach

Consider again the coupled rod system in figure (5.3.2). The general SEA

model in figure(5.3.5)willbe used to analyze the coupled rods. Rod I in figure

(5.3.2)willbe represented by subsystem 1 in the SEA model while rod 2 willbe

represented by subsystem 2. Note that the spring in figure (5.3.2) is not

included in either subsystem I or 2 in the SEA model. The spring connecting
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the rods will come into the

coupling loss factor, r}12.

Statistical Energy Analysis model through the

The matrix equation (5.3.26) now models the energy distribution in the

coupled rod system in figure (5.3.2). The energy value El,to t in equation (5.3.26)

is the total energy in rod 1 and E2,to t is the total energy in rod 2. Since in figure

(5.3.2) there is no external source acting on rod 2, the power input q2,in in

equation (5.3.26) is zero. Due to the similarities in the SEA power dissipation

expression, as shown in equation (5.3.20), and the simplified power dissipation

expression for a rod, shown in equation (3.2.35), the power dissipation factors,

_Tdl and Wd2, in equation (5.3.26) will be approximated as the hysteretic damping

coefficients used for rods 1 and

vibrating rods, n 1 and n2, are [7]

where:

2. The modal densities for longitudinally

n i is the modal density in rod i.

L i is the length of rod i.

ci is the phase speed in rod i.

The only remaining unknown in equation (5.3.26) is the coupling loss factor

7712. In a study of coupling loss factors, Remington and Manning [17]

developed an expression for 7712which controls the flow of vibrational power in a

SEA model of two coupled rods. Remington and Manning based their coupling

Li
- (5.3.27)

CiT"
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equation on the "wave transmission approach" which, as discussed in chapter 2,

allows the coupling of continuous structures by

impedance of finite structures by that of infinite

impedance of rod 1 is [8]

approximating the input

structures. The infinite

Zl_ = (pShcl

while the infinite impedance of rod 2 is

(5.3.2s)

where

Z2_ --'-(PS)2c 2 (5.3.29)

(PS)i is the density per unit length of rod i.

Remington and Manning also showed the impedance of a spring attached to the

infinite rod 2 is

Z2sc_ = Z2c o

j--

(5.3.30)

Using infinite impedances, Remington and Manning calculated the coupling

loss factors for the system in figure (5.3.4) to be

II 2I 'o_ i_7112 -- (PS)IL1 "_/?soo Re{/3_}

1
2

1
1 (ps)l [ _

I4 (psh

(5.3.31)
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where

1

Zloo

The coupling loss factor in equation (5.3.31)was found, by Remington and

Manning, to compare well with an exact solution when the exact solution was

averaged over frequency.

All the terms in the square matrix of equation (5.3.26) can now be calculated

and the total energies El,totandE2,to t can be solved. The values of

Et,to t and E2,to t may then be substituted into equation (5.3.21) and the power

flow between rods 1 and 2 evaluated.

5.3.4 Comparing Coupling Solutions for a Rod

To compare the receptance method and the wave transmission approach, the

power flow between the two rods in figure(5.3.1)has been calculated using the

coupling solutionspresented in sections5.3.1 and 5.3.3.Figure (5.3.6)shows the

power flow q12, calculated from using the receptance method and wave

transmission approach, equations (5.3.19) and (5.3.31), as a function of

frequency with a unit power input, qin=l. For the example in figure (5.3.6) the

system parameters are
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length of rod 1 = 5 m

length of rod 2 = 5 m

(ES)I = (ESh = 6 × 107 N

(PS)l = (pS)2 = 2.358 kg/m

<7L1= 3 × 10 7 N/m

z}l = 772 = 0.01

Figure (5.3.6) illustrates the expected inability of the wave transmission coupling

solution to model the resonant behavior of the coupled rod system. The wave

transmission approach could not therefore be used to accurately predict the

power flow for a single frequency input. However the wave model appears to be

a good approximate frequency average of the exact solution and could be used

for a broadband frequency source. The receptance solution is an exact solution

and is able to model the resonant behavior of the coupled rod system and

therefore can be used for either a single frequency or broadband power input.

5.4 Coupled Beams

Figure (5.4.1) shows two simply supported beams vibrating transversely,

coupled by a torsional spring of spring rate crw. The power input to beam 1

from the transverse harmonic point source, qin, is assumed to be known. From

equation (4.2.67) the farfield energy solutions for beams 1 and 2 are

<;>lff = C1ebIx -}- C2 e-_x (5.4.1)

<e>2ff = C3e¢_ -{- 64 e-bcx (5.4.2)



107

where

and

771 oJ
¢I--

2Cbl

7}2 _

¢2-
2Cb2

As with the coupled rod examples in section 5.3 the coupling schemes to be

introduced in this section will provide the necessary boundary conditions to

solve for the unknown constants in equations (5.4.1) and (5.4.2) by calculating

the power flow, q12, between beams 1 and 2 in figure (5.4.1). A conservative

coupling between beams 1 and 2 is assumed.

5.4.1 Coupling Beams Using P_eceptance

Power flow between the beams in figure (5.4.1) is transmitted purely by the

moment and angular velocity at the coupling location. The simple supports of

the two beams prevent any transverse velocity at the ends. Thus the power flow

associated with the shear force, as defined in equation (4.2.21), is zero at the

supports. Since the two beams in figure (5.4.1) are coupled only by a moment,

the procedure of calculating the power flow between beams 1 and 2 with

receptances will be very similar to the process used for the coupled rods in

section 5.3.1.

Using the receptance method, the coupled system in figure (5.4.1) can be split

into its two components as shown in figure (5.4.2). The mobility of beam 1 in

figure (5.4.2) is
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where:

VaieJ"'t Vai

aiJ = Faje jWt -- F_j (5.4.3)

Vsie j_t is the linear or angular velocity of beam 1 at point ai.

Faje jWt is the point force or moment acting on beam 1 at point aj.

Note in equation (5.4.3) that Vai ej_t can represent either a linear or angular

velocity while Faje j_t can be either a transverse force or moment. The mobility

for beam 1 is calculated using a classical beam displacement solution. In figure

(5.4.2) beam 1 is acted upon by two forces. The transverse point force Fale j_'t

acts on beam 1 at x--al while a reaction moment, Fa2e j_t, due to the coupling

with the spring-beam system 2, acts on beam 1 at x_a2. Using the mobility

functions as defined in equation (5.3.3) the transverse velocity at x_ al is

ValeJwt _- (OCllFal -b o_12Fa2)eJ_'t (5.4.4)

and the angular velocity at x= a2 is

Va2 ej_t = (O_21Fal -}- c_22Fa2)eJ_'t (5.4.5)

In a procedure analogous to that used to calculate the mobility of the

spring-rod system 2, the mobility of the spring-beam system 2 in figure (5.4.2) is

where:

VboeJ_'t i

/300 -- . -- (j_ -[- CrTP_22 ) (5.4.6)
Fb0 ej_t O"T

Vb0 ej_'t is the angular velocity of the torsional spring at point b0.

Fb0 ej_'t is the harmonic moment applied the torsional spring at point b0.
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_2_ is the mobility of beam 2 at the spring attachment point.

From equation (5.4.6), the angular velocity of the torsional spring at b0 is

Vbo ej_t = _00Fb0 ej_t (5.4.7)

In figure (5.4.2), where beam 1 is attached to the spring, there is a continuity

of angular velocity

V 2ej 't = Vb0eJ (5.4.8)

and a balance of moments

Fa2 ej_t = --Fb0eJ _'t (5.4.9)

From this point the derivation is exactly the same as the one used in section

5.3.1. Using the continuity of angular velocity, equation (5.4.8), and the moment

balance in equation (5.4.9), the power flow between beams 1 and 2 in figure

(5.4.1) is

q12 =
C_21

+ ,,-eoo
Re

Re(900)
qin (5.4.10)

In the coupled beam system shown in figure (5.4.1) the power flowing into beam

1, qin, and the power flowing out of beam 2, Clout, are assumed to be known and

thus represent two boundary conditions. A conservative coupling provides the

third boundary condition. Equation (5.4.10) is the fourth boundary condition

needed to fully specify the coupled beam problem and allow the unknown

constants in equations (5.4.1) and (5.4.2) to be solved.
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5.4.2 Coupling Beams Using a Wave Transmission Approach

The power flow between beam 1 and beam 2 in figure (5.4.1)can also be

calculated using a wave transmission approach. The general SEA diagram in

figure(5.3.5)will be used to model the energy distributionin the coupled beam

system. Beam 1 in figure(5.4.2)will be represented by subsystem 1 in the SEA

model and beam 2 willbe represented by subsystem 2.

The matrix equation (5.3.25)now models the energy in the coupled beam

system in figure (5.4.1). The energy values El,to t and E2,to t in equation (5.3.25)

are the total energies in beam 1 and 2. Since beam 2 has no external power

source, q2,in is zero. Due to the similarities in the SEA power dissipation

expression, as shown in equation (5.3.20), and the simplified power dissipation

expression for a beam, shown in equation (4.2.65), the power dissipation factors,

77dl and r/d2, in equation (5.3.26) will be approximated as the hysteretic damping

coefficients used for beams 1 and 2. The modal density for a beam is [7]

Li

n i -- 2_Cb i (5.4.11)

where:

n i is the modal density in beam i.

L i is the length of beam i.

Cbi is the wave speed in beam i.

In a review of coupling loss factors, Crandall and Lotz [20] discussed some

work done by Scharton and Lyon [15] on developing a coupling loss factor 712

for the system in figure (5.4.1) using a wave transmission approach. Crandall
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and Lotz found that Scharton's and Lyon's work leads to a coupling loss factor

of

2_-crT2n 2
=_

un?12 ---- {(pS)IL12(EI)I}_{(pS)zLI_(EI)_}, _ (5.4.12)

Using the result in equation (5.4.12), the matrix equation (5.3.25) can be solved

and the energy levels in beam 1 and beam 2 calculated. The energies

El,to t and Ee,tot can then be substituted into equation (5.3.20) and the power

flow between beam 1 and beam 2 in figure (5.4.1) can be evaluated and the

energy densities in beams 1 and 2 can be found.

5.4.3 Comparing Coupling Solutions for a Beam

The plot in figure (5.4.3) shows the power flow, q12, as a function of

frequency for the coupled beam system in figure (5.4.1) using the coupling

solutions in sections 5.4.1 and 5.4.2. The system parameters used in figure

(5.4.3) are

length of beam 1 = 0.5 m

length of beam 2 = 0.5 m

(EI)I -- (EI)2 = 500 Nm 2

(PS)I = (pS)2 = 2.358 kg/m

CrT1 = 1 × 105 (Nm)/rad

r/1 = 772 = 0.001

Figure (5.4.3) shows the inability of the wave transmission coupling solution in

section 5.4.2 to model the resonant behavior of the connected beam system. For
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a broadband frequency excitation the wave transmission coupling in figure

(5.4.3) might provide an acceptable approximation for power flow. The exact

solution from the receptance method can be used for single frequency or

broadband inputs.

5.5 Summary

In this chapter the coupling of the energy solutions for the rods and beams

developed in chapters 3 and 4, was discussed. It was found that a discontinuous

jump in energy density occurs at a coupling location. This jump condition was

found to be related to the amounts of potential and kinetic energy density at the

coupling location. During the development of the simplified theory in chapters 3

and 4 it was hoped that the energy equations would lead to an efficient and

accurate method of coupling solutions for both single frequency and broadband

inputs. The key to the development of such a method is a relationship between

the local energy densities at the junction. However, a simple relationship

between the local energy density has not yet been developed. It is recommended

that effort continue toward this objective using the energy relationships

developed in section 5.2. Nevertheless, it was shown in section 5.2 that even

though equation (5.2.16) cannot provide exact information about the power flow

and energy density in a coupled rod system, it can provide upper and lower

bounds of both power flow and energy density for a given set of power flux

boundary conditions. This information could be useful in designing complicated

built-up structures.
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The coupling methods presented in sections 5.3 and 5.4 are approximations

similar to common power flow analysis methods. The methods provide the

needed boundary conditions to couple the energy solutions by estimating the

power flow between coupled elements. The first coupling scheme discussed in

sections 5.3 and 5.4 was the receptance method. The receptance method is a

powerful tool which allows complex structures to be analyzed by studying the

resonant responses of its component parts. It is an exact solution and thus can

be used to accurately couple structures driven by both single frequency and

broadband inputs. It is not clear yet how a systematic procedure of combining

receptances for a general structure can be developed. Each built up structure

must be individually analyzed. For a complex structure, deriving the receptance

equations is currently a prohibitively difficult process but it is possible that

numerical methods might be used to compute the required information

accurately and efficiently. Once a system has been analyzed by the receptance

method the simplified theory can be used to show the energy distribution and

power flow throughout built-up structures.

The second method discussed for coupling structures was based on the wave

transmission approach used in Statistical Energy Analysis. The wave

transmission approach couples structures by approximating the input impedance

of a finite structure by the input impedance of an infinite structure.

impedance of an infinite structure has been shown to be a good

average of impedance.

The input

frequency

However, since impedance varies significantly from its
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average value at a specific frequency, the wave transmission approach cannot

accurately couple structures excited by a single frequency excitation, but it can

be used to couple structures excited by a broadband frequency source.
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Figure 6.2.1. Rigidly Coupled, Longitudinally Vibrating Rods with Known

Power Flux Boundary Conditions, qin and qout, at xl and x 2
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Figure 5.2.2. 1-D Heat Conduction Through Two Dissimilar Fins with a

Convective Heat Loss, q¢onv, and Known Thermal Power Flux

Boundary Conditions, qin,t and qout,t at x 1 and x 2
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Figure 5.3.1. Spring Coupled, Longitudinally Vibrating Rods with Known

Power Flux Boundary Conditions, qin and qout, at x 1 and x 2
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Figure 5.3.2. Spring Coupled, Longitudinally Vibrating Rods from Figure
(5.3.1) Split into Two Components
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Figure 5.3.3. Spring Coupled, Longitudinally Vibrating Rods Excited by a
Harmonic Point Force
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Figure 5.3.4. Spring Coupled, Longitudinally Vibrating Rods from Figure

(5.3.3) Split into Two Components for Receptance Analysis
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Figure 5.3.5. General SEA Model of Two Coupled Dynamic Systems
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Figure 5.3.{i. Comparison of the Calculated Power Flow Between the Coupled

Rods Shown in Figure (5.3.3) Using Solutions from the Receptance

Method, as shown in Equation (5.3.19), and the Wave

Transmission Approach, as Shown in Equation (5.3.31), as a

Function of Frequency
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Figure 5.4.1. Spring Coupled, Transversely Vibrating Beams Excited by a
Harmonic Point Force
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Figure 5.4.2. Spring Coupled, Transversely Vibrating Beams from Figure

(5.4.1) Split into Two Components for a Receptance Analysis
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CHAPTER 6 - POWER FLOW EXAMPLES

§.1 Introduction

In this chapter, the simplified solutions for power flow and energy density

developed in chapters 3 and 4 will be compared to exact solutions. This

comparison will illustrate some of the differences in how the simplified and exact

theories model the power flow and energy density in coupled rods and beams. It

will also serve as an indication on the quality of the assumptions made in

developing the simplified theories.

For all the examples in this chapter, the coupled systems will be excited by a

harmonic point force as discussed in chapters 3 and 4. The magnitude of the

excitation force I F I will be adjusted for each example so that the total power

input to the systems is unity. The receptance method will be used to couple the

simplified energy density solutions.

6.2 Coupled Rods

Figure (6.2.1) shows two rods coupled by a linear spring of spring rate crL.

Rod 1 is excited by a harmonic point source at the end Xl--O. Rod 2 has a free

end condition at x2----10 m. The coupled rod parameters for this example are



128

length of rod 1 -_ 5 m

length of rod 2 ----5 m

(ES)I ----(ES)2 = 6 X 10T N

E 1 ----E 2 -- 200 X 109 N/m 2

(pS)I - (pS)2 = 2.358 kg/m

Pl --P2 ----7860 kg/m 3

_L _- 3 X 107 N/m

r/1 ----772 -_ 0.01

The exact power flow solution for a rod used in this section is shown in

equation (3.2.19). The exact energy density solution is shown in equation

(3.2.24). The simplified energy density and power flow solutions are shown in

equations (3.2.37)and (3.2.38)respectively.

Figures (6.2.2)and (6.2.3)show the power flow and energy density in the

coupled rod system, as shown in figure(6.2.1),with a excitation frequency of

_---6338.9rad/sec. At this frequency the wavelength of vibration isequal to the

length of each rod, )x--5 m. Note in figure (6.2.2)how the exact power flow

solution oscillatesabout the simplifiedsolution. Identicalenergy density levels

are predicted from both the simplifiedand exact theories,as shown in figure

(6.2.3). The power flow and energy density levelsfor _--12677.79 rad/sec are

shown in figures (6.2.4) and (6.2.5). At this excitation frequency, the wavelength
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of vibration is one half the length of the rods, )x=2.5 m. Again the simplified

and exact theories predict identical energy density levels as shown in figure

({}.2.5). Figures (6.2.6) and (6.2.7) plot the power flow and energy density with

0.=--25355.58 rad/sec, >,=1.25 m while figures (6.2.8) and (6.2.9) plot the power

flow and energy density with 0.=-38033.37 rad/sec, )_=0.8333 m. Note that in all

the cases shown, as the excitation frequency gets higher, the simplified power

flow solution gets closer to the exact solution. This indicates that the harmonic

terms in the exact power flow expression which are neglected in the simplified

solution become less important at higher frequencies.

Although the energy density levels predicted by the exact and simplified

solutions in the four previous examples were identical, differences can occur.

Figure (6.2.10) and (6.2.11) illustrate the power flow and energy density for a

excitation frequency of c_=--7131.26 rad/sec, )x--4.444 m. Note in figure (6.2.10)

that the simplified power solution does not pass directly through the center of

the exact solution. Subsequently, the energy density predictions of the two

solutions are not the same, though the error is relatively small. The explanation

for the difference in the energy density levels can be found in section 3.3 which

discussed the damping model used in the rod analysis.

It was pointed out in section 3.3 that the average power dissipated by the

exact and simplified solutions were identical only when integrated over an

integer number of wavelengths. Equations (3.3.15) and (3.3.17) demonstrated

this fact. In a given rod, the total power dissipated by the simplified solution,

O,D
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7rsimp , can be calculated by integrating <_diss = W_<e> over the length (L) of

the rod

The total power dissipated by the exact solution, _exact, can be calculated by

integrating _Tl'exact_diss = 2r}w<T> over the length of the rod

_rex_ct = 277_f<T>dx (6.2.2)
L

Subtracting equation (6.2.1) from equation (6.2.2), a relationship between the

total power dissipated by the exact and simplified solutions is shown to be

When there are an integer number of wavelengths in the rod, the total potential

and kinetic energies are equal. When the rod length is not an integer number of

wavelengths, the total potential and kinetic energy in the rod are not equal.

Equation (6.2.3) clearly shows that when there are an integer number of

wavelengths in the rod, the total power dissipated by the exact and simplified

solutions are exactly the same. When the rod length is not an integer number of

wavelengths, equation (6.2.3) gives the difference in the total power dissipated

by the exact and simplified solutions.

In the four cases shown in figures (6.2.2)-(6.2.9), the excitation frequencies

were such that were an integer number of wavelengths of vibration per rod
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length. Therefore the power dissipated by the exact and simplified solutions

over each rod was the same and the energy density predictions were identical.

However, with _-_--7131.26 rad/sec there are not an integer number of

wavelengths vibration per rod length. Therefore the exact and simplified power

dissipation over a rod length is not identical, which accounts for the

discrepancies in the energy density level predictions in figure (6.2.11).

The excitation frequencies used in the power flow and energy density

examples, shown in figures (6.2.2)-(6.2.9), are what would be considered the low

to mid-frequency range for the coupled rod system shown in figure (6.2.1). At

the highest excitation frequency of c_-_--38033.37 rad/sec, the simplified solution is

in almost perfect agreement with the exact solution and will improve as the

frequency increases. However, when w=38933.37 rad/sec, the wavelength of

vibration is one sixth of the rod length and is in the frequency range where the

finite element method would begin to require a large number of elements to

maintain its accuracy. These examples show that the simplified solution for a

rod can be used to make accurate predictions at frequencies where the FEM

starts to be inefficient and thus bridge the gap between FEM and SEA.

6.3 Coupled Beams

Figure (6.3.1) illustrates two simply supported beams, coupled by a torsional

spring of spring rate crT. Beam 1 is excited by a transverse, harmonic point

force at x_0.25 m. The coupled beam parameters for this example are
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length of beam 1 -- 0.5 m

length of beam 2 = 0.5 m

(EI)I---(EI)2= 500 Nm _

E 1--E 2=200X109N/m 2

(PS)l ffi (PS)2 -----2.358 kg/m

Pl = P2 ffi 7860 kg/m 3

= 300(Nm)/r d

771 = }72 --_ 0.001

The exact power flow solution for a beam is the sum of the shear _q_s and

moment _q_m power flow components as shown in equations (4.2.23) and

(4.2.24). The exact energy density solution is the sum of the potential and

kinetic energy densities as shown in equations (4.2.27) and r4 9 98_ The

simplified energy density and power flow solutions for a beam, shown in

equations (4.2.67) and (4.2.68), represent spatial averaged, farfield

approximations of the exact solutions. The simplified solution is based on the

assumption that the total displacement solution for a beam is well approximated

by the farfield terms as shown in equation (4.2.38). In section 4.2.2 it was shown

that approximating the displacement solution in a beam by the farfield terms

becomes a better assumption as the frequency increases. It is expected therefore,

that the simplified solution for the energy density and power flow in a beam will

become a better average approximation as the excitation frequency increases.
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Figures (6.3.2) and ({}.3.3) show the power flow and energy density in the

coupled beam system in figure (6.3.1) with a excitation frequency of 2300

rad/sec. At this frequency the wavelength of vibration is equal to the length of

each beam, X =0.5 m. As discussed in section 4.2.2, since the wavelength of

vibration is equal to the length of the beams, the total displacement solution for

a beam is not well approximated by the farfield terms. Thus, as illustrated in

figure ({}.3..3) the simplified energy density solution is not a good average

approximation of the exact solution. The power flow and energy density levels

with w=9197.8 rad/sec are shown in figures (6.3.4) and (6.3.5). At this

frequency the wavelength of vibration is one half the length of the two beams,

X=0.25 m. At this higher frequency, the simplified energy density prediction in

figure ({}.3.5) shows improvement over the prediction at _=2300 rad/sec.

Figures (6.3.6) and (6.3.7) plot the power and energy density for _=20695.5

rad/sec, X-----0.167 m, while figures (6.3.8) and (6.3.9) plot the power flow and

energy density for w=36792.0 rad/sec, X---0.125 m. The power flow and energy

density in the final coupled beam example are shown in figures (6.3.10) and

(6.3.11). In these last two figures the frequency is ur---82781.88 rad/sec, which

gives a wavelength of vibration of X=0.08333 m. From figures (6.3.2)-(6.3.11) it

is clear that the simplified theory for beams becomes more accurate as the

excitation frequency increases. At ur----82781.88 rad/sec, the simplified energy

density, as shown in figure (6.3.11), is a good average approximation of the exact

energy density solution. The results in figures (6.3.2)-(6.3.11) are typical for the

power flow and energy density predictions in beams.
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In the coupled beam system in figure (6.3.1), there are 4 discontinuities. The

simple supports at x 1 and x 2 and the coupling at x o are all discontinuities. The

fourth discontinuity in figure (6.3.1) is at the forcing location, x=0.25 m. In

general, each discontinuity will have a nearfield effect associated with it. In

section 4.2.2, it was shown that for a free-free beam the farfield displacement

approximation in a beam becomes a good assumption when the distance between

discontinuities in the beam is of the order of four or more wavelengths of

vibration. The results in figures (6.3.2)-(6.3.11) support this conclusion.

The simplified energy density solutions for a beam can be applied to a beam

with any type of boundary condition. Figure (6.3.12) illustrates two beams

coupled by a torsional spring of spring rate crw. Beam 1 has a clamped

boundary condition at Xl=0 and is simply supported at xo=0.5 m. Beam 2 is

simply supported at xo=0.5 m and is clamped at x2=l m. The beam parameters

for this example are the same as those used for the example in figure (6.3.1)

except that the coupling spring rate has been increased to

Crw=l X 10 s (Nm)/rad.

Figures (6.3.13)-(6.3.22) show the power flow and energy density in the

coupled beam system shown in figure (6.3.12) at the same excitation frequencies

which were used for the coupled beam system in figure (6.3.1). These

frequencies are w=2300 rad/sec, _---9187.8 rad/sec, _=20695.5 rad/sec,

and 82871.88 rad/sec. The power flow and energy density predictions in figures

(6.3.13)-(6.3.22) further support the conclusion that the simplified solution for a
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beam becomes a better approximation as the excitation frequency increases.

The excitation frequencies used in the power flow and energy density

examples, shown in figures (6.3.2)-(6.3.11) and figures (6.3.13)-(6.3.22), are what

would be considered the low to mid-frequency range for the coupled beam

systems shown in figures (6.3.1) and (6.3.12). At the highest excitation

frequency of w-----82781.88 rad/sec, the simplified solution does an excellent job in

predicting the average values of energy density and power flow and will improve

as the frequency increases. However, when w-----82781.88 rad/sec, the wavelength

of vibration is one sixth of the beam length and is in the region where the finite

element method would begin to require a large number of elements to maintain

its accuracy. These examples show that the simplified solution for the beam can

be used to make accurate predictions of the average energy density levels at

frequencies where the FEM starts to be inefficient and thus bridge the gap

between FEM and SEA.

6.4 Summary

For the coupled rod system in section 6.2, it was found that the simplified

solutions for energy density and power flow compared well with the exact

solutions. As the excitation frequency increased, the power flow solution was

better approximated by the simplified solution. It was also shown that the

differences in energy density predictions for a rod were found to be a result of

how the exact and simplified solutions modeled the power dissipation in a rod.

Equation (6.2.3) shows that the difference in the total power dissipated by the



136

simplified and exact solutions in a rod is proportional to the difference in the

total kinetic and potential energy in the rod.

The predictions of the power flow and energy density levels in the coupled

beam system in figure (6.3.1) were discussed in section 6.3. As expected from

the discussions in chapter 4, the simplified energy density and power flow

solutions became better average approximations as the excitation frequency

increased.

In both the coupled rod and coupled beam examples, the excitation

frequencies were in the low to mid-frequency ranges. From the accuracy of the

simplified solutions at the higher frequencies, it was concluded that the

simplified energy density solutions for both the rod and beam can be used to

bridge the mid-frequency gap where the FEM becomes too expensive and SEA is

unreliable.
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CHAPTER 7 - CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

In thiswork, the thermal analogy proposed by Nefske and Sung [2]to model

the mechanical power flow in acoustic/structuralsystems has been investigated.

From the classicaldisplacement solutionsfor harmonically excited,hysteretically

damped rods and beams, power flow and energy density equations were derived.

Using assumptions based on small str,_,ctur_l damping, it was found that the

mechanical power flow in rods and beams takes on some of the attributes of

thermal power flow in a heat conduction problem.

Chapter 3 investigated the power flow and energy density in a longitudinally

vibrating rod. Using the small damping assumption it was found that the local

power flow in a rod is proportional to the local gradient in energy density, as

shown in equation (3.2.31). The result in equation (3.2.31), along with the

power balance on a differential control volume in the rod, led to the

development of a Poisson's equation which models the energy distribution in the

rod. From the governing Poisson's equation, solutions for the energy density

and power flow were calculated.

The hysteretic damping model used

solutions was also discussed in chapter 3.

in the simplified and exact energy

It was found that hysteretic damping,
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in an exact analysis, models power dissipationin proportion to the kinetic

energy density. The simplifiedtheory models power dissipationin proportion to

the total energy density. The differencein how the exact and simplified

solutions model power dissipationexplains why the exact power flow solution

has harmonic components while the simplifiedpower flow solution does not.

Chapter 4 investigated the power flow and energy density in a transversely

vibrating beam. The nearfield terms in the displacement solution complicated

the beam analysis. To use the thermal analogy it was found that the beam

analysis had to be restricted to frequencies where the nearfield terms in the

displacement solution were negligible over most of the beam. In an investigation

of the power flow in a beam, Nefske and Sung [2] derived a relationship which

modeled the local power flow as proportional to the gradient in local energy

density. This relationship is shown in equation (4.2.60). The deterministic

approach used in this study proved that because of the harmonic spatial

variation in energy density, a relationship between the power flow and the

gradient in energy density in a beam could be derived only if space averaged

values of power flow and energy density were modeled. The correct relationship

between power flow and energy density in a beam is shown in equation (4.2.59).

Equation (4.2.59) was then used to derive a Poisson's equation which models the

spaced averaged energy density distribution in a vibrating beam.

Difficulties encountered when coupling the power flow and energy density

solutions for rods and beams were discussed in chapter 5. It was found that
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resonant behavior of finite structures complicated the coupling process. The

energy solutions have not yet led to an efficient and accurate coupling scheme.

However, it was shownthat in certain situations, the local energydensitiesat a

coupling location can provide useful information about the dynamic responseof

coupled structures. Two existing methodsof coupling structures were discussed.

The first coupling schemewas basedon the receptancemethod. The second

method was basedon the wave transmissionapproach. The receptancemethod

allowed coupling of structures driven by single frequency and broadband

frequency inputs. The wave transmissionapproach is a more efficient coupling

solution than the receptance method, but it is iimi_,_d to broadband freq,__ency

excitations. Both the receptance method and the wave transmission approach

can be numerically implemented.

As discussed in chapter 2, Nefske and Sung did not explicitly prove a

relationship between the power flow and energy density in a one dimensional

structure. They could not therefore prove under what conditions the new power

flow method could be used. The major contribution of this investigation is that

it provides the means to determine the conditions for which the new power flow

method is valid. In the development of the governing power flow and energy

density equations in chapters 3 and 4, each simplifying assumption is discussed

and justified. Thus, the validity of each assumption can be individually

assessed, allowing one to determine whether or not the new power flow method

is applicable to a given physical situation.
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Statistical Energy Analysis is a global power flow analysis. It cannot be used

to predict spatial variations of energy density and power flow in a given

subsystem. The simplified power flow method however, is a local analysis. It

can be implemented to describe the local variations in energy density and power

flow, which would be particularly useful in cases of multiple local power inputs

and local damping treatments. In addition, while SEA is limited to broadband

frequency excitation, the simplified power flow solutions can be used in

situations where the system response is dominated by resonant behavior.

The power flow examples in chapter 6 proved that the simplified theory

could yield accurate predictions of the energy density levels in both rods and

beams. From the results in chapter 6, it was concluded that the new power flow

method can be used to bridge the mid-frequency range gap where the finite

element method is inefficient and Statistical Energy Analysis is unreliable.

7.2 Recommendations

To apply the results for power flow and energy density solutions in chapters

3 and 4, an efficient and accurate coupling scheme must be developed. Work

should be continued towards developing a relationship between the local energy

densities at a coupling location using the energy relationships developed in

section 5.2.

Since the nearfield effects are always important near a discontinuity, it will

be necessary to include the nearfield effects when developing local coupling

methods for beams. A more complicated analysis of equations (4.2.48) and
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(4.2.49) might yield an accurate coupling solution for beams. Perhaps the

interactions of two connected beams near a coupling junction can be described

by uncoupled farfleld and nearfield energy density and power flow expressions.

Once an efficient coupling procedure is developed, the simplified power flow

analysis could be easily implemented numerically. Since the governing equations

for the simplified power flow analyses are Poisson equations, they are easily

solved by a standard heat transfer finite element code as demonstrated by

Nefske and Sung.

Finally, power flow equations similar to those developed in chapters 3 and 4

for other types of structures, such as two dimensional plates and three

dimensional spaces should be developed. Such studies might provide some

insight not found in the one dimensional analyses.
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