https://ntrs.nasa.gov/search.jsp?R=19880003155 2020-03-23T19:44:40+00:00Z

RI/RD86-165 (REVISED)

FAILURE CONTROL TECHNIQUES FOR THE SSME

NAS8-36305

PHASE I

FINAL REPORT

PREPARED FOR: NASA MARSHALL SPACE FLIGHT CENTER HUNTSVILLE, ALABAMA 35812

PREPARED BY m. H. Tan a uch M. H. TANIGUCHI SYSTEMS DYNAMICS

APPROVED BY

R. E. BREWSTER PROJECT ENGINEER CONTROL SYSTEM ENGINEERING

unt

W. W. PALMQUIST PROJECT MANAGER SSME TECHNOLOGY PROGRAMS

CONTENTS

	Intr	oduction	1
	Summ	ary	4
	Conc	lusion and Recommendation	5
1.0	SSME	Description	1-1
	1.1	Engine Overview	1-1
	1.2	Major Components	1-2
		1.2.1 Turbopumps	1-2
		1.2.2 Preburners	1-5
		1.2.3 Combustion Devices	1-5
		1.2.4 Valves	1-6
	1.3	Modes of Operation	1-7
2.0	Phase	e I Content Summary	2-1
	2.1	Phase I Purpose	2-1
	2.2	Current SSME Instrumentation and Recording System	2-1
	2.3	Phase I Tasks	2-2
3.0	Phase	e I Conclusions and Defintion for Detection System Development	3-1
	3.1	Detection System Feasibility	3-1
•	3.2	Detection System Development	3-6
		3.2.1 Coding Framework	3-6
		3.2.2 Detection System Performance Measurement	3-10

CONTENTS (CONT'D)

4.0	Literature Review Results	4-1
	I. Alphatech Material/Approach	4-1
	II. Intermetric Material	4-2
	III. Bank of Kalman Filters Technique	4-4
	IV. Failure Sensitive Filter Technique	4-5
	V. Observers Technique	4-7
	VI. Voting Technique	4-9
	VII. Innovations-Based Failure Detection Schemes	4-10
	A. Generalized Likelihood Ratio (GLR) Test	4-10
	B. Sequential Probability Ratio Tests (SPRT)	4-12
	C. Weighted Sum Square Residual (WSSR) Test	4-13
	D. Modified Kalman Filter	4-15
	VIII. Parameter Estimation Technique	4-16
	IX. Jump Process Technique	4-16
	Bibliography	4-17
5.0	Data Examination Results	5-1
	5.1 General Overview	5-1
	5.2 Data Base Support to Detection System Development	5-2
	5.3 Delineation of Data Base	5-5
	5.4 Data Base Observations/Comments	5-10
	I. Injector Failure	5-10
	II. Control Failure	5-12
	III. Duct, Manifold, and Heat Exchanger Failure	5-12
	IV. Valve Failure	5-14
	V. HPOTP Failure	5-14
	VI. HPFTP Failure	5-15
6.0	Phase II and III Design Plans	6-1
	6.1 Introduction	6-1
	6.2 Phase II: Development	6-1
	6.3 Phase III: Design	6-4

INTRODUCTION

Since ground testing of the Space Shuttle Main Engine (SSME) began in 1975, the detection of engine anomalies and the prevention of major damage have been achieved by a multi-faceted detection/shutdown system. This system continues the monitoring task today and consists of: sensors, automatic redline and other limit logic, redundant sensors and controller voting logic, conditional decision logic and human monitoring. Typically, on the order of 300-500 measurements are sensed and recorded for each test, while on the order of 100 are used for control and monitoring.

Despite the extensive monitoring by the current detection system, twenty-seven (27) major incidents have occurred. This number seems to be insignificant when percentage compared with over 1200 hot-fire tests which have taken place since 1976. However, when examining each incident for the effects listed below the number suggests the requirement and future benefit for a more advanced failure detection system.

Program schedule delay impact
Engine damage costs
Facility damage costs
Repair costs to the facility and engine
Failure analysis costs
Loss of high time engine fleet leader components
Loss of failure evidence

The time impact has ranged from 3-weeks to 24-weeks. For individual tests the estimated cost impact of engine and direct facility damage has ranged from \$1-million (in 1980 dollars) to \$26-million (in 1982 dollars) per test; in terms of repair/analysis it has ranged from \$.24-million (in 1982 dollars) to \$3-million (in 1985 dollars). Figure 1, on the next page itemizes some of the damage, cost, and time delay effects for forty (40) tests with significant anomalies including the 27-major incident tests. Tests 901-364, 901-436, and 750-259 listed in Figure-1 are incident tests where engines were totally lost. The current replacement cost for an engine is estimated at \$45-million,

1

r		1						1	- T -					1		mation
	troyed vily damaged htly damaged fRAM₹	Cutoff Time		233.14 sec 233.14 sec 16 00 sec	51.10 sec 8.50 sec	7 5.03 sec	106.60 sec 3.16 sec	9.88 sec	228 OC.2	<pre> 4.30 sec 10.60 sec 101.50 sec 101.50 sec 115.60 sec 4.33 sec 4.33 sec 115.60 sec 4.33 sec 4.34 sec</pre>	5.75 sec	18.58 sec 255.63 sec 09. Duration	74.00 sec 300.20 sec 41.81 sec	405.50 sec Prog. Duration 6.84 sec 611.06 sec	392.15 sec Prog. Duration Prog. Duration 31.36 sec 450.58 sec 51.09 sec Frog. Duration Prog. Duration	
	<u>Heaning</u> Component destroyed Component heavily damaged Component lightly damaged FOLDOUT FRAME	Power Level Anomaly Occurs	ACO	100% 100% 105%	92X 102X	109%	102% NA, (@ Start)			art) art)	92%	100% 18.58 sec 100% 255.63 sec NA,(@ Cutoff) Prog. Duration	75% 90% 100%	109% 109% Prc 92% 109%	109% 90% (aCutoff) (aThrottle) 109% 109% 109%	ĬĔ.
	Suffix to ID No. B C	Damage Delay		24-Veeks 8-Veeks	UA 12-Veeks	UA	16-Weeks 12-Yeeks	16-Veeks UA		8-Veeks 6-Veeks UA UA 8-Veeks UA	M	14-Veeks 4-6 Veeks 8-Veeks	4-Veeks 4-Veeks 5-Veeks	N N N N	8-Veeks UA 8-Veeks UA 3-Veeks UA UA UA	Figure-1
	<u>ID No. Component</u> 9Oxidizer Side Valves 10Oxidizer Ducts & POGO 11Hot Gas Manifold 12Main Injector 13Main Combustion Chamber 14Nozzle 15Stand Equipment 15Stand Structure 17Controller	Damage Cost	TA TA	H1.,}\$	UA	M	17C \$1.5M 13B, 14A\$15.0M	7a, 98, 10A, 148, 15C, 178 \$9.2M UA		13C, 148	¥n	48, 14C, 16C, 17C\$8.3M A,5C,68,78,9A,10A,11A,128,138,14C,158,168,17C\$10.0M 4 118, 128, 13C\$4.4M	ic, 6c, 7A, 8c, 98, 10A, 12c, 13c, 14c, 158, 178 \$3.3M ic. 6c, 7A, 8c, 98, 10A, 12c, 13c, 14c, 158, 178 \$2.4M 68, 78, 9c, 10A, 13c, 14c, 15c, 178\$2.65M	3C, 12C, 14C	5A (Engine was totally gutted and retired) \$26.0M 3C UA 3C UA 3C \$4.4M 118, 128, 13C \$4.4M 78, 114, 12A, 13A, 14A UA 128, 138 14A 128, 138 UA 128, 136 14A 128, 136 UA 128, 136 UA 120, 130 UA 12 13C 12 13C 13 UA 14 UA 15 UA 16 UA 17 12C 17 UA UA UA <td></td>	
	<u>Nomenclature Key:</u> <u>Component</u> Low Pressure Fuel Turbopump High Pressure Fuel Turbopump Fuel Side Valves Fuel Side Valves Fuel Side Ducts Low Pressure Oxidizer Turbopump, and Heat Exchanger Oxidizer Preburner	Damage	78 128, 13C, 148	81 7C, 12A, 138, 148 81 128, 13C, 148	78 12C, 13C, 14C. 80 12C, 13C, 14C.	81 2C, 38	80 2C, 3C, 5C, 14C, 15C, 1 82 28, 38, 78, 11A, 12A, 1	80 1C, 2C, 3C, 4C, 5C, 7A, 78 28, 7C, 118, 128		79 28, 38, 5C, 78, 118, 128, 79 1C, 28, 78, 118, 124, 13A 85 38,4A,5A,6A,7B,8C,9A,10A, 85 14C 82 1C, 48, 78, 98, 10A, 11C, 78 18, 28, 78, 12C 78 18, 28, 78, 12C		2C, 1C,4 7B,	48,5 48,	х, 8 2, 28	8358758 8358758	
	Damage Nomenclature K1D No. Component1Low Pressure2High Pressure3Fuel Preburne4Fuel Side Val5Low Pressure6Low Pressure7High Pressure8Oxidizer Prebu	Engine <u>Number Date</u>	0002 31 Mar	2108 15 Jul 0110 2 Sep	2005 5 Jun 2004 23 Jul	0009 28 Jan	0006 12 Jul	0010 30 Jul 8		0201 14 May 7 2002 4 Nov 7 2308 27 Mar 8 2105 24 Jul 8 2208 27 Aug 8 0007 5 Dec 7		2002 2 Jul 79 2001 27 Dec 78 0107 15 May 82	0003 24 Mar 77 0004 8 Sep 77 0101 18 Jul 78	Peb Jul	2013 7 Apr 82 2008 16 Nov 80 20107 15 May 82 20107 15 May 82 1 Dec 77 20204 21 Sep 81 20204 21 Sep 81 21 Nov 77 21 Nov 77 21 Nov 81 21 Nov 81 21 Nov 81 22 Mar 82	
R		NASA Report	5	P (1) x (1, 11)	ua x (1, 11)	ňň	x (1, 11) UA x (1)	x (1, 11) UA		 X (1, 11) P (11) U (11) U (11) U (11) U (11) U (11) 	N	x (1, 11) P(1), P(11) UA	x (1, 11) x x(1),P(11)	55555	× × × × × × × × × × × × × ×	
examined in depth and/or use	ber Xidizer Valve Machining ment	ROCKETDYNE Incident Report	UA.	SECUA	UA UA	est 901-307) X 0.	NU	t OverlaysX		SEC	ffUA	15-130 SECx ffx		<u>86-291</u> SECUA UA UA UA 5UA 360.	X UA UA UA UA 83-410 SECUA 0-540 SECUA	
indicate the CR1's which were exam	MCCMain Combustion chamber OPOVOxidizer Preburner Oxidizer Valve LOXLiquid Oxygen EDMHigh Cycle Fatigue MCFHeat Addition to LOX MALHeat Addition to LOX PMCPressure Wall Contairment FPBFuel Preburner	REFERENCE CRT TIME SLICES	197-202 SEC 197-202 SEC 110-150 232-233 5 220-23	230-235 FC	22.5-26.5 SEC	60-75 SEC (Test 901-244 examined w/Test 0-130, 70-75, 70-80, 80-100.	<u>100-165 SEC</u> Anomaly occurred after c/o <u>0-4 SEC</u>	0-7, <u>3-7</u> , <u>2-7</u> SEC with Test Ov <u>0-2.5</u> SEC with Test Overlays		Anomaly occurred Anomaly occurred Anomaly occurred Anomaly discover 15-20, <u>20-30</u> , 20 00-100, 100-101.1 0-5, <u>3-5</u> , and 4-5)Anomaly occurred after cutoff	<u>16.5-19</u> SEC	<u>55-65, 64.2-74.2</u> SEC	250-290, 280-300, <u>275-295, 2</u> 120-130, <u>130-145</u> SEC	383-393, 360-400 SEC 610-650, 650-690 SEC 0-300 SEC 100-200, 100-450 SEC 100-200, 100-450 SEC 100-500, 400-500, 373-383, 383-410 SEC 230-250, 250-500 STC-383, 383-410 SEC	
Time slices which are underlined indi for criteria table generation.	Abbreviations/Arnotations: xA complete report was examined. PA partial report was examined. IPart-I of a NASA incident report. IIPart-II of a NASA incident report. UAThe item was unavailable. NANot Applicable AMF		(LOX Post Fractures, Erosion-MCC) (LOX Post Fractures. Erosion-MCC)	Post Fractures, Post Fractures,	Post Fractures, Erosion-MCC) Post Fractures, Erosion-FPB)	Post Fractures, Erosion-FPB)	(Localized: FPB Damage, PWC Failure) (Fuel Blockage: Water Left in FPB Injector by EDM Process)	(Erroneous Sensor, Lee Jet, PWC Failure) (Main Oxidizer Valve Mís-Indexed)	or Heat Exchanger Failure:	gh ct)	.ized: MCC Cavity Burst Diaphragm Leak).	(Main Fuel Valve: Structural, Fuel Leak) (Main Oxidizer Valve: HAL)	Turbopump Failure: (Rotor/Seal Support, HAL)	Pressure Fuel Turbopump Failure:*Test 901-340 (Turn Around Duct Cracked/forn)Test 901-353 (Turn Around Duct Cracked/Torn)Test 902-118 (Turn Around Duct Cracked/Torn)Test 902-333 (Localized: Turn Around Duct Cracked/Torn).*Test 901-436 (Coolant Liner Buckle)*Test 901-436 (Coolant Liner Buckle)	ades) ades)	2
LEGEND NOTE: 1	PAbrevia XA IP IIP UAII NAN NAN	lure:	*Test 901-331 (LOX	750-148 901-183	*Test 902-198 (LOX *Test 901-307 (LOX	Test 902-244 (LOX F *Test SF10-01 (FPB /	STS-8 (Local *Test 750-160 (Fuel Injec	rol Failure: *Test 901-284 *Test 902-132	Duct, Manifold, or Heat Exch	•	lest 901-345 (Local <u>Valve Failure</u> :	*Test SF6-01 (Main I *Test 901-225 (Main C *Test 750-168 (OPOV C	High Pressure Oxidizer Turbop *Test 901-110 (Rotor// *Test 901-136 (Rotor// *Test 902-120 (Heat A	High Pressure Fuel Turbopump *Test 901-340 (Turn A Test 901-363 (Turn A Test 901-363 (Turn A Test 901-363 (Turn A Test 901-363 (Turn A Test 902-383 (Locali *Test 901-436 (Coolan *Test 901-436 (Coolan	902-209 750-165 901-147 902-249 902-095 902-095 901-346 901-346	

. .

" 1

for Incident Tests

::

and therefore, the three engines represent a 1987-dollar loss of \$0.135 billion. The impact of lost high time fleet leader components and failure evidence cannot be measured precisely. Their absence however is certainly felt in the important area of data base refinement for engine flight life expectancy and component condition monitoring.

In recognition of both the system required and advances in detection and computing technology, the SAFD (SSME Anomaly and Failure Detection) program was initiated under NASA MSFC contract number NAS8-36305. It's objectives are:

- To define an improved anomaly detection/shutdown system for the SSME (Space Shuttle Main Engine).
- 2. To eventually build and install the improved detection system for SSME test stand applications.

To achieve the SAFD objectives, the program has been structured into three phases. The objective and content of each phase are listed below.

<u>Phase I: Feasibility Study</u>. The goal of Phase I (this study) is to generate a feasibility recommendation and a preliminary conceptual design based on a failure data base that can be used by NASA/MSFC to make an informed decision on the continuation of the effort. The feasibility study consists of five study tasks which are; Collect/Analyze Engine Test Data (Section 2), Feasibility/Criteria Development (Section 3.0), Survey/Acquire Failure Detection Methods (Section 4.0), Quantify Engine and Test Stand Data (Section 5.0), Phase II/III Plan Development (Section 6.0) and a final task to provide a Phase I Final Report.

<u>Phase II (Option 1): Development</u>. Should Phase I determine that the objectives are feasible, Phase II (Option 1) will be exercised. In Phase II selected failure detection algorithms and failure simulations will be accomplished to quantify system requirements for the proposed failure detection system. Phase II includes five tasks which are; Develop Failure Simulation Models, Implement Detection Methods, Quantify Failure Detection Methods, Define Primitive System Concepts and submit a Final Report.

3

<u>Phase III (Option 2): Design</u>. During Phase III (Option 2), the SAFD system will be designed for implementation in a test stand. This Phase consists of three tasks which are; Final System Design Specification/Cost Estimates including functional, software and hardware requirements, work breakdown structure and cost estimation; Definition of Future Research Needs and a Final Report.

SUMMARY

Phase I has been completed and the results are presented in this final report in the sections described below which conform to the Phase I tasks described above. Section 1.0 below was not included as a Phase I task however, it is included for reference purposes in discussing the other tasks.

<u>Section 1.0:</u> Section I describes the Space Shuttle Main Engine (SSME) in terms of an overview of the engine, the major components and the modes of operation. This section is included to facilitate understanding of the results which follow in the remaining sections.

<u>Section 2.0:</u> This section summaries the contents of the Phase I study which are presented in Sections 3.0, 4.0 and 5.0 below. A description of the SSME Data Acquisition Systems used during all SSME testing is given. The operational characteristics of the SSME Data Acquisition instrumentation are noted.

<u>Section 3.0:</u> This section presents the conditions, premises and guidelines for constructing the anomaly detection system and a preliminary scheme for the system's development (Phase II).

<u>Section 4.0:</u> This section presents the literature review results conducted to survey and acquire failure detection methods. Ten failure and isolation techniques are discussed as a result of this review.

4

<u>Section 5.0:</u> This section describes the results of examining data from forty (40) past incident tests. The results are presented in four (4) categories, i.e.: general overview, data base support to detection system development, delineation of data base and data base observations and comments. Three extensive data tables are included.

<u>Section 6.0:</u> This section presents the Phase II/III Plan Development including task descriptions, schedules and organization.

CONCLUSION AND RECOMMENDATION

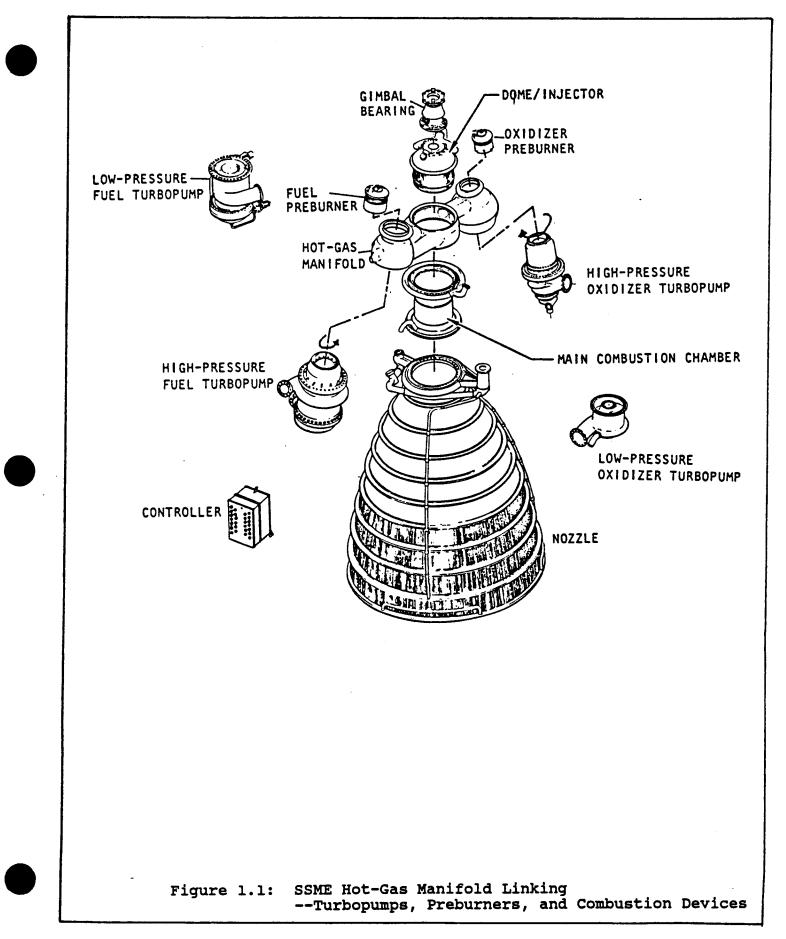
Based on the Phase I Study results and conclusions as shown in Section 3.0, an improved anomaly detection/shutdown system for SSME Test Stand operation has been found to be feasible and it is recommended that this study continue into Phase II.

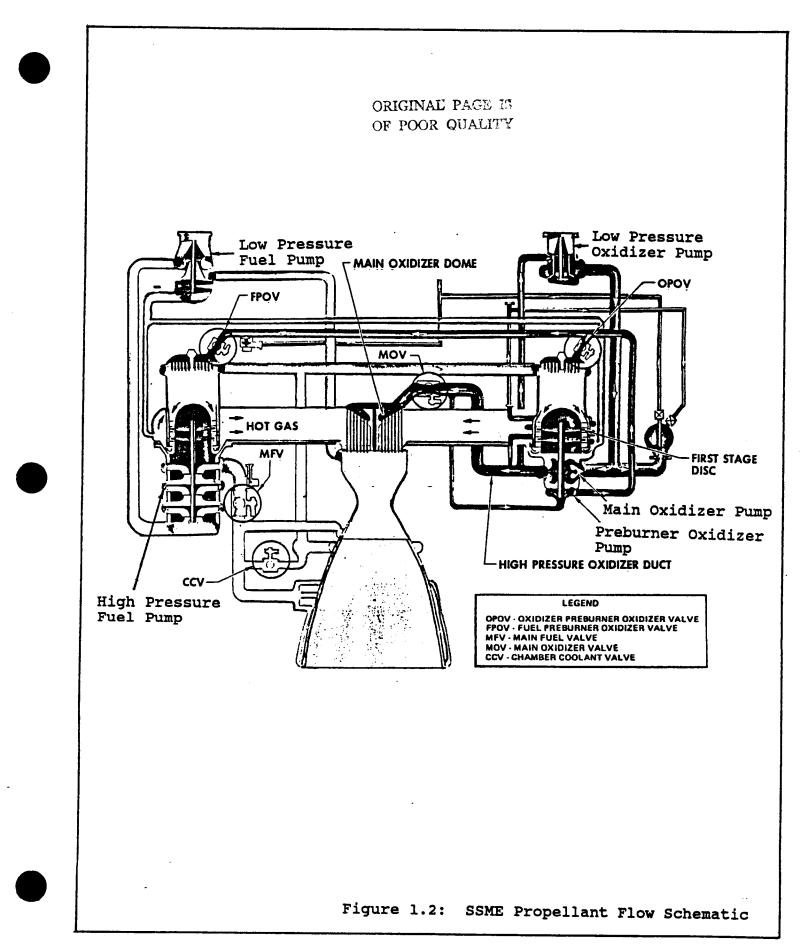
1.0 SSME DESCRIPTION

This section provides a description of the Space Shuttle Main Engine (SSME) by outlining the propulsion system under three headings: engine overview, major components, and modes of operation.

1.1 ENGINE OVERVIEW

The SSME is a liquid-propellant, pump-fed, regeneratively cooled rocket engine with variable thrust. It is the first reusable engine system of its kind. Three SSME's are the Space Shuttle vehicle's main propulsion system. They are ignited on the ground at launch and operate in parallel with the solid rocket boosters during the initial ascent phase and continue to operate for approximately 520 seconds total firing duration. The SSME operates at a mixture ratio (liquid oxygen/ liquid hydrogen) of 6:1 and a chamber pressure of approximately 3000 psia to produce a sea level thrust of 375,000 lbs and a vacuum thrust of 470,000 lbs (rated power level). The engines are throttleable over a thrust range of 65 to 109 percent of the rated power level. This provides a higher thrust level during lift-off and the initial ascent phase, and allows orbiter acceleration to be limited to 3 g's during the final ascent phase. The SSME uses a staged combustion cycle. In this cycle the propellants are partially burned in preburners producing hydrogen-rich gas to power the high-pressure turbopumps. The fuel-rich steam is then routed to the main injector where it is injected, along with additional oxidizer and fuel, into the main combustion chamber (at a high mixture ratio and high pressure). Hydrogen is used to cool all combustion devices directly in contact with high-temperature combustion products. The SSME is mounted with an electronic controller package which operates in conjunction with engine sensors, valves, actuators, and spark igniters to provide a self-contained system for engine control, checkout, and monitoring. The controller provides responsive control of engine thrust and mixture ratio through the digital computer in the controller, updating the instructions to the engine control elements 50 times per second (every 20 milliseconds). Additionally, precise engine performance is achieved through closed-loop


control, utilizing 16-bit computation, 12-bit input/output resolution, and self-calibrating analog-to-digital conversion. Engine reliability is enhanced by a dual redundant control system that allows normal operation after the first failure and a fail-safe shutdown after a second failure of any control system component. High-reliability electronic parts are used throughout the controller.


1.2 MAJOR COMPONENTS

Besides the controller, a myriad of other key components establish the SSME's performance and physical characteristics. Some of the latter components are: turbopumps, preburners, combustion devices, and valves. Figure-1.1 presents a schematic of the first three components and the hot-gas manifold which joins them together. Figure-1.2 identifies a number of the engine system's valves. A description of the above cited components are presented along with their standard abbreviations used in literature.

1.2.1 <u>Turbopumps</u>. Four turbopumps, two low-pressure and two high-pressure are used by the SSME system. The low-pressure fuel turbopump (LPFTP) and the low-pressure oxidizer turbopump (LPOTP) are located at the inlet to respective high pressure fuel and oxidizer turbopumps (see Figure-1.2). The low pressure pumps operate at relatively low speed to permit low pressures in the vehicle tanks. The function of these pumps is to provide NPSH (Net Positive Suction Head) to the high pressure turbopumps (preventing their cavitation). The LPOTP's turbine is powered by high pressure LOX (liquid oxygen) from the high pressure oxidizer turbopump discharge. The LPFTP's turbine is powered by gaseous hydrogen from the main combustion chamber coolant circuit.

The high pressure oxidizer turbopump (HPOTP) consists of two centrifugal-type pumps on a common shaft directly driven by a two-stage, hot-gas turbine. The main pump supplies oxidizer to the main chamber injector, the heat exchanger, LPOTP turbine, and preburner oxidizer pump (the other HPOTP constituent). The preburner pump raises the pressure of the LOX and supplies oxidizer to the preburners. At 109% of rated power level the shaft spins at 29194 rpm.

The high pressure fuel turbopump (HPFTP) is a three-stage, centrifugal flow pump, directly driven by a two-stage hot-gas turbine. The pump provides fuel for: cooling the main combustion chamber, nozzle, and hot-gas manifold, driving the LPFTP turbine, and pressurizing the vehicle fuel tank. At 109% of rated power level the pump spins at 36595 rpm.

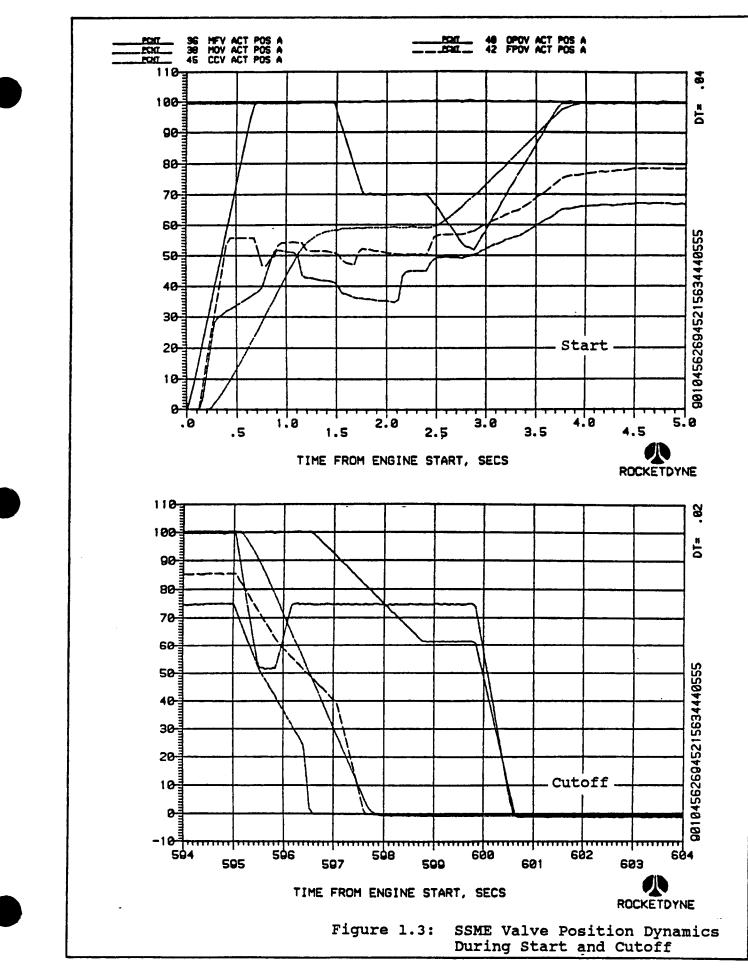
1.2.2 <u>Preburners</u>. The power for the HPFTP and HPOTP is generated from fuel-rich gases from respective preburners, the fuel preburner (FPB) and the oxidizer preburner (OPB) (see Figure-1.2). Each preburner consists of a combustor (with fuel-cooled liner) and a baffled, coaxial element injector. Each combustor's fuel and oxidizer come from the nozzle coolant circuit and the preburner oxidizer pump. The OPB's hot-gas is directed to the HPOTP turbine, LOX heat exchanger (which provides gaseous oxygen for vehicle oxidizer tank pressurization), and the hot-gas manifold. The FPB's hot-gas is directed to the HPFTP turbine and the hot-gas manifold.

1.2.3 <u>Combustion Devices</u>. The hot-gas from both preburners are eventually mixed with HPOTP LOX at the exit of the main injector's elements. This mixing along with separate mixing of HPOTP LOX and coolant circuit hydrogen permit a uniform distribution of propellants to the main combustion chamber (MCC). The injector elements support primary and secondary plates. The primary plate separates combustion chamber hot-gas from cooling circuit hydrogen. The latter fluid is separated from preburner hot-gas by the secondary plate. The plates, in turn, are transpiration cooled by the cooling circuit hydrogen.

The MCC is a cylindrical, regeneratively cooled, structural chamber that contains the burning propellant gases and initiates their expansion from the chamber throat. The expansion ratio from the throat to the nozzle attach flange is 5:1. It is flange attached to the hot-gas manifold (see Figure 1.1). The MCC consists of a coolant liner, a high strength structural jacket, coolant inlet and outlet manifolds, a throat ring, and two thrust vector control actuator support struts. 1.2.4 <u>Valves</u>. The fluid control for the MCC and for the interconnected components upstream is achieved by five valves, i.e. the MFV, CCV, MOV, FPOV, and OPOV. These valves are shown in Figure-1.2. A function description of each is listed:

Abbreviation <u>Description</u>

- MFV <u>Main Fuel Valve</u>, controls engine fuel downstream of the HPFTP, i.e. thrust chamber coolant circuits, the LPFTP turbine, hot-gas manifold coolant circuit, OPB, FPB, and three augmented spark igniters (ASI's).
 - CCV Chamber Coolant Valve, controls MCC and nozzle coolant flow.


MOV <u>Main Oxidizer Valve</u>, controls LOX flowrate to the main injector and the main chamber augmented spark igniter (ASI).

FPOV <u>Fuel Preburner Oxidizer Valve</u>, regulates LOX flow to the fuel preburner.

OPOV <u>Oxidizer Preburner Oxidizer Valve</u>, regulates LOX flow to the oxidizer preburner.

1.3 MODES OF OPERATION

The electronic controller controls the five valves by open-loop and/or closed loop command during three basic modes of the SSME's operation, i.e.: start, main stage and cutoff. During start and cutoff modes the valve position versus time profiles are as shown in Figure 1.3. The valve profiles during start, for instance, reflect the requirements for: controlling main injector LOX dome, FPB and OPB prime times and minimizing FPB temperature spikes. The valve profiles during cutoff, for instance, reflect the requirements for: satisfying the ICD (Interface Control Document) thrust decay rate and

controlling preburner power and preventing HPFTP stall. During main stage, the FPOV and OPOV are under closed loop operation with the controller; the other three valves are not permitted to change their positions (except the CCV as a function MCC chamber pressure). The FPOV and OPOV will change their position to maintain the commanded power level chamber pressure and mixture ratio.

2.0 PHASE I CONTENT SUMMARY

2.1 PHASE I PURPOSE

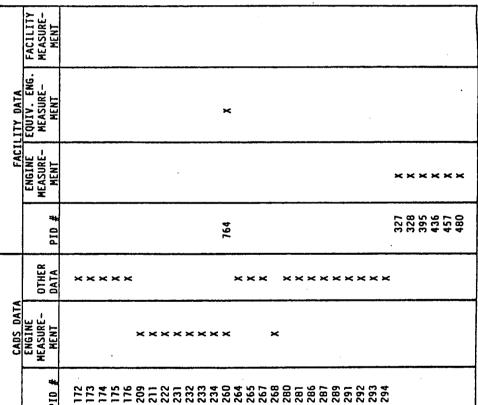
The objectives of Phase I were:

- To establish the feasibility of constructing the anomaly detection system around the SSME's current instrumentation and recording system, and
- 2. To define a preliminary scheme for the detection system's algorithm and decision making logic.

2.2 CURRENT SSME INSTRUMENTATION AND RECORDING SYSTEM

All SSME test stands have three (3) data acquisition systems, the command and data simulator (CADS), the facility recording (FR) system, and the analog high frequency recording (AHFR) system. The AHFR system consists of 6 to 14 tape recorders; each recorder has 14 to 28 tracks and capable of a frequency response of 0-20 kHz. The system receives its data from such sources as: turbopump internal strain gages and external accelerometers, main combustion chamber inlet strain gages, gimbal bearing accelerometers, and preburner (longitudinal and radial) accelerometers. The command and data simulator is a digital computer unit in the teststand blockhouse. This CADS unit receives and displays engine measurements from the SSME controller every 40 milliseconds (25 samples/second). The CADS measurements are displayed with parameter identifiers (PIDS), ranging from 1 to 299. The facility recording system consists of two separate digital computers. One computer receives data directly from engine mounted sensors and the other from sensors mounted on certain facility components. These measurements are sampled every 20 milliseconds (50 samples/second) and are displayed with PIDS, ranging from 300 to 1999.

The three figures on the following pages further describe the CADS and FR measurements. A directory is presented here:


<u>Figure</u>	Description
2	CAD and FR Measurement Samplings
3	CAD and FR Transducer Repeatability, Response and/or Range
4	CAD and FR Shutdown Parameter Samplings with Monitoring Limits

2.3 PHASE I TASKS

To achieve the objectives of Phase I, two broad tasks were accomplished. The detailed conclusions and results of each task are presented in Section 3.0, 4.0 and 5.0, respective. The tasks consisted of (1) examining the elements of the aforementioned digital recording systems* along with incident documentation and (2) reviewing the current literature on failure detection techniques. The CAD and FR recording systems were screened for interfacing with added SAFD test electronics and sensor singal tap-off. Forty (40) past incident tests were studied:

- •To assess the feasibility of using existing digital* sensor measurements for early anomaly detection (prior to redline time). Some of the assessment criteria were: damage-reducing effectiveness, sufficient changes from nominal conditions, and sufficient numbers of sensors reflecting the anomaly.
- •To define sensor deviations under normal operating conditions for a typical test and from test-to-test.

						FACILITY MEASURE- MENT			 >-	< ×	×	 × ×	~ >	× >	 < ×	×		×	· ×	××
					FACTI ITY DATA	NG.							<u> </u>							
		۲ ۲			FACTI	ENGINE MEASURE- MENT	×	< ×	×							;	~ >	<		
		Z EOLDOUT FRAME				PID #	650	658 658	659 817	821	836	854	858	6/9 188	882	883	168	101	1021	1036
		NOTIO				OTHER Data		_												-
		\sim			CADS DATA	ENGINE MEASURE- MENT														
						# OId	···						•		•					*
					PARAMETER		High Pressure Fuel Pump Coolant Liner Temperature High Pressure Fuel Pump Orain Pressure (D16)		ity Fuel Flowmeter	Engine Fuel Inlet Pressure] Fuel Pressurization Vontine 1, 2124 Accession	Fuel Pressurization Venturi Delta Pressure	Facility Oxidizer Flowmeter Discharge Pressure Fngine Oxidizer Talet Descenses	Heat Exchanger Interface Temperature	Exchanger Venturi Inlet	Inlet	High Pressure Oxidizer Pump Primary Seal Drain Pressure	Pressure Oxidizer	Facility Fuel Flowmeter Discharge Temperature T	cngine ruei inlet lemperature Fuel Pressurization Venturi Inlet Temperature	Facility Oxidizer Flowmeter Discharge Temperature Tl
	FACILITY MEASURE- MENT										- Aurochim								FACILITY	MENT
FACTLETY DATA	EQUIV. ENG. Measure- Ment		×	****		×	××		×									FACILITY DATA	EQUIV. ENG.	MENT
FACT	ENGINE MEASURE- Ment							<u></u>						_				FACIL	ENGINE	MENT
	# OId		549	595 367 734 754 878		459	410 341		334											PID #
V	OTHER Data	****									×	× ×	: ×	×					υτμερ	DATA
CADS UATA	ENGINE MEASURE- MENT		××	*****	× × ›	<	< × ×	× ×	× >	<				,				CADS DATA	ENGINE	MENT
	PID #	14 V O M B	12	3333355283	8 9 9	* 4 8 5	28.5	63 86	6	.	154	155	151	E] .					# 01d
				a a					;	Ņ.					1					

.

×× × × 1054 1058 1187 1188 1190 1951 • Engine Oxidizer Inlet Temperature High Pressure Oxidizer Pump Oxidizer Seal Drain Temp. High Pressure Oxidizer Pump Turbine Secondary Seal Drain Temperature High Pressure Oxidizer Pump Turbine Primary Seal Drain Temperature Main Combustion Chamber Liner Cavity Pressure Pl

×××××

CAD and FR Measurement Samplings Figure-2:

2-3

æ
뛷
¥
S
æ
۰.

	₽ID #
Hard Fail Identification Hard Fail Test Number 1 Hard Fail Test Number 2 Hard Fail Test Number 3 Histure Ratio Preburner Pump Discharge Temperature Average High Pressure fuel Pump Inlet Temperature Average High Pressure Fuel Pump Inlet Temperature Average High Pressure fuel Pump Inlet Temperature Average Main Combustion Chamber Goolant Discharge Pressure A Main Combustion Chamber Hot Gas Injector Pressure A Main Combustion Chamber Hot Gas Injector Pressure A Main Combustion Chamber Hot Gas Injector Pressure A Hain Combustion Chamber Hot Gas Injector Pressure A Low Pressure Oxidizer Pump Speed A Heat Exchanger Discharge Pressure B Main Fuel Valve Actuator Position A A Heat Exchanger Discharge Pressure A Main Fuel Valve Actuator Position A Oxidizer Preburner Oxidizer Valve Actuator Position A Fuel Preburner Condant Liner Pressure A Fuel Pressure Fuel Pump Discharge Pressure A Fuel Pressure Fuel Pump Discharge Pressure Average High Pressure Conduction Chamber Condant Liner Pressure Average High Pressure Condizer Pump Discharge Pressure Average High Pressure Condizer Pump Discharge Pressure Average	
ssure A cal Self Test Register 2A cal Self Test Register 2B cal Self Test Register 1A cal Self Test Register 1B cal Self Test Register 1B car Preburner Oxidizer Valve Command Limit	154 155 155 157 151
 PARAME TER	# 01d
Main Fuel Valve Command Main Oxidizer Valve Command Coolant Control Valve Command Fuel Preburner Oxidizer Valve Command High Pressure Oxidizer Pampe Command High Pressure Oxidizer Pump Inlet Pressure A High Pressure Oxidizer Pump Intermediate Seal Purge PR. Pogo Precharge Pressure High Pressure Oxidizer Turbine Discharge Temperature A High Pressure Oxidizer Turbine Discharge Temperature B High Pressure Oxidizer Turbine Discharge Temperature B High Pressure Oxidizer Value 2 High Pressure Oxidizer Value 2 High Pressure Fuel Pump Speed A High Pressure Value 2 High Pressure Value 2 High Pressure Value 2 High Pressure Value 2 Hard Fail Parameter Value 3 Fuel Mass Flow Anti Flood Valve Position A Vehicle Command 1 Vehicle Command 2 Mann Combustion Chamber Pressure (Controller Reference) Fallure Identification Word 1 Identification Word 1 Identification Word 2 Engine Status Word 1 High Pressure Oxidizer Pump Balance Cavity Pressure 2A Main Combustion Chamber Oxidizer Injection Pressure 2A Main Combustion Chamber Oxidizer Infection Pressure 2A Main Pressure Fuel Pump Balance Cavity Pressure 2A Main Pressure Pressure 2A Main Pressure Fuel Pump Balance Cavity Pressur	232 232 233 233 233 233 233 233 233 233

Repeatability, Response, CAD and FR Transducer and/or Range Z FOLDOUT FRAME Unknown effects due to lack of calibration at line pressures. If Taber 2104 with line pressure calibration substituted: approximately 1%. Time constant for hot gas temperature transducer is that expected in the turbine discharge environment. The transducers will be acceptance tested to a 0.3 sec. time constant in water. It can be shown analytically that this translates to the time constant in the table. These transducers are provided with 5 time full scale overrange protection. Effectivity <u>Only</u>: Engine S/M 0006 and subs (0005 modified at recycle) and 2004 and subs (2003 modified at recycle). **Filter** Scaled Range - For pressure, the rated full-scale range of the transducer; for temperature, the band to which the controller input circuit is designed; for flow and speed, the volumetric flowrate or shaft rotational velocity; for vibration, the rated range of the accelerometer. Operating Range - The upper and lower values of the operating parameters of the engine based on the engine based on the engine balance of OVS-SSME-101, Volume II. 5 Hz 2H 2 5 Hz 5 Hz POGO Gas Supply Pressure Effectivity <u>Only</u>: Engine S/M 0005 and Subs (0002 and 0003 modified at recycle), also 2003 and Subs; Retrofit: 2001, 2002 and 0104. HFT Inlet Accelerometer Effectivity <u>Only</u>: Engines S/M 2001, 2002, 2003 and 0104. Effectivity of all other POGO Instrumentation: Engines S/M 0104, 2001 through 2007. Transducers used for sensing controller internal pressure and temperature will be supplied and verified as parts of the controller. Use: PC – Performance Control; LC – Limit Control or Limit Shutdoun; EC – Engine Checkout; MR Maintenance Recording; ND – Non-Flight Data; SV – Status Verification and Engine Ready. Repeatability - Repeatability is defined in the Applicable Component Specification (Ref. Para. 4.4.2). Transducer Type (Ref. Para. 4.4.2): A – RC7001 Pressure, Low Level; C – RC7002 Cryogenic Temperature; D – RC7004 Hot Gas Temperature: E – RC7005 Speed and Flow; F – RC7007 Low Level Analog Output for Hydraulic Oil Service. 10 to 40 Hz⁽¹⁾ (Sensed DR) - The outputs of the speed and flow transducers in pulses per second (pps) corresponding to the values of the operating ranges. 0.1 to 2 Hz (Sensed Range) - The output of speed and flow transducers in pulses per second (pps) corresponding to the scaled range. Response 0.5 Hz 10 Hz Figure-3: FR (Facility Recorder) System 6° ≤ 300°R 4° 300 - 800 °R 1/2% > 800°R <u>Repeatability</u> ENGINE TRANSDUCER REPEATABILITY, RESPONSE AND RANGE 0.5% FS .25°R CADS (Computer and Data Simulator) 2 2-4 Delta Pressure Transducer Pressure Transducer 1. Assumes small changes while at pressure. Temperature Bulb Thermocouple Sensor Type 659, 1017, 1021, 1058, 1054 650, 658, 882, 1036, 11*87*, 1188, 1190 327, 328, 436, 457, 480, 657, 817, 821, 836, 854, 858, 881, 951, 990, 1951 P1D Number 837, 883 ي. NOTES: ~ ň ÷ ŝ ۲. ÷ ه. Ξ. ë. FOLDOUT FRAME 16,123 to 16,342 gpm (241-245 pps) 35,576 to 39,056 rpm (2372 to 2604 pps) 14,380 to 16,210 rpm (1918 to 2162 pps) 3876 to 5308 rpm (1034 to 1416 pps) 1500 to 3850 ps1a 1400 to 3300 psia 2700 to 3100 psia 2000 to 5400 ps1a 3200 to 7400 psia 1300 to 4900 psia 4200 to 8800 psia 2200 to 6200 psia 2375 to 5400 psia EWGINE OPERATING(«) RANGE (SEMSED OR) (3) 150 to 280 psim 270 to 575 psia 1000 to 1600*R 1200 to 1820*R 50 to 60 psia 520 to 735*R 460 to 660°R 178 to 201*R 0-1500 psta 35 to 45°R 0-400 ps1a 0-750 ps1a 0-100 psta 0-750 ps1a 0-750 ps ia 0-30 psta 178-201•R 460-620°R 460-620°R 0-20 ps la 0-1500 psia (1500 psia)(11) 0-1500 ps1a (7500 ps1a)(22) 0-1500 psia (7500 psia)(11) 0-1500 psta (7500 psta)(11) SCALED RANGE(SR)(+) (SENSED RANGE)(+) 0-6000 rpm (0-1600 pps) 400 to 1160*R 460 to 2500*R 0-18,000 gpm (0-268 pps) 460 to 2500*R 0-20,000 rpm (0-2667 pps) 140 to 760*R 0-45,000 rpm (0-3000 pps) 160 to 210°R 0-7000 ps1a ORIGINAL PACE 19500 ps1a 0-7000 ps fa 0-4000 ps1a 0-4500 ps1a 0-9500 psia 0-7000 psta 0-7000 psta 0-3500 ps1a 0-300 ps1a 30 to 55°R 0-600 ps1a 0-600 ps1a 0-300 psia 0-300 ps fa 0-300 psta 360-760*8 0-50 ps1a 160-210*R 360-760°R 0.1 sec TC(•) 0.1 sec TC⁽•) 150 Rad/Sec 2.0 sec TC 0.2 sec TC TY(.) RESPONSE 100 Hz 2H 001 100 Hz 2H 001 2H 00(•

OF POOR QUALITY

		IT FRAME	DO DO	FOLDOUT
- 9	±.5% SR	HR, ND		HPDT Boost Stage bischarge Pressure(A)
	±2% SR	SV, MR		Boost Stage Discharge Temp
	±.5% SR	MR, ND	£	
		2X. 2X.	3	PRESSURE OXIDIZER TURBOPUMP
	<u>+</u> 2% SR	LC, MR	(a)	Turbîne Discharge Temperature
		LC.MR.ND	(E)	HPFT Shaft Speed
•	±.5% SR	MR, ND	S	HPFT Discharge Pressure
	- - -			HIGH PRESSURE FUEL TURBOPUNP
	12% SR	HR HR	3 3	ACC LOX Injector Temperature
	±.5% SR		33	nuc ruel Injector Pressure Main Combustion Chamber Pressure
	±.5% SR	ä	3	MCC Coolant Pressure
	±2% SR	MR	(a)	
		·		HAIN COMBUSTION CHAMBER
	<u>+</u> .5% SR	۲C	(v)	POGO Precharge Pressure
		HR,EC Hr	(6)	Controller Internal Pressure Controller Internal Temberature
	•			
	±.5% SR	LC.MR.EC.SV	(v)	HPOT Intermediate Seal Purge Pr.
•	±.5 SR	LC, MR	S	HPOP Primary Seal Drain Pressure
	±.5 SR	HR	(v)	HPOP Intermediate Seal Cavity Pr.
	±.5% SR	MR,EC,SV	(Y)	Emergency Shutdown PAV Pressure
	±.5% SR	MR,EC,SV	(Y)	FPB System Purge Pressure
	±.5 SR	HR,EC,SV	(Y)	fuel System Purge Pressure
•	+.5% SR	HR, EC, SV	(v)	OPB System Purge Pressure
			Γ	PHEUMATIC CONTROL ASSEMBLY
	+2% SR	SV	9	Main fuel Valve Temperature
•	±2% SR ·		3	Main Oxidizer Valve Temperature
	- 5X SR	SV. MR. EC	(E)	HYDRAULIC CONTROL SYSTEM Hvdraulic System Pressure
		MR, ND	(E)	LPOT Shaft Speed
	±.5% SR	SV, MR	(v)	LPDT Discharge Pressure
	·.			LOW PRESSURE OXIDIZER TURBOPUHP
	±.4% SR	PC,MR,ND	(E)	fuel flowrate
		HR,ND	(E)	LPFT Shaft Speed
•	±2% SR	PC.SV.MR	(C)	LPFT Discharge Temperature
	±.25% SR	PC,SV,MR	3	LUM FKLSSLUKL FULL LUKBUPUNT LPFT Discharge Pressure
	15X SR	LC, MR	6	
	<u>+</u> .5% SR	W c	3	Oxidizer Tank Pressurant Pressure
7	REPEATABILIT	USE(=)		(TRANSDUCER TYPE)(1)
				PÅRAME TER

Parameter		Lower Limit	<u>Upper Limit</u>
HPFF Turbine Discharge Temperature Ch. Start +5.04 sec. to Start +5.0 sec. Start +5.8 sec. to Shutdown	A (2C)	-	1760°R 1850°R
HPFT Turbine Discharge Temperature Ch. Start +5.04 sec. to Start +5.8 sec. Start +5.8 sec. to Shutdown	B (2C)	-	1820°R 1960°R
HPOT Turbine Discharge Temperature Ch. Start +2.3 sec. to Start +5.8 sec. Start +3.8 sec. to Start +5.8 sec. Start +5.8 sec. to Shutdown	A (2B)	550°R 550°R	1560°R 1560°R 1760°R
HPOT Turbine Discharge Temperature Ch. Start +2.3 sec. to Start +5.8 sec. Start +3.8 sec. to Start +5.8 sec. Start +5.8 sec. to Shutdown	B (2B)	550°R 550°R	1560°R 1560°R 1760°R
HPFT Turbine Discharge Temp T' Limit	(4)	•	50°R below channel upper limit (depending on time)
HPOT Turbine Discharge Temp T' Limit	(4)	50° above channel lower limit	50° below channel upper limit (depending on time)
HPOP IMSL Purge Pressure	(2A)	170 psia	-
HPOT Secondary Seal Cavity Pressure	(2A)	-	100 psta
HPFP Coolant Liner Pressure	(20)	-	Variable (5)
Preburner S/D Purge Pressures Ch. A: Fuel: Ch. B: Oxidizer	(2A)	-	300 psta

NOTES:

1. Each sensor channel of the listed parameters shall be individually checked against the limits.

- 2. Limit Shutdown monitoring shall be initiated at the following times:
 - (a) At Start for HPOP IMSL Purge Pressure, HPOT Secondary Seal Cavity Pressure, and Preburner Shutdown Purge Pressures.
 - (b) At Start +2.3 seconds for the HPOT TDT upper limit and at Start +3.8 seconds for HPOT TDT lower limit.
 - (c) At Start +5.04 seconds for HPFP TDT and HPFP Coolant Liner Pressure.

Monitoring shall then be performed continuously until Start +2.3 seconds for Preburner Shutdown Purge Presures, and for other parameters, until initiatin of Shutdown Phase or when both sensor channels of a particular parameter have been permanently disqualified.

- 3. A sensor channel shall be considered to have exceeded Limit Shutdown Monitor limits (Redlines") if its readings are equal to or outside listed limits for three consecutive major cycles.
- 4. The T' or blueline limits are not Limit Shutdown Monitor limits, but shall be used to test for actuator control switchover in the event of an RVDT miscompare. After such a miscompare, if both channels of either HPOT TDT or HPFT TDT are outside their respective T' limits, actuator control shall be switched to channel B. Monitoring times for T' limits correspond to the monitoring times for the respective Limit Shutdown Monitor limits.
- 5. The upper limits for HPFP Cooland Liner Pressure shall be initialized at Start +5.04 seconds to 4000 psia. Beginning at that time the limits shall then be calculated in each major cycle as a linear function of MCC Pc:

limit = $A_0 + A_1$ *(PcReal) + (limit tolerance)

,

Nominal values for the coefficients are $A_0 = -97.3$ psi, $A_1 = 1.1583$, and limit tolerance = 45) psi. Calculation of the limit shall be bypassed in any major cycle that both channels of MCC Pc are not qualified.

<u>Parameters</u>	Lower Limit	Upper Limit
Facility Fuel Flowmeter Discharge Temperature	-	39.8°R
Engine Fuel Inlet Pressure	2 psig	-
Engine Oxidizer Inlet Pressure	10 psig	-
Main Combustion Chamber Liner Cavity Pressure	-	65 psig
High Pressure Fuel Pump Speed	-	38,500 rpm
High Pressure Oxidizer Pump Seal Drain Pressure	-	40 psia

CADS (Computer and Data Simulator)

ORIGINAL PAGE IS OF POOR QUALITY

FR (Facility Recorder) System

Figure-4:

CAD and FR Shutdown Parameter Samplings with Monitoring Limits

•To establish the data base which would assist in defining:

-How sensitive the detection system should be to certain anomaly changes (i.e. some anomaly changes may result in only minor damage).

-What are the experienced anomaly characteristics the detection system should be able to detect. (Programs with new technology and design have the potential of reviving some of the basic failure characteristics.)

The latter study utilized CRT-time slice plots and written documentation, see Figure-1. Approximately fifty-seven (57) sensor measurements were generated for each time-slice indicated in the figure. The written documentation consisted of available Rocketdyne incident reports, briefing charts, internal reports, and NASA investigation reports.

*<u>NOTE</u>: Phase I's objectives incorporating both the AHFR system and the digital recording systems could be achieved in another study. This study would require sufficient test data be assembled to adequately define the nominal 'g-level's. Extensive investigation would be required to define the appropriate hardware and software integration scheme for AHFR, CADS and FR measurements.

The literature review of detection techniques consisted of contacts with industry leaders, including Alphatech and Intermetrics, as well as surveys of over seventy (70) papers.

The methods and material which were reviewed are listed below:

- I. Alphatech Material/Approach.
- II. Intermetric Material.
- III. Bank of Kalman Filters Technique.
- IV. Failure Sensitive Filter Technique.
- V. Observers Technique.
- VI. Voting Technique.
- VII. Innovations Based Failure Detection Scheme.
 - A. Generalized Likelihood Ratio (GLR) Test.
 - B. Sequential Probability Ratio Tests (SPRT).
 - C. Weighted Sum Square Residual (WSSR) Test.
 - D. Modified Kalman Filter.
- VIII. Parameter Estimation Technique.
 - IX. Jump Process Technique.

3.0 PHASE I CONCLUSIONS AND DEFINITION FOR DETECTION SYSTEM DEVELOPMENT

This section presents the conditions, premises, and/or guide lines for constructing the SAFD anomaly detection system and a preliminary scheme for the system's development (Phase II).

3.1 DETECTION SYSTEM FEASIBILITY

The construction of an anomaly detection system is attainable using available recording systems and under well-founded premises and/or guidelines. An existing CADS-II system* possesses data ports which can permit a separate system (such as the SAFD) to access the data tables from the controller (both A and B channels). The only equipment necessary to achieve the acquisition is an interface unit to interpret the signal coming from the CADS II system. The estimated cost of building this unit is \$50-thousand (in 1986 dollars). The FR sensor measurements can be tapped off from the facility recording channels.

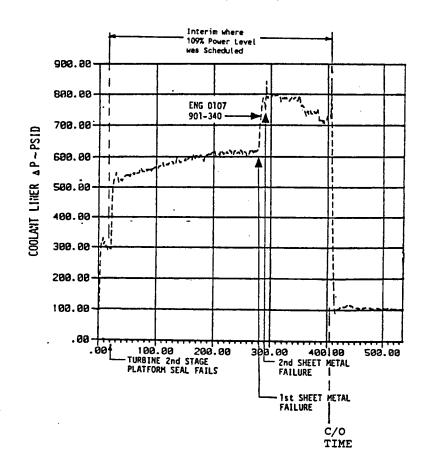
***NOTE:** The CADS II system appears to have the capabilities required by the SAFD detection system (except it would exclude the FR measurements from the detection system). The CADS II system is built around the INTEL 8086/8087 combination of processors, making floating point arithmetic available. It takes advantage of the Multibus I 16-bit architecture allowing the addition of a large supply of high speed processor boards (680xx series, for example), as well as analog or digital input processor boards. Since the processor boards reside on the CADS II bus, it would be a fairly straightforward task to modify the operating system to allow a "SAFD processor" to send shutdown commands to the CADS processors (to directly initiate an engine shutdown). The CADS II system can also store any SAFD data on a magnetic tape along with the controller data for later analysis. If the option of solely using CADS-measurement data is deemed acceptable (during detection system development-Phase II), cost and software development will be determined. The cost of developing the SAFD system as an integrated part of CADS II would certainly be much less than designing a separate computer system.

Based on an assessment of past incident test data and written documentation (described in Section 5.0), the detection system is also attainable under six (6) premises and/or guidelines. These are:

- 1. Even though action to prevent reoccurrence has been taken as a result of the major incidents, future programs (test bed, for example) require the advanced detection system be sensitive (but not be limited) to previous experienced anomaly characteristics. These characteristics can be initially grouped into classes of failure types (see Figure-1). Each of these types can in turn have innumerable failure modes which can propagate to characteristics of another given class. In addition, programs with new technology and design have the potential of reviving some of the basic failure modes (see Section 5.0 for test evidence).
- The detection system's response to a failure should consist of a cutoff signal.
- 3. The detection system should be limited in scope:

•To ground tests of the SSME (flight applications will require modifications in the ground detection system's priorities and design for engine shutdown).

- •To steady state operations of the SSME. A detection system sensitive to anomalies occurring during start or throttle should be formulated in a future study. For this latter study sufficient test data should be gathered to adequately define the "nominal" start and throttle transient envelope profiles.
- 4. The detection system's input data should be tapped from the current set of CADS and/or FR sensor measurements. Under the premise of item-1 above and Section 5.0's data base, the measurements are sufficient for the SAFD detection system. The sufficiency is in terms of:


•Number of sensor measurements indicating an anomaly.

•Damage reducing effectiveness, i.e. a sufficient interim from first measurement indications of an anomaly to redline cutoff time (such that major damage can be avoided).

•Magnitude of (anomaly induced) change from nominal conditions.

- 5. The detection system's development requires the following concerns to be acknowledged or accounted for.
 - a. Recognition of an anomaly serious enough to warrant a shutdown.
 - Recognition of sensor malfunctions to avoid a premature shutdown.
 - c. Recognition for a sufficient number of sensors to be incorporated into the detection system. There should be sufficient numbers which indicate a failure even if a few sensors either malfunction and/or do not reveal anomaly indications.
 - d. Recognition that the sensors (to be incorporated into the detection system) should represent key aspects of the SSME operation. If all sensors of the detection system malfunction, the resulting premature shutdown would be justified for safety and adequate test monitoring concerns.
 - e. Recognition of the engine operating state and goals.
 - f. Recognition of the different manner in which anomalies reveal themselves.

The system's shutdown should be rapid enough to improve upon g. the current detection system's performance. In several anomaly tests, particularly the HPFTP (High Pressure Fuel Turbopump) failures, the time intervals from first indications of an anomaly to the current redline cutoff are substantial. The sensor measurement trace below is from test 901-340 where the HPFTP was destroyed. Section 5.0 presents additional measurement trace examples. Figure-5 presents a summary of time intervals for twenty-eight anomaly tests.

 Recognition that even after extensive simulated testing with actual incident and nominal test data, as well as, model generated data from FMEA (Failure Mode Effects Analysis) critical-1 tables, the SAFD system may signal a premature shutdown (due to unforeseen circumstances).

1

ALGORITHM SENSOR EVALUATION TABLE: SENSOR VS. TEST-TO-TEST PERCENT CHANGE FROM STEADY STATE CONDITIONS

X---Parameter does not exist for the test number.

M····Parameter malfunction.

NC---No change is strikingly indicated.

NS---Sensor has not settled adequately to steady state conditions.

ORIGINAL PAGE IS OF POOR QUALITY

				Test <u>Nu</u>	mhore •				01	100	•			
TYOTON				*901	901	750	901	902	901	SF10	*901	750	901	901
TYPICAL	DADAMETER			- 173	-331	- 148	- 183	- 198	- <u>307</u>	- <u>01</u>	-284	- <u>259</u>	-485	- 136
<u>PID NO.(\$)</u> 366-371	PARAMETER (INJ CLNT F		HG IN PR)	124.4	125.0	30.0	157.1	4.2	X	X	X	X	X	3.3
			-	30.0	7.2	50.7	9.7	5.3	x	x	x	x	NC	.8
366-383	(INJ CLNT F		-	4.1	17.6	10.6	2.4	21.8	NC	x	Ŷ	100.0	X	2.2
371-383	(MCC HG IN	• •		5.6	25.5	9.9	1.4	X	8.0	Ŷ	270.8	92.1	NĈ	1.7
395-383	(MCC OX IN. (HPFP CL LM			у.0 Х	Z3.5 X	X	X	Ŷ	25.0	Ŷ	Z/0.0	X	X	x
940-371				6.7	1.6	9.0	.8	1.9	NC	Ŷ	70.0	Ŷ	NC	.4
459-383	(HPFP DS PR			5.3	3.2	4.2	NC	3.4	NC	Ŷ	, U.U	4.Î	NC	.2
412-371	(FPB PC)		HG IN PR)	3.9	5.6	4.2	NC	6.6	NC	Ŷ	Ŷ	5.7	NC	1.1
480-371	(OPB PC)	• (MLL	HG IN PR)		3.6	6.4	.3	1.5	.4	1.8	31.0	3.9	NC	.3
63, 163	MCC PC			4.4	10.2	10.6	1.0	12.5	NC	4.0	79.8	275.0	NC	NS.
566	MCC CLNT DS			X	5.3	10.8 M	NS NS	1.8	3.4	4.0 X	43.2	56.3	NC	NS
24	MCC FU INJ	PK		4.4	1.2	1.5	X	.4	NC	NC	19.4	100.0	NC	1.1
764	HPFP SPEED			1.5		30.9	1.6	84.1	4.0	6.3		24.9		1.5
663	HPFT DS T1			7.5	10.1			5.5			25.1		NC	
664	HPFT DS T1	В		7.5	10.7	M 73 4	1.4		4.6	5.3	M	14.0	NC	2.4
233	HPOT DS T1			4.9	41.0	32.6	.5	30.1	4.4	8.0	69.7	24.0	4.0	1.9
234	HPOT DS T2			3.0	40.0	37.6	.3	28.5	4.5	9.0	M 78.0	3.9	3.1	1.4
854	FAC OX FM D			NC	NC	4.7	NC	3.7	NC	X	28.0	NC	NC	NC
858, 860	ENG OX IN F	PR		NC	9.7	8.6	NC	3.4	NC	X	51.6	36.3	NC	NC
302	LPOP DS PS			3.4	5.8	3.8	NC	4.7	9.2	X	28.6	55.9	NC	NC
878	HX INT PR			.9	4.7	3.4	NS	4.5	1.5	X	53.5	1.0	1.7	.8
879	HX INT T			.4	7.2	.7	.2	15.4	3.8	X	7.6	6.1	NS	1.9
883	HX VENT DP			1.1	4.3	NS	NC	1.9	NC	X	53.6	X	1.8	.5
40	OPOV ACT PO			4.2	7.2	8.0	1.1	5.0	3.4	3.4	31.7	1.8	1.0	3.0
42	FPOV ACT PO)S		1.8	6.6	2.2	.4	2.3	1.3	2.2	5.4	5.7	NC	1.8
	. .		•••			40	-		40	-			•	
Number of	f above parame	eters over	<u>2% change</u> :	15	20	18	3	17	10	7	16	16	2	4
A		1 (
•	ensor interva				~			~ ~		e 45	/ 07	47		e /
	start time to	CUTOTT TI	ne:	.48	.95	55	27.1	2.9	20.3	5.15	6.03	.17	8.1	96.
ar ional y				• • •										
<u>arional y</u>			 <u>Test_</u>	Numbers:										
			90	<u>Numbers</u> : 1 901	901	902	*901	901	901	902	902	*901	902	901
	AMETER			<u>Numbers</u> : 1 901	901 - <u>436</u>	- <u>118</u>	*901 • <u>364</u>		901 - <u>410</u>	902 - <u>095</u>	902 - <u>249</u>	*901 - <u>225</u>	902 - <u>112</u>	
PARI	AMETER	(MCC HG IN	90 - <u>34</u>	<u>Numbers</u> : 1 901				901						901 - <u>346</u> X
<u>Par</u> , (11,	A <u>METER</u> J CLNT PR) -	(MCC HG IN (MCC PC)	90 - <u>34</u> PR)	<u>Numbers</u> : 1 901 0 - <u>363</u>	- <u>436</u>	- <u>118</u>	• <u>364</u>	901 - <u>362</u>	- <u>410</u>	- <u>095</u>	- <u>249</u>	- <u>225</u>	- <u>112</u>	- <u>346</u>
<u>PAR/</u> (IN. (IN.	A <u>METER</u> J CLNT PR) - J CLNT PR) -	•	90 - <u>34</u> PR)	<u>Numbers</u> : 1 901 0 - <u>363</u> X X X X	- <u>436</u> X	- <u>118</u> 45.7	- <u>364</u> X	901 - <u>362</u> X	- <u>410</u> X	- <u>095</u> NC	- <u>249</u> X	- <u>225</u> M	- <u>112</u> NC	- <u>346</u> X
<u>PAR/</u> (IN. (IN. (MCC	A <u>METER</u> J CLNT PR) - J CLNT PR) -	(MCC PC) (MCC PC)	90 - <u>34</u> PR)	<u>Numbers</u> : 1 901 0 - <u>363</u> X X X X 7 2.0	- <u>436</u> X NS	- <u>118</u> 45.7 6.8	- <u>364</u> X X	901 - <u>362</u> X X	- <u>410</u> X X	- <u>095</u> NC .4	- <u>249</u> X X	- <u>225</u> M 12.9	- <u>112</u> NC NC	- <u>346</u> X X
<u>PAR/</u> (1N. (IN. (MCC (MCC	AMETER J CLNT PR) - J CLNT PR) - C HG IN PR) -	(MCC PC) (MCC PC) (MCC PC)	90 - <u>34</u> PR) 17. 1.	Numbers: 1 901 0 - <u>363</u> X X X X 7 2.0 8 1.5	- <u>436</u> X NS X	- <u>118</u> 45.7 6.8 6.9	- <u>364</u> X X 11.9	901 - <u>362</u> X X 6.8	- <u>410</u> X X 4.0	- <u>095</u> NC _4 _8	- <u>249</u> X X X	- <u>225</u> M 12.9 M	- <u>112</u> NC NC NC	- <u>346</u> X X NC
<u>PAR/</u> (1N. (IN. (MCC (MCC (HPF	A <u>METER</u> J CLNT PR) - J CLNT PR) - C HG IN PR) - C OX INJ PR) - FP CL LNR PR)-	(MCC PC) (MCC PC) (MCC PC)	90 - <u>34</u> PR) 17. 1.	Numbers: 1 901 0 - <u>363</u> X X X 7 2.0 8 1.5 0 30.2	- <u>436</u> X NS X 9.6	- <u>118</u> 45.7 6.8 6.9 4.8	- <u>364</u> X X 11.9 NC	901 - <u>362</u> X 6.8 NC	-410 X X 4.0 NC	- <u>095</u> NC .4 .8 NC	- <u>249</u> X X 3.2	- <u>225</u> M 12.9 M 38.9	- <u>112</u> NC NC NC	- <u>346</u> X X NC NC
<u>PAR/</u> (1N. (IN. (MCC (MPI (HPI (HPI	AMETER J CLNT PR) - J CLNT PR) - C HG IN PR) - C OX INJ PR) - FP CL LNR PR) - FP DS PR) -	(MCC PC) (MCC PC) (MCC PC) (MCC PC)	90 - <u>34</u> PR) 17. 1. PR) 31. 1.	Numbers: 1 901 0 -363 X X X X 7 2.0 8 1.5 0 30.2 9 1.0	- <u>436</u> X NS X 9.6 X	- <u>118</u> 45.7 6.8 6.9 4.8 X	- <u>364</u> X 11.9 NC 45.0	901 - <u>362</u> X 6.8 NC X	-410 X X 4.0 NC 50.0	- <u>095</u> NC .4 .8 NC X	- <u>249</u> X X X 3.2 X	- <u>225</u> M 12.9 M 38.9 X	- <u>112</u> NC NC NC NC X	- <u>346</u> X X NC NC 18.9
<u>PAR/</u> (IN. (MCC (MCC (HPI (HPI (FPE	AMETER J CLNT PR) - J CLNT PR) - C HG IN PR) - C OX INJ PR) - FP CL LNR PR) - FP CS PR) - 3 PC) -	(MCC PC) (MCC PC) (MCC PC) (MCC PC) (MCC HG IN (MCC PC)	90 - <u>34</u> PR) 17. 1. PR) 31. 1. PR) 4.	Numbers: 1 901 0 -363 X X X X 7 2.0 8 1.5 0 30.2 9 1.0 8 .8 3 1.2	- <u>436</u> X NS X 9.6 X 4.2	- <u>118</u> 45.7 6.8 6.9 4.8 X 2.1	- <u>364</u> X 11.9 NC 45.0 1.6	901 - <u>362</u> X 6.8 NC X 1.2	-410 X 4.0 NC 50.0 NC	- <u>095</u> NC .4 .8 NC NC	- <u>249</u> X X 3.2 X 2.2	- <u>225</u> M 12.9 M 38.9 X 3.3	- <u>112</u> NC NC NC NC X 4.3	- <u>346</u> X NC NC 18.9 NC
<u>PAR/</u> (IN. (MCC (MCC (HPI (HPI (FPE	AMETER J CLNT PR) - J CLNT PR) - C HG IN PR) - C OX INJ PR) - FP CL LNR PR) - FP DS PR) - 3 PC) -	(MCC PC) (MCC PC) (MCC PC) (MCC HG IN (MCC HG IN (MCC PC) (MCC HG IN	90 - <u>34</u> PR) 17. 1. PR) 31. 1. PR) 4.	Numbers: 1 901 0 -363 X X X X 7 2.0 8 1.5 0 30.2 9 1.0 8 .8 3 1.2	- <u>436</u> X NS X 9.6 X 4.2 X	- <u>118</u> 45.7 6.8 6.9 4.8 X 2.1 7.9	- <u>364</u> X 11.9 NC 45.0 1.6 4.3	901 - <u>362</u> X 6.8 NC 1.2 2.8	-410 X 4.0 NC 50.0 NC 5.5	- <u>095</u> NC .4 .8 NC NC NC	- <u>249</u> X X 3.2 X 2.2 X	- <u>225</u> M 12.9 M 38.9 X 3.3 M	- <u>112</u> NC NC NC X 4.3 6.2	- <u>346</u> X NC NC 18.9 NC NC
<u>PAR/</u> (IN, (IN, (MCC (MCC (HPI (HPI (FPE (OPE MCC	AMETER J CLNT PR) - J CLNT PR) - C HG IN PR) - C OX INJ PR) - FP CL LNR PR) - FP DS PR) - 3 PC) -	(MCC PC) (MCC PC) (MCC PC) (MCC HG IN (MCC HG IN (MCC PC) (MCC HG IN	90 - <u>34</u> PR) 17. 1. PR) 31. 1. PR) 4. PR) 3.	Numbers: 1 901 0 -363 X X X X 7 2.0 8 1.5 0 30.2 9 1.0 8 .8 3 1.2 6 .5	-436 X NS 2.6 X 4.2 X X	- <u>118</u> 45.7 6.8 6.9 4.8 X 2.1 7.9 4.5	- <u>364</u> X 11.9 NC 45.0 1.6 4.3 3.1	901 - <u>362</u> X 6.8 NC X 1.2 2.8 NC	-410 X 4.0 NC 50.0 NC 5.5 NC	-095 NC .4 .8 NC NC NC	- <u>249</u> X X 3.2 3.2 2.2 X X	-225 M 12.9 M 38.9 X 3.3 M M	- <u>112</u> NC NC NC X 4.3 6.2 NC	- <u>346</u> X NC NC 18.9 NC NC NC
<u>PAR/</u> (IN, (IN, (MCC (HPI (HPI (FPE (CPE MCC MCC	AMETER J CLNT PR) - J CLNT PR) - C HG IN PR) - C OX INJ PR) - FP CL LNR PR) - FP CL LNR PR) - FP CS PR) - 3 PC) - PC	(MCC PC) (MCC PC) (MCC PC) (MCC HG IN (MCC HG IN (MCC PC) (MCC HG IN	90 - <u>34</u> PR) 17. 1. PR) 11. PR) 4. PR) 3. 1.	Numbers: 1 901 0 -363 X X X X 7 2.0 8 1.5 0 30.2 9 1.0 8 .8 3 1.2 6 .5 7 M	- <u>436</u> X NS 2.6 X 4.2 X 3.9 3.3 1.9	- <u>118</u> 45.7 6.8 6.9 4.8 2.1 7.9 4.5 NC	- <u>364</u> X 11.9 NC 45.0 1.6 4.3 3.1 .8	901 - <u>362</u> X 6.8 NC 2.8 NC .4	-410 X 4.0 NC 50.0 NC 5.5 NC	-095 NC .4 NC NC NC NC NC	-249 X X 3.2 X 2.2 X X NC	- <u>225</u> M 12.9 M 38.9 X 3.3 M M 6.0	- <u>112</u> NC NC NC X 4.3 6.2 NC 3.3	- <u>346</u> X NC NC 18.9 NC NC NC S.3
<u>PAR/</u> (IN, (IN, (MCC) (HPI (HPI (HPI (FPE) (CPE) MCC MCC MCC	AMETER J CLNT PR) - J CLNT PR) - C HG IN PR) - C OX INJ PR) - FP CL LNR PR) - FP CL LNR PR) - 3 PC) - S PC) - CLNT DS T	(MCC PC) (MCC PC) (MCC PC) (MCC HG IN (MCC HG IN (MCC PC) (MCC HG IN	90 -34 PR) 17. 1. PR) 31. PR) 3. PR) 3. 1.	Numbers: 1 901 0 -363 X X X X 7 2.0 8 1.5 0 30.2 9 1.0 8 .8 3 1.2 6 .5 7 M 2 .6	- <u>436</u> X NS 2.6 X 4.2 X 3.9 3.3	- <u>118</u> 45.7 6.8 6.9 4.8 2.1 7.9 4.5 NC	- <u>364</u> X 11.9 NC 45.0 1.6 4.3 3.1 .8 1.4	901 - <u>362</u> X 6.8 NC 1.2 2.8 NC 2.8 .4 2.2	-410 X 4.0 NC 50.0 NC 5.5 NC NC	-095 NC .48 NC NC NC NC NC NC	-249 X X 3.2 2.2 X 2.2 X X NC 4.2	- <u>225</u> M 12.9 M 38.9 X 3.3 M 6.0 X	- <u>112</u> NC NC NC 4.3 6.2 NC 3.3 X	- <u>346</u> X NC NC 18.9 NC NC S.3 8.2
<u>PAR/</u> (IN, (IN, (MCC) (HPF) (HPF) (HPF) (OPE) MCC MCC HPFF	AMETER J CLNT PR) - J CLNT PR) - C HG IN PR) - C OX INJ PR) - FP CL LNR PR) - FP CL LNR PR) - 3 PC) - S PC) - FD DS T FU INJ PR	(MCC PC) (MCC PC) (MCC PC) (MCC HG IN (MCC HG IN (MCC PC) (MCC HG IN	90 -34 PR) 17. 1. PR) 31. PR) 3. PR) 3. 1. 2.	Numbers: 1 901 0 -363 X X X X 7 2.0 8 1.5 0 30.2 9 1.0 8 .8 3 1.2 6 .5 7 M 2 .6 4 .3	- <u>436</u> X NS 2.6 X 4.2 X 3.9 3.3 1.9	- <u>118</u> 45.7 6.8 6.9 4.8 X 2.1 7.9 4.5 NC X	- <u>364</u> X 11.9 NC 45.0 1.6 4.3 3.1 .8 1.4 .7	901 - <u>362</u> X 6.8 NC 2.8 NC 2.8 NC 2.2 2.8 NC 2.2 X	-410 X 4.0 NC 50.0 NC 5.5 NC NC NC	-095 NC .48 NC NC .48 NC NC NC NC NC NC NC NC .9	-249 X X 3.2 2.2 X 2.2 X X NC 4.2 1.1	-225 M 12.9 38.9 X 3.3 M 6.0 X 5.1	- <u>112</u> NC NC NC X 4.3 6.2 NC 3.3 X X 10.9	- <u>346</u> X NC NC 18.9 NC NC 3.3 8.2 .5
PAR/ (IN, (IN, (MCC) (HPI (HPI (FPE (CPE MCC MCC MCC HPFF HPFT	AMETER J CLNT PR) - J CLNT PR) - C HG IN PR) - C OX INJ PR) - FP CL LNR PR) - FP CL LNR PR) - 3 PC) - PC CLNT DS T FU INJ PR P SPEED	(MCC PC) (MCC PC) (MCC PC) (MCC HG IN (MCC HG IN (MCC PC) (MCC HG IN	90 - <u>34</u> PR) 17. 1. PR) 31. 1. PR) 4. PR) 3. 1.	Numbers: 1 901 0 -363 X X X X 7 2.0 8 1.5 0 30.2 9 1.0 8 .8 3 1.2 6 .5 7 M 2 .6 4 .3 4 1.3	-436 X NS 9.6 X 4.2 X 3.9 3.3 1.9 5.7	- <u>118</u> 45.7 6.8 6.9 4.8 X 2.1 7.9 4.5 NC X	- <u>364</u> X 11.9 NC 45.0 1.6 4.3 3.1 .8 1.4 .7 .3	901 - <u>362</u> X 6.8 MC 2.8 NC .4 2.2 X 3	-410 X 4.0 NC 50.0 NC 5.5 NC NC NC	-095 NC .4 .8 NC NC NC NC NC NC	-249 X X 3.2 X 2.2 X X NC 4.2 1.1 4.3	-225 M 12.9 38.9 X 3.3 M 6.0 X 5.1 4.2	- <u>112</u> NC NC NC X 4.3 6.2 NC 3.3 X X 10.9 23.8	- <u>346</u> X NC NC 18.9 NC NC S.3 8.2
PAR/ (IN. (IN. (MCC (HPI (IN)	AMETER J CLNT PR) - J CLNT PR) - C HG IN PR) - COX INJ PR) - FP CL LNR PR)- FP DS PR) - 3 PC) - PC - CLNT DS T FU INJ PR P SPEED F DS T1 A	(MCC PC) (MCC PC) (MCC PC) (MCC HG IN (MCC HG IN (MCC PC) (MCC HG IN	90 - <u>34</u> PR) 17. 1. PR) 31. 1. PR) 4. PR) 3. 1.	Numbers: 1 901 0 -363 X X X X 7 2.0 8 1.5 0 30.2 9 1.0 8 .8 3 1.2 6 .5 7 .6 4 1.3 0 1.9	- <u>436</u> x NS 9.6 X 4.2 x 3.9 3.3 1.9 5.7 20.0	- <u>118</u> 45.7 6.8 6.9 4.8 2.1 7.9 4.5 NC X 2.1 7.9 4.5 NC X 3.9	- <u>364</u> X 11.9 NC 45.0 1.6 4.3 3.1 .8 1.4 .7 .3 2.4	901 - <u>362</u> X 6.8 MC 1.2 2.8 NC .4 2.2 X 3 1.7	- <u>410</u> X 4.0 NC 50.0 NC 5.5 NC NC NC NC S.5 2.0	-095 NC .4 .8 NC X NC NC NC NC NC NC NC NC	-249 X X 3.2 2.2 X 2.2 X X 4.2 1.1 4.3 23.4 9.2	-225 M 12.9 X 38.9 X 3.3 M M 6.0 X 5.1 4.2 15.1 15.1	- <u>112</u> NC NC NC X 4.3 6.2 NC 3.3 X X 10.9 23.8 21.6	- <u>346</u> X NC NC 18.9 NC NC NC 3.3 8.2 5 3.2 3.3
PAR/ (IN. (IN. (MCC (HPF (OPE MCC MCC MCC HPFT HPFT HPFT HPFT HPFT	AMETER J CLNT PR) - J CLNT PR) - C HG IN PR) - C OX INJ PR) - FP CL LNR PR) - FP CL LNR PR) - 3 PC) - 3 PC) - PC CLNT DS T FU INJ PR - SPEED T DS T1 A T DS T1 B	(MCC PC) (MCC PC) (MCC PC) (MCC HG IN (MCC HG IN (MCC PC) (MCC HG IN	90 -34 PR) 17. 1. PR) 31. 1. PR) 4. PR) 3. 1. 2. 1. 6. 6.	Numbers: 1 901 0 -363 X X X X 7 2.0 8 1.5 0 30.2 9 1.0 8 .8 3 1.2 6 .5 7 M 2 .6 4 1.3 0 1.9 3 .6	-436 X NS X 9.6 X 4.2 X 3.9 3.3 1.9 5.7 20.0 22.8	- <u>118</u> 45.7 6.8 6.9 4.8 2.1 7.9 4.5 NC X 2.9 13.9	- <u>364</u> X 11.9 NC 45.0 4.3 3.1 .8 1.4 .7 .3 2.4 3.0	901 - <u>362</u> X 6.8 HC 2.8 NC 2.8 NC 4 2.2 X 3 1.7 1.6	-410 X 4.0 NC 50.0 NC NC NC NC NC NC 2.0 1.0	-095 NC .4 .8 NC X NC NC M .9 NC M	-249 X X 3.2 2.2 X 2.2 X X 4.2 1.1 4.3 23.4	-225 M 12.9 X 38.9 X 3.3 M M 6.0 X 5.1 4.2 15.1 15.1 15.1 12.3	- <u>112</u> NC NC NC 4.3 6.2 NC 3.3 X 10.9 23.8 21.6 7.4	-346 X NC NC 18.9 NC NC NC 3.3 8.2 .5 3.2 3.3 5.8
PAR/ (IN. (IN. (MCC (HPF (HPF (OPE MCC MCC MPFT HPFT HPFT HPFT HPFT HPFT HPFT	AMETER J CLNT PR) - J CLNT PR) - C HG IN PR) - C OX INJ PR) - FP CL LNR PR) - FP CL LNR PR) - FP CL LNR PR) - B PC) - FC CLNT DS T FU INJ PR SPEED F DS T1 A T DS T1 B T DS T1	(MCC PC) (MCC PC) (MCC PC) (MCC HG IN (MCC HG IN (MCC PC) (MCC HG IN	90 -34 PR) 17. 1. PR) 1. PR) 4. PR) 3. 1. 2. 1. 6. 6. 5.	Numbers: 1 901 0 -363 X X X X 7 2.0 8 1.5 0 30.2 9 1.0 8 .8 3 1.2 6 .5 7 M 2 .6 4 .3 0 1.9 3 .6 5 .7	-436 X NS X 9.6 X 4.2 X 3.9 3.3 1.9 5.7 20.0 22.8 2.6	- <u>118</u> 45.7 6.8 6.9 4.8 2.1 7.9 4.5 NC X 2.9 13.9 13.9 10.1 2.3	- <u>364</u> X 11.9 NC 45.0 1.6 4.3 3.1 .8 1.4 .7 .3 2.4 3.0 5.3	901 - <u>362</u> X 6.8 NC 2.8 NC 2.2 2.8 NC .4 2.2 X 3 1.7 1.6 NC	-410 X 4.0 NC 5.5 NC NC NC .5 2.0 1.0 1.8	-095 NC .4 .8 NC X C NC M NC M NC M NC M NS NS	-249 X X 3.2 2.2 X 2.2 X NC 4.2 1.1 4.3 23.4 9.2 6.9 4.9	-225 M 12.9 X 38.9 X 3.3 M M 6.0 X 5.1 4.2 15.1 15.1 15.1 12.3 12.3	- <u>112</u> NC NC NC X 4.3 3.3 X 10.9 23.6 7.4 9.0	-346 X NC NC NC NC NC 3.3 8.2 3.3 5.8 2.6
PAR/ (IN. (IN. (MCC (MCC (HPI (FPE (OPE MCC MCC MCC MPFI HPFI HPFI <td>AMETER J CLNT PR) - J CLNT PR) - C HG IN PR) - C OX INJ PR) - FP CL LNR PR) - FP DS PR) - 3 PC) - PC CLNT DS T FU INJ PR P SPEED T DS T1 A T DS T1 B T DS T1 FD S T2</td> <td>(MCC PC) (MCC PC) (MCC PC) (MCC HG IN (MCC HG IN (MCC PC) (MCC HG IN</td> <td>90 -34 PR) 17. 1. PR) 31. PR) 4. PR) 3. 1. 2. 1. 6. 6. 6. 5. 4.</td> <td>Numbers: 1 901 0 -363 X X X X 7 2.0 8 1.5 0 30.2 9 1.0 8 .8 3 1.2 6 .5 7 M 2 .6 4 1.3 0 1.9 5 .7 5 .7 5 .7 0 1.9 5 .7 5 .7 5 .7</td> <td>-436 X NS 2,6 X 4,2 X 3,9 3,3 1,9 5,7 20,0 22,6 1,5 NC</td> <td>-<u>118</u> 45.7 6.8 6.9 4.8 2.1 7.9 4.5 NC X X .9 13.9 13.9 10.2 3.2 4 NC</td> <td>-364 X 11.9 NC 45.0 1.6 4.3 3.1 .8 1.4 .7 .3 2.4 3.0 5.3 6.3 144.0</td> <td>901 -<u>362</u> X 6.8 NC X 1.2 2.8 NC .4 2.2 X .3 1.7 1.6 NC NC</td> <td>-410 X 4.0 NC 50.0 NC 5.5 NC NC 1.0 1.8 2.3 NC</td> <td>-095 NC .4 .8 NC XC NC NC NC NC NC NC NS NS 9.2</td> <td>-249 X X 3.2 2.2 X 2.2 X X NC 4.2 1.1 4.3 23.4 9.2 6.2 220.0</td> <td>-225 M 12.9 38.9 X 3.3 M M 6.0 X 5.1 4.2 15.1 15.1 12.3 12.3 6.5</td> <td>-<u>112</u> NC NC NC X 4.3 6.2 NC 3.3 X X 10.9 23.8 21.6 7.4 9.0 NC</td> <td>-346 X NC NC NC NC NC 3.3 8.2 3.3 5.8 2.6 NC</td>	AMETER J CLNT PR) - J CLNT PR) - C HG IN PR) - C OX INJ PR) - FP CL LNR PR) - FP DS PR) - 3 PC) - PC CLNT DS T FU INJ PR P SPEED T DS T1 A T DS T1 B T DS T1 FD S T2	(MCC PC) (MCC PC) (MCC PC) (MCC HG IN (MCC HG IN (MCC PC) (MCC HG IN	90 -34 PR) 17. 1. PR) 31. PR) 4. PR) 3. 1. 2. 1. 6. 6. 6. 5. 4.	Numbers: 1 901 0 -363 X X X X 7 2.0 8 1.5 0 30.2 9 1.0 8 .8 3 1.2 6 .5 7 M 2 .6 4 1.3 0 1.9 5 .7 5 .7 5 .7 0 1.9 5 .7 5 .7 5 .7	-436 X NS 2,6 X 4,2 X 3,9 3,3 1,9 5,7 20,0 22,6 1,5 NC	- <u>118</u> 45.7 6.8 6.9 4.8 2.1 7.9 4.5 NC X X .9 13.9 13.9 10.2 3.2 4 NC	-364 X 11.9 NC 45.0 1.6 4.3 3.1 .8 1.4 .7 .3 2.4 3.0 5.3 6.3 144.0	901 - <u>362</u> X 6.8 NC X 1.2 2.8 NC .4 2.2 X .3 1.7 1.6 NC NC	-410 X 4.0 NC 50.0 NC 5.5 NC NC 1.0 1.8 2.3 NC	-095 NC .4 .8 NC XC NC NC NC NC NC NC NS NS 9.2	-249 X X 3.2 2.2 X 2.2 X X NC 4.2 1.1 4.3 23.4 9.2 6.2 220.0	-225 M 12.9 38.9 X 3.3 M M 6.0 X 5.1 4.2 15.1 15.1 12.3 12.3 6.5	- <u>112</u> NC NC NC X 4.3 6.2 NC 3.3 X X 10.9 23.8 21.6 7.4 9.0 NC	-346 X NC NC NC NC NC 3.3 8.2 3.3 5.8 2.6 NC
PAR/ (IN. (IN. (MCC (MCC (HPF) (FPF) MCC MCC MCC MCC MCC MPF1 HPF1 HPF1 <td>AMETER J CLNT PR) - J CLNT PR) - C HG IN PR) - C OX INJ PR) - FP CL LNR PR) - FP DS PR) - 3 PC) - PC CLNT DS T FU INJ PR PSPEED T DS T1 A T DS T1 B T DS T1 T DS T2 OX FM DS PR</td> <td>(MCC PC) (MCC PC) (MCC PC) (MCC HG IN (MCC HG IN (MCC PC) (MCC HG IN</td> <td>90 -34 PR) 17. 1. PR) 31. PR) 4. PR) 3. 1. 2. 1. 6. 6. 6. 5. 5. 4. 0.</td> <td>Numbers: 1 901 0 -363 X X X X 7 2.0 8 1.5 0 30.2 9 1.0 8 .8 3 1.2 6 .5 7 M 2 .6 4 1.3 0 1.9 5 .7 6 .7 5 .7 C NC</td> <td>-436 X NS 2,6 X 4.2 X 3.9 3.3 1.9 5.7 20.0 22.8 2.6 1.5 NC 4.8</td> <td>-<u>118</u> 45.7 6.8 6.9 4.8 2.1 7.9 4.5 NC X 2.9 13.9 10.1 2.3 2.4 NC</td> <td>-364 X 11.9 NC 45.0 1.6 4.3 3.1 .8 1.4 .7 .3 2.4 3.0 5.3 6.3 144.0 144.0</td> <td>901 -<u>362</u> X 6.8 NC 2.2 2.8 NC .4 2.2 X .3 1.7 1.6 NC NC</td> <td>-410 X 4.0 NC 50.0 NC 5.5 NC NC 1.0 2.3 NC NC 1.0 NC</td> <td>-095 NC .4 .8 NC X NC X NC NC NC NC NC NS 9.2 8.7</td> <td>-249 X X 3.2 2.2 X 2.2 X X NC 4.2 1.1 4.3 23.4 9.2 220.0 220.0</td> <td>-225 M 12.9 38.9 X 3.3 M M 6.0 X 5.1 4.2 15.1 15.1 15.1 12.3 (23.7</td> <td>-<u>112</u> NC NC NC X 4.3 6.2 NC 3.3 X X 10.9 23.8 21.6 7.4 9.0 NC</td> <td>-346 X NC NC NC NC NC 3.3 8.2 3.3 5.8 2.6 NC NC</td>	AMETER J CLNT PR) - J CLNT PR) - C HG IN PR) - C OX INJ PR) - FP CL LNR PR) - FP DS PR) - 3 PC) - PC CLNT DS T FU INJ PR PSPEED T DS T1 A T DS T1 B T DS T1 T DS T2 OX FM DS PR	(MCC PC) (MCC PC) (MCC PC) (MCC HG IN (MCC HG IN (MCC PC) (MCC HG IN	90 -34 PR) 17. 1. PR) 31. PR) 4. PR) 3. 1. 2. 1. 6. 6. 6. 5. 5. 4. 0.	Numbers: 1 901 0 -363 X X X X 7 2.0 8 1.5 0 30.2 9 1.0 8 .8 3 1.2 6 .5 7 M 2 .6 4 1.3 0 1.9 5 .7 6 .7 5 .7 C NC	-436 X NS 2,6 X 4.2 X 3.9 3.3 1.9 5.7 20.0 22.8 2.6 1.5 NC 4.8	- <u>118</u> 45.7 6.8 6.9 4.8 2.1 7.9 4.5 NC X 2.9 13.9 10.1 2.3 2.4 NC	-364 X 11.9 NC 45.0 1.6 4.3 3.1 .8 1.4 .7 .3 2.4 3.0 5.3 6.3 144.0 144.0	901 - <u>362</u> X 6.8 NC 2.2 2.8 NC .4 2.2 X .3 1.7 1.6 NC NC	-410 X 4.0 NC 50.0 NC 5.5 NC NC 1.0 2.3 NC NC 1.0 NC	-095 NC .4 .8 NC X NC X NC NC NC NC NC NS 9.2 8.7	-249 X X 3.2 2.2 X 2.2 X X NC 4.2 1.1 4.3 23.4 9.2 220.0 220.0	-225 M 12.9 38.9 X 3.3 M M 6.0 X 5.1 4.2 15.1 15.1 15.1 12.3 (23.7	- <u>112</u> NC NC NC X 4.3 6.2 NC 3.3 X X 10.9 23.8 21.6 7.4 9.0 NC	-346 X NC NC NC NC NC 3.3 8.2 3.3 5.8 2.6 NC NC
PAR/ (IN. (IN. (MCC (MPF (HPF (OPE MCC MCC MCC MCC MCC MPFF HPFF HPFF HPFF HPOT FAC ENG LPOF	AMETER J CLNT PR) - J CLNT PR) - C HG IN PR) - C DX INJ PR) - FP CL LNR PR) - FP DS PR) - 3 PC) - PC - CLNT DS T FU INJ PR - SPEED T DS T1 A T DS T1 B T DS T1 B T DS T1 CX FM DS PR OX FM DS PR OX FM DS PR - SPS	(MCC PC) (MCC PC) (MCC PC) (MCC HG IN (MCC HG IN (MCC PC) (MCC HG IN	90 -34 PR) 17. 1. PR) 31. PR) 4. PR) 3. 1. 2. 1. 6. 6. 6. 6. 8. 1. 1. 90 -34 - 90 -34 - 90 - 90 - 90 - 90 - 90 - 90 - 90 - 9	Numbers: 1 901 0 -363 X X X X X X 7 2.0 8 1.5 0 30.2 9 1.0 8 .8 3 1.2 6 .5 7 M 2 .6 4 .3 5 .7 8 1.3 0 1.9 3 .6 5 .7 8 .6 5 .7 8 .6 5 .7 .6 .7 .6 .7 .7 NC NC NC	-436 X NS 2,6 X 4,2 X 3,9 3,3 1,9 5,7 20,0 22,6 1,5 NC	-118 45.7 6.8 6.9 4.8 2.1 7.9 4.5 NC X 9 13.9 10.1 2.3 2.4 NC NC	-364 X 11.9 NC 45.0 1.6 4.3 3.1 .8 1.4 3.0 5.3 6.3 144.0 144.0 34.4	901 - <u>362</u> X 6.8 NC 2.8 1.2 2.8 2.2 X 3 1.7 1.6 NC NC NC	-410 X 4.0 NC 50.0 NC 5.5 S.0 NC NC NC S.5 2.0 1.0 1.8 2.3 NC NC	-095 NC .4 .8 NC X NC X NC NC NC NC NC NC NS 9.2 8.7 2.1	-249 X X 3.2 2.2 X 2.2 X X NC 4.2 1.1 4.3 23.4 9.2 9 220.0 220.0 220.0 20.0	-225 M 12.9 38.9 X 3.3 M 6.0 X 5.1 4.2 15.1 15.1 12.3 12.3 6.5 23.7 45.8	- <u>112</u> NC NC NC X 4.3 6.2 3.3 X X 10.9 23.8 21.6 7.4 9.0 NC NC 4.4	-346 X NC NC 18.9 NC NC 3.3 8.2 3.3 5.8 2.6 NC NC NC
PAR/ (IN. (IN. (MCC) (HPI (HPI (FPE) (CPE) MCC MCC MCC MCC MCC MCC MCC HPFI HPFI HPFI HPFI HPFI HPFI HPOI FAC ENG LPOF	AMETER J CLNT PR) - J CLNT PR) - C HG IN PR) - C OX INJ PR) - FP CL LNR PR) - FP DS PR) - B PC) - B PC) - CLNT DS T CLNT DS T FU INJ PR - SPEED T DS T1 B T DS T1 B T DS T1 B T DS T1 B T DS T2 OX FM DS PR OX IN PR - DS PS (NT PR	(MCC PC) (MCC PC) (MCC PC) (MCC HG IN (MCC HG IN (MCC PC) (MCC HG IN	90 -34 PR) 17. 1. PR) 31. 1. PR) 4. PR) 3. 1. 2. 2. 1. 6. 6. 6. 6. 8. 7. 8. 90 -34 1. 90 -34 - 90 -34 - 90 - 31. 90 - 90 - 90 - 90 - 90 - 90 - 90 - 90	Numbers: 1 901 0 -363 X X X X 8 1.5 0 30.2 9 1.0 8 .8 3 1.2 6 .5 7 M 2 .6 4 .3 4 1.3 0 1.9 5 .7 C NC N NC 0 .6 5 .7 0 .9 5 .6 5 .7 NC NC 0 .6	-436 X NS 2.6 X 4.2 X 3.9 3.3 1.9 5.7 20.0 22.8 2.6 1.5 NC 4.8 8.8	- <u>118</u> 45.7 6.8 6.9 4.8 2.1 7.9 4.5 NC X 2.9 13.9 10.1 2.3 2.4 NC	-364 X 11.9 NC 45.0 1.6 4.3 3.1 .8 1.4 3.0 5.3 6.3 144.0 144.0 34.4 35	901 - <u>362</u> X X 6.8 MC 2.8 NC 2.8 NC 2.8 NC 2.2 X 3 1.7 1.6 NC NC NC NC NC	-410 X 4.0 NC 50.0 NC 5.5 NC NC 1.0 2.3 NC NC 1.0 NC	-095 NC .4 .8 NC .4 NC NC NC NC NC NC M 9.2 8.7 2.1	-249 X X 3.2 2.2 X 2.2 X X NC 4.2 1.1 1 4.3 23.4 9.2 6.9 220.0 220.0 220.0 1.1	-225 M 12.9 38.9 X 3.3 M 6.0 X 5.1 4.2 15.1 15.1 12.3 12.3 6.5 23.7 45.8 5.1	- <u>112</u> NC NC NC X 4.3 6.2 3.3 X X 10.9 23.8 21.6 7.4 9.0 NC X 4.4 1.5	-346 X NC NC 18.9 NC NC NC 3.3 8.2 .5 3.2 3.3 5.8 2.6 NC NC NC 1.0
PAR/ (IN. (IN. (MCC (HPI (HPI (GPE (OPE MCC MCC </td <td>AMETER J CLNT PR) - J CLNT PR) - C HG IN PR) - C OX INJ PR) - FP CL LNR PR) - FP DS PR) - 3 PC) - 3 PC) - 7 CLNT DS T FU INJ PR - SPEED T DS T1 A T DS T1 B T DS T1 B T DS T1 B T DS T1 B T DS T2 OX FM DS PR OX IN PR - DS PS INT PR INT T</td> <td>(MCC PC) (MCC PC) (MCC PC) (MCC HG IN (MCC HG IN (MCC PC) (MCC HG IN</td> <td>90 -34 PR) 17. 1. PR) 31. 1. PR) 4. PR) 3. 1. 2. 1. 6. 6. 6. 6. 1. 8. 7. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 2. 1. 2. 1. 2. 1. 2. 1. 2. 1. 2. 1. 2. 1. 2. 1. 2. 1. 2. 1. 2. 1. 2. 1. 2. 1. 2. 2. 1. 2. 2. 1. 2. 2. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.</td> <td>Numbers: 1 901 0 -363 X X X X 7 2.0 8 1.5 9 1.0 8 .8 3 1.2 6 .5 7 M 2 .6 4 1.3 0 1.9 3 .6 5 .7 C NC C NC C NC 0 .6 5 .7 S .6 5 .7 NC NC 0 .6 7 NS</td> <td>-436 X NS X 9.6 X 4.2 X 3.9 3.3 1.9 5.7 20.0 22.8 2.6 1.5 NC 4.8 8.8 NC .4</td> <td>-<u>118</u> 45.7 6.8 6.9 4.8 2.1 7.9 4.5 NC X 2.9 13.9 10.1 2.3 9 10.1 2.3 NC NC NC X X</td> <td>-364 X 11.9 45.0 45.0 4.3 3.1 .8 1.4 .7 3.0 5.3 6.3 144.0 34.4 34.5 4.7</td> <td>901 -<u>362</u> X X 6.8 NC 2.8 NC 2.2 X 3 1.7 1.6 NC NC NC NC NC NC NC NC NC NC NC</td> <td>-410 X 4.0 NC 50.0 5.5 NC NC NC NC NC 2.0 1.0 1.8 2.3 NC NC NC NC NC NC NC NC NC NC</td> <td>-095 NC .4 .8 NC X NC NC NC NC NC NC NC NC NC NC NC NC NC NC N</td> <td>-249 X X 3.2 2.2 2.2 X X 2.2 2.2 X X X 4.2 1.1 4.3 23.4 9.2 6.9 4.9 220.0 220.0 220.0 1.1 4.2</td> <td>-225 M 12.9 38.9 X 3.3 M 6.0 5.1 4.2 15.1 15.1 12.3 12.3 6.5 23.7 45.8 5.1 M</td> <td>-<u>112</u> NC NC NC X 3.3 X 10.9 23.8 21.6 7.4 9.0 NC 4.4 1.5 X</td> <td>-346 X NC NC NC NC NC NC S.3 3.2 3.3 5.8 2.6 NC NC NC NC S.8</td>	AMETER J CLNT PR) - J CLNT PR) - C HG IN PR) - C OX INJ PR) - FP CL LNR PR) - FP DS PR) - 3 PC) - 3 PC) - 7 CLNT DS T FU INJ PR - SPEED T DS T1 A T DS T1 B T DS T1 B T DS T1 B T DS T1 B T DS T2 OX FM DS PR OX IN PR - DS PS INT PR INT T	(MCC PC) (MCC PC) (MCC PC) (MCC HG IN (MCC HG IN (MCC PC) (MCC HG IN	90 -34 PR) 17. 1. PR) 31. 1. PR) 4. PR) 3. 1. 2. 1. 6. 6. 6. 6. 1. 8. 7. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 2. 1. 2. 1. 2. 1. 2. 1. 2. 1. 2. 1. 2. 1. 2. 1. 2. 1. 2. 1. 2. 1. 2. 1. 2. 1. 2. 2. 1. 2. 2. 1. 2. 2. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	Numbers: 1 901 0 -363 X X X X 7 2.0 8 1.5 9 1.0 8 .8 3 1.2 6 .5 7 M 2 .6 4 1.3 0 1.9 3 .6 5 .7 C NC C NC C NC 0 .6 5 .7 S .6 5 .7 NC NC 0 .6 7 NS	-436 X NS X 9.6 X 4.2 X 3.9 3.3 1.9 5.7 20.0 22.8 2.6 1.5 NC 4.8 8.8 NC .4	- <u>118</u> 45.7 6.8 6.9 4.8 2.1 7.9 4.5 NC X 2.9 13.9 10.1 2.3 9 10.1 2.3 NC NC NC X X	-364 X 11.9 45.0 45.0 4.3 3.1 .8 1.4 .7 3.0 5.3 6.3 144.0 34.4 34.5 4.7	901 - <u>362</u> X X 6.8 NC 2.8 NC 2.2 X 3 1.7 1.6 NC NC NC NC NC NC NC NC NC NC NC	-410 X 4.0 NC 50.0 5.5 NC NC NC NC NC 2.0 1.0 1.8 2.3 NC NC NC NC NC NC NC NC NC NC	-095 NC .4 .8 NC X NC NC NC NC NC NC NC NC NC NC NC NC NC NC N	-249 X X 3.2 2.2 2.2 X X 2.2 2.2 X X X 4.2 1.1 4.3 23.4 9.2 6.9 4.9 220.0 220.0 220.0 1.1 4.2	-225 M 12.9 38.9 X 3.3 M 6.0 5.1 4.2 15.1 15.1 12.3 12.3 6.5 23.7 45.8 5.1 M	- <u>112</u> NC NC NC X 3.3 X 10.9 23.8 21.6 7.4 9.0 NC 4.4 1.5 X	-346 X NC NC NC NC NC NC S.3 3.2 3.3 5.8 2.6 NC NC NC NC S.8
PAR/ (IN. (IN. (IN. (MCC (HPI (HPI (FPE (OPE MCC MCC MCC MCC MPFI HPFI HX I HX I HX V	AMETER J CLNT PR) - J CLNT PR) - C HG IN PR) - C OX INJ PR) - FP CL LNR PR) - FP DS PR) - 3 PC) - 3 PC) - PC CLNT DS T FU INJ PR - SPEED T DS T1 A T DS T1 B T DS T2 OX FM DS PR OX IN PR - S PS INT PR INT T /ENT DP	(MCC PC) (MCC PC) (MCC PC) (MCC HG IN (MCC HG IN (MCC PC) (MCC HG IN	90 -34 PR) 17. 1. PR) 31. PR) 4. PR) 3. 1. 2. 2. 1. 6. 6. 6. 5. 4. 4. NN NN 2. 1. 1. 2. 1. 1. 1. 1. 1. 1. 1. 2. 1. 1. 1. 2. 1. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 2. 1. 2. 1. 2. 1. 2. 1. 1. 2. 1. 2. 1. 2. 1. 2. 1. 2. 2. 1. 2. 2. 1. 1. 2. 2. 1. 2. 2. 1. 2. 2. 1. 2. 2. 1. 2. 2. 1. 2. 2. 2. 1. 2. 2. 1. 2. 2. 2. 1. 2. 2. 2. 1. 2. 2. 1. 2. 2. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	Numbers: 1 901 0 -363 X X 7 2.0 8 1.5 0 30.2 9 1.0 8 .8 3 1.2 6 .5 7 .6 5 .6 6 .7 C NC C NC C NC 0 .6 7 NS 5 .6	-436 X NS X 9.6 X 4.2 X 3.9 3.3 1.9 5.7 20.0 22.8 2.6 1.5 XC 4.8 8.8 NC 4.8	-118 45.7 6.8 6.9 4.8 2.1 7.9 4.5 NC X 2.4 13.9 10.1 2.3 9 10.1 2.4 NC NC X X X X	-364 X 11.9 NCC 45.0 1.6 4.3 3.1 .8 1.4 .7 3.0 5.3 144.0 144.0 144.0 34.4 4.5 4.7 NS	901 -362 X X 6.8 NC X 2.8 NC 2.2 2.8 NC .4 2.2 X 3 1.7 1.6 NC NC C NC NC C NS .7	-410 X 4.0 NC 50.0 5.5 NC NC 5.5 NC NC 5.5 1.0 1.0 1.8 2.3 NC NC NC NC S.5 S NC	-095 NC .4 .8 NC X C NC NC M NC M NC M S S 2.1 1.1 NS	-249 X X 3.2 2.2 2.2 X 2.2 2.2 X X NC 4.2 1.1 4.3 23.4 9.2 6.9 220.0 220.0 220.0 20.0 1.1 4.2 3.8	-225 M 12.9 38.9 X 3.3 M 6.0 5.1 45.1 15.1 15.1 15.1 12.3 6.5 23.7 45.8 5.1 M 2.2	- <u>112</u> NC NC NC X 4.3 6.2 NC X 3.3 X 10.9 23.8 21.6 7.4 9.0 NC X 4.4 5 X X	-346 X NC NC NC NC NC NC NC 3.3 8.2 3.3 5.8 2.6 NC NC NC 1.0 5.8 1.7
PAR/ (IN. (IN. (IN. (IN. (MCC (HPF (IPF (OPE MCC MCC MCC MCC MPFF HPFF HX HX HX HX HX HX	AMETER J CLNT PR) - J CLNT PR) - C HG IN PR) - C OX INJ PR) - FP CL LNR PR) - FP CL LNR PR) - B PC) - B PC) - PC CLNT DS T FU INJ PR P SPEED T DS T1 A T DS T1 A T DS T1 B T DS T1 B T DS T1 B T DS T1 F OX FM DS PR OX FM DS PR OX FM DS PR INT PR INT T /ENT DP / ACT POS	(MCC PC) (MCC PC) (MCC PC) (MCC HG IN (MCC HG IN (MCC PC) (MCC HG IN	90 -34 PR) 17. 1. PR) 1. PR) 4. PR) 3. 1. 2. 1. 6. 6. 5. 4. 6. 1. 2. 1. 2. 1. 2. 1. 2. 1. 2. 1. 2. 1. 2. 2. 1. 2. 2. 1. 2. 2. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	Numbers: 1 901 0 -363 X X 7 2.0 8 1.5 0 30.2 9 1.0 8 .8 3 1.2 6 .55 7 M 2 .6 4 1.3 0 1.9 3 .6 5 .7 NC NC 0 .7 5 .6 7 NS 5 .6 1 3.1	-436 X NS X 9.6 X 4.2 X 3.9 3.3 1.9 5.7 20.0 22.8 2.6 1.5 NC 4.8 8.8 NC .4C 3.6	-118 45.7 6.8 6.9 4.8 2.1 7.9 4.5 NC X 2.9 13.9 10.1 2.3 2.4 NC NC X X NC	-364 X 11.9 NC 45.0 1.6 43.1 3.1 3.1 3.1 3.1 3.1 2.4 3.0 5.3 6.3 144.0 144.0 34.4 4.5 4.7 NS 3.9	901 -362 X X 6.8 NC X 1.2 2.8 NC .4 2.2 X 3.7 1.6 NC NC NC NC NC .6 NS .7 1.8	-410 X 4.0 NC 50.0 NC 5.5 NC NC NC 1.0 1.8 2.3 NC NC NC S.5 3.2	-095 NC .4 .8 NC X NC NC NC NC NC NC NC NC NS 9.2 8.7 2.1 1.1 NS 2.7	-249 X X 3.2 2.2 X 2.2 X X 2.2 1.1 4.3 23.4 9.2 6.9 220.0 220.0 220.0 20.0 1.1 4.2 3.8 7.0	-225 M 12.9 X 3.3 M 6.0 5.1 4.2 15.1 12.3 6.5 23.7 45.8 5.1 M 2.2 NS	- <u>112</u> NC NC X 4.3 3.3 X 10.9 23.6 7.4 9.0 NC 4.4 1.5 X 2.3	-346 X NC NC NC NC NC NC 3.3 8.2 5.3 3.3 5.8 2.6 NC NC 1.0 5.8 1.7 3.1
PAR/ (IN. (IN. (IN. (IN. (MCC (HPF (IPF (OPE MCC MCC MCC MCC MPFF HPFF HX HX HX HX HX HX	AMETER J CLNT PR) - J CLNT PR) - C HG IN PR) - C OX INJ PR) - FP CL LNR PR) - FP DS PR) - 3 PC) - 3 PC) - PC CLNT DS T FU INJ PR - SPEED T DS T1 A T DS T1 B T DS T2 OX FM DS PR OX IN PR - S PS INT PR INT T /ENT DP	(MCC PC) (MCC PC) (MCC PC) (MCC HG IN (MCC HG IN (MCC PC) (MCC HG IN	90 -34 PR) 17. 1. PR) 31. PR) 4. PR) 3. 1. 2. 2. 1. 6. 6. 6. 5. 4. 4. NN NN 2. 1. 1. 2. 1. 1. 1. 1. 1. 1. 1. 2. 1. 1. 1. 2. 1. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 1. 2. 1. 2. 1. 2. 1. 2. 1. 2. 1. 1. 2. 1. 2. 1. 2. 1. 2. 1. 2. 2. 1. 2. 2. 1. 1. 2. 2. 1. 2. 2. 1. 2. 2. 1. 2. 2. 1. 2. 2. 1. 2. 2. 2. 1. 2. 2. 1. 2. 2. 2. 1. 2. 2. 2. 1. 2. 2. 1. 2. 2. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	Numbers: 1 901 0 -363 X X 7 2.0 8 1.5 0 30.2 9 1.0 8 .8 3 1.2 6 .5 7 M 2 .6 4 1.3 0 1.9 5 .6 7 NC 0 .6 5 .6 7 NS 5 .6 1 3.1	-436 X NS X 9.6 X 4.2 X 3.9 3.3 1.9 5.7 20.0 22.8 2.6 1.5 XC 4.8 8.8 NC 4.8	-118 45.7 6.8 6.9 4.8 2.1 7.9 4.5 NC X 2.4 13.9 10.1 2.3 9 10.1 2.4 NC NC X X X X	-364 X 11.9 NCC 45.0 1.6 4.3 3.1 .8 1.4 .7 3.0 5.3 144.0 144.0 144.0 34.4 4.5 4.7 NS	901 -362 X X 6.8 NC X 2.8 NC 2.2 2.8 NC .4 2.2 X 3 1.7 1.6 NC NC C NC NC C NS .7	-410 X 4.0 NC 50.0 5.5 NC NC 5.5 NC NC 5.5 1.0 1.0 1.8 2.3 NC NC NC NC S.5 S NC	-095 NC .4 .8 NC X C NC NC M NC M NC M S S 2.1 1.1 NS	-249 X X 3.2 2.2 2.2 X 2.2 2.2 X X NC 4.2 1.1 4.3 23.4 9.2 6.9 220.0 220.0 220.0 20.0 1.1 4.2 3.8	-225 M 12.9 38.9 X 3.3 M 6.0 5.1 45.1 15.1 15.1 15.1 12.3 6.5 23.7 45.8 5.1 M 2.2	- <u>112</u> NC NC NC X 4.3 6.2 NC X 3.3 X 10.9 23.8 21.6 7.4 9.0 NC X 4.4 5 X X	-346 X NC NC NC NC NC NC 3.3 8.2 3.3 5.8 2.6 NC NC NC NC 1.0 5.8 1.7
PAR/ (IN. (IN. (IN. (IN. (MCC (HPF (IPF (OPE MCC MCC MCC MCC MPFF HPFF HX HX HX HX HX HX	AMETER J CLNT PR) - J CLNT PR) - C HG IN PR) - C HG IN PR) - COX INJ PR) - FP CL LNR PR) - PC - CLNT DS T PC - CLNT DS T FU INJ PR PC - CLNT DS T1 A T DS T1 B T DS T2 OX FM DS PR OX IN PR PD PS INT PR INT T / ACT POS / ACT POS	(MCC PC) (MCC PC) (MCC PC) (MCC PC) (MCC PC) (MCC HG IN (MCC HG IN	90 -34 PR) 17. 1. PR) 31. 1. PR) 4. PR) 3. 1. 2. 1. 6. 6. 6. 6. 6. 1. 2. 1. 1. 2. 1. 2. 1. 2. 1. 2. 4.4	Numbers: 1 901 0 -363 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X Y 2.0 8 1.5 S .6 X 1.3 X 1.9 X .6 X 1.9 X .6 X 1.0 X 1.0 X 1.0	-436 X NS 2.6 X 4.2 X 3.9 3.3 1.9 5.7 20.0 22.6 1.5 NC 4.8 8.8 8.8 NC .4 NC 3.6	-118 45.7 6.8 6.9 4.8 2.1 7.9 4.5 NC X 2.9 13.9 13.9 13.9 13.9 10.1 NC NC X X X NC X 2.4	-364 X 11.9 NC 45.0 1.6 4.3 1.4 3.1 3.1 3.1 3.2 4.3 5.3 1.4 4.0 144.0 144.0 34.4 5.3 144.0 144.0 3.3 2.9 2.9	901 - <u>362</u> X x 6.8 MC .4 2.2 X .3 1.7 1.6 NC NC NC .6 NS .7 1.8	-410 X 4.0 50.0 5.5 5.5 NC 5.5 2.0 1.8 2.3 NC NC S.3 NC S.3 NC S.3 NC S.3 NC S.3 S.2 S.3 S.2 S.3	-095 NC .4 .8 NC XC NC NC NC NC M 9.2 8.7 2.1 1.1 NS 9.2 8.7 2.1 1.1 NS 2.7 NC	-249 X X 3.2 2.2 X 2.2 1.1 4.3 23.4 9.2 20.0 220.0 20.0 20.0 20.0 20.0 1.1 4.2 3.8 7.0 3.5	-225 M 12.9 38.9 X 3.3 M 6.0 X 5.1 4.2 15.1 12.3 12.3 6.5 23.7 45.8 5.1 M 2.2 NS .4	- <u>112</u> NC NC NC X 4.3 X X 10.9 23.8 21.6 7.4 9.0 NC 4.4 1.5 X 2.3 8.3	-346 X NC NC NC NC NC NC 3.3 8.2 3.3 5.8 2.6 NC NC 1.0 5.8 1.7 3.1 3.5
PAR/ (IN. (IN. (MCC (MPF (HPF (OPE MCC MCC <td>AMETER J CLNT PR) - J CLNT PR) - C HG IN PR) - C HG IN PR) - COX INJ PR) - FP CL LNR PR) - PC - CLNT DS T PC - CLNT DS T FU INJ PR PC - CLNT DS T1 A T DS T1 B T DS T2 OX FM DS PR OX IN PR PD PS INT PR INT T / ACT POS / ACT POS</td> <td>(MCC PC) (MCC PC) (MCC PC) (MCC PC) (MCC PC) (MCC HG IN (MCC HG IN</td> <td>90 -34 PR) 17. 1. PR) 31. 1. PR) 4. PR) 3. 1. 2. 1. 6. 6. 6. 6. 6. 1. 2. 1. 1. 2. 1. 2. 1. 2. 1. 2. 1. 2. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.</td> <td>Numbers: 1 901 0 -363 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X Y 2.0 8 1.5 S .6 X 1.3 X 1.9 X .6 X 1.9 X .6 X 1.0 X 1.0 X 1.0</td> <td>-436 X NS X 9.6 X 4.2 X 3.9 3.3 1.9 5.7 20.0 22.8 2.6 1.5 NC 4.8 8.8 NC .4C 3.6</td> <td>-118 45.7 6.8 6.9 4.8 2.1 7.9 4.5 NC X 2.9 13.9 10.1 2.3 2.4 NC NC X X NC</td> <td>-364 X 11.9 NC 45.0 1.6 43.1 3.1 3.1 3.1 3.1 3.1 2.4 3.0 5.3 6.3 144.0 144.0 34.4 4.5 4.7 NS 3.9</td> <td>901 -362 X X 6.8 NC X 1.2 2.8 NC .4 2.2 X 3.7 1.6 NC NC NC NC NC .6 NS .7 1.8</td> <td>-410 X 4.0 NC 50.0 NC 5.5 NC NC NC 1.0 1.8 2.3 NC NC NC S.5 3.2</td> <td>-095 NC .4 .8 NC X NC NC NC NC NC NC NC NC NS 9.2 8.7 2.1 1.1 NS 2.7</td> <td>-249 X X 3.2 2.2 X 2.2 X X 2.2 1.1 4.3 23.4 9.2 6.9 220.0 220.0 220.0 20.0 1.1 4.2 3.8 7.0</td> <td>-225 M 12.9 X 3.3 M 6.0 5.1 4.2 15.1 12.3 6.5 23.7 45.8 5.1 M 2.2 NS</td> <td>-<u>112</u> NC NC X 4.3 3.3 X 10.9 23.6 7.4 9.0 NC 4.4 1.5 X 2.3</td> <td>-346 X NC NC NC NC NC NC 3.3 8.2 5.3 3.3 5.8 2.6 NC NC 1.0 5.8 1.7 3.1</td>	AMETER J CLNT PR) - J CLNT PR) - C HG IN PR) - C HG IN PR) - COX INJ PR) - FP CL LNR PR) - PC - CLNT DS T PC - CLNT DS T FU INJ PR PC - CLNT DS T1 A T DS T1 B T DS T2 OX FM DS PR OX IN PR PD PS INT PR INT T / ACT POS / ACT POS	(MCC PC) (MCC PC) (MCC PC) (MCC PC) (MCC PC) (MCC HG IN (MCC HG IN	90 -34 PR) 17. 1. PR) 31. 1. PR) 4. PR) 3. 1. 2. 1. 6. 6. 6. 6. 6. 1. 2. 1. 1. 2. 1. 2. 1. 2. 1. 2. 1. 2. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	Numbers: 1 901 0 -363 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X Y 2.0 8 1.5 S .6 X 1.3 X 1.9 X .6 X 1.9 X .6 X 1.0 X 1.0 X 1.0	-436 X NS X 9.6 X 4.2 X 3.9 3.3 1.9 5.7 20.0 22.8 2.6 1.5 NC 4.8 8.8 NC .4C 3.6	-118 45.7 6.8 6.9 4.8 2.1 7.9 4.5 NC X 2.9 13.9 10.1 2.3 2.4 NC NC X X NC	-364 X 11.9 NC 45.0 1.6 43.1 3.1 3.1 3.1 3.1 3.1 2.4 3.0 5.3 6.3 144.0 144.0 34.4 4.5 4.7 NS 3.9	901 -362 X X 6.8 NC X 1.2 2.8 NC .4 2.2 X 3.7 1.6 NC NC NC NC NC .6 NS .7 1.8	-410 X 4.0 NC 50.0 NC 5.5 NC NC NC 1.0 1.8 2.3 NC NC NC S.5 3.2	-095 NC .4 .8 NC X NC NC NC NC NC NC NC NC NS 9.2 8.7 2.1 1.1 NS 2.7	-249 X X 3.2 2.2 X 2.2 X X 2.2 1.1 4.3 23.4 9.2 6.9 220.0 220.0 220.0 20.0 1.1 4.2 3.8 7.0	-225 M 12.9 X 3.3 M 6.0 5.1 4.2 15.1 12.3 6.5 23.7 45.8 5.1 M 2.2 NS	- <u>112</u> NC NC X 4.3 3.3 X 10.9 23.6 7.4 9.0 NC 4.4 1.5 X 2.3	-346 X NC NC NC NC NC NC 3.3 8.2 5.3 3.3 5.8 2.6 NC NC 1.0 5.8 1.7 3.1
PAR/ (IN. (IN. (MCC) (HPF (HPF) (FPE) (OPE) MCC MCC MCC MCC MCC MCC MCC MCC MCC MC	AMETER J CLNT PR) - J CLNT PR) - C HG IN PR) - C DS INJ PR) - FP CL LNR PR) - FP DS PR) - 3 PC) - 3 PC) - PC CLNT DS T FU INJ PR - SPEED T DS T1 A T DS T1 B T DS T2 OX FM DS PR OX IN PR - DS PS INT PR INT T / ACT POS / ACT POS / C PATAMETERS	(MCC PC) (MCC PC) (MCC PC) (MCC PC) (MCC PC) (MCC HG IN (MCC HG IN (MCC HG IN	90 -34 PR) 17. 1. PR) 31. 1. PR) 4. PR) 3. 1. 2. 1. 6. 6. 6. 6. 6. 1. 2. 1. 1. 2. 1. 2. 1. 2. 1. 2. 4.4	Numbers: 1 901 0 -363 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X Y 2.0 8 1.5 S .6 X 1.3 X 1.9 X .6 X 1.9 X .6 X 1.0 X 1.0 X 1.0	-436 X NS 2.6 X 4.2 X 3.9 3.3 1.9 5.7 20.0 22.6 1.5 NC 4.8 8.8 NC .4 NC 3.6 11.9	-118 45.7 6.8 6.9 4.8 2.1 7.9 4.5 NC X 2.9 13.9 13.9 13.9 13.9 10.1 NC NC X X X NC X 2.4	-364 X 11.9 NC 45.0 1.6 4.3 1.4 3.1 3.1 3.1 3.2 4.3 5.3 1.4 4.0 144.0 144.0 34.4 5.3 144.0 144.0 3.3 5.3 144.0 144.0 3.4 5.9 2.9	901 - <u>362</u> X x 6.8 MC .4 2.2 X .3 1.7 1.6 NC NC NC .6 NS .7 1.8	-410 X 4.0 50.0 5.5 5.5 NC 5.5 2.0 1.8 2.3 NC NC S.3 NC S.3 NC S.3 NC S.3 NC S.3 S.2 S.3 S.2 S.3	-095 NC .4 .8 NC XC NC NC NC NC M 9.2 8.7 2.1 1.1 NS 9.2 8.7 2.1 1.1 NS 2.7 NC	-249 X X 3.2 2.2 X 2.2 1.1 4.3 23.4 9.2 20.0 220.0 20.0 20.0 20.0 20.0 1.1 4.2 3.8 7.0 3.5	-225 M 12.9 38.9 X 3.3 M 6.0 X 5.1 4.2 15.1 12.3 12.3 6.5 23.7 45.8 5.1 M 2.2 NS .4	- <u>112</u> NC NC NC X 4.3 X X 10.9 23.8 21.6 7.4 9.0 NC 4.4 1.5 X 2.3 8.3	-346 X NC NC NC NC NC NC 3.3 8.2 3.3 5.8 2.6 NC NC 1.0 5.8 1.7 3.1 3.5
PAR/ (IN. (IN. (MCC (MCC (HPF (HPF (FPE (OPE MCC MCC MCC MCC MCC MCC MCC MCC MCC MC	AMETER J CLNT PR) - J CLNT PR) - C HG IN PR) - C OX INJ PR) - FP CL LNR PR) - FP DS PR) - 3 PC) - 3 PC) - 7 CLNT DS T FU INJ PR - SPEED 1 DS T1 A 1 DS T1 B 1 DS T2 OX FM DS PR OX IN PR - DS PS INT PR INT T /ENT DP / ACT POS / ACT POS / CE DATABLE CONS / CE	(MCC PC) (MCC PC) (MCC PC) (MCC PC) (MCC PC) (MCC PC) (MCC HG IN (MCC HG IN (MCC HG IN) (MCC HG IN)	90 -34 PR) 17. 1. PR) 31. 1. PR) 4. PR) 3. 1. 2. 1. 6. 6. 6. 6. 6. 1. 2. 1. 1. 2. 1. 2. 1. 2. 1. 2. 4.4	Numbers: 1 901 0 -363 X X X X X X 7 2.0 8 1.5 0 30.2 9 1.0 8 .8 3 1.2 6 .5 7 M 2 .6 4 .3 4 1.3 0 1.9 5 .6 5 .6 7 NS 5 .6 7 NS 5 .6 7 NS 5 .6 3 1.0	-436 X NS 2.6 X 4.2 X 3.9 3.3 1.9 5.7 20.0 22.6 1.5 NC 4.8 8.8 NC .4 NC 3.6 11.9	-118 45.7 6.8 6.9 4.8 2.1 7.9 4.5 NC X 2.9 13.9 13.9 13.9 13.9 10.1 NC NC X X X NC X 2.4	-364 X X 11.9 45.0 45.0 4.3 3.1 3.4 3.3 5.3 144.0 34.5 5.3 144.0 144.0 34.5 8 2.9 14	901 -362 X X 6.8 NC X 2.8 NC .4 2.2 X .3 1.7 1.6 NC NC C NC .6 NS .7 1.8 1.0 3	-410 X 4.00 NC 5.5 NC NC 5.5 NC NC NC 1.0 1.8 2.3 NC NC NC S.2 0 1.0 1.8 2.3 NC NC S.2 3.6 6	-095 NC .4 .8 NC X NC NC M .9 NC M .9 NC M .9 .7 2.7 NC 4	-249 X X 3.2 2.2 2.2 X X 2.2 2.2 X X V 4.2 1.1 4.3 23.4 9.2 6.9 220.0 20.0 220.0 220.0 20.0 20.0 20.0	-225 M 12.9 38.9 3.3 M 6.0 5.1 4.2 15.1 15.1 12.3 6.5 23.7 45.8 5.1 45.8 5.1 45.8 5.1 45.8 5.1 12.2 NS .4	- <u>112</u> NC NC NC X 3.3 X 10.9 23.8 21.6 7.4 9.0 NC 23.8 21.6 7.4 9.0 NC X 2.3 8.3 11	-346 X NC NC NC NC NC NC NC 3.3 3.2 3.3 5.8 2.6 NC NC NC 1.0 5.8 1.7 3.1 3.5 10
PAR/ (IN. (IN. (MCC) (HPF (HPF) (FPE) (OPE) MCC MCC MCC MCC MCC MCC MCC MCC MCC MC	AMETER J CLNT PR) - J CLNT PR) - C HG IN PR) - C OX INJ PR) - FP CL LNR PR) - FP DS PR) - 3 PC) - 3 PC) - 7 CLNT DS T FU INJ PR - SPEED 1 DS T1 A 1 DS T1 B 1 DS T2 OX FM DS PR OX IN PR - DS PS INT PR INT T /ENT DP / ACT POS / ACT POS / CE DATABLE CONS / CE	(MCC PC) (MCC PC) (MCC PC) (MCC PC) (MCC PC) (MCC PC) (MCC HG IN (MCC HG IN (MCC HG IN) (MCC HG IN)	90 -34 PR) 17. 1. PR) 31. 1. PR) 4. PR) 3. 1. 2. 1. 6. 6. 5. 1. 2. 1. 2. 1. 2. 2. 1. 1. 2. 2. 1. 2. 2. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	Numbers: 1 901 0 -363 X X X X X X 7 2.0 8 1.5 0 30.2 9 1.0 8 .8 3 1.2 6 .5 7 M 2 .6 4 1.3 0 1.9 5 .6 5 .6 6 .7 C NC 0 .6 7 NS 5 .6 7 NS 5 .6 3 1.0 3 3	-436 X NS X 9.6 X 4.2 X 3.9 3.3 1.9 5.7 20.0 22.8 2.6 1.5 NC 4.8 8 8.8 8.8 NC .4 NC 3.6 11.9	-118 45.7 6.8 6.9 4.8 2.1 7.9 4.5 NC 2.9 13.9 10.1 2.3 9 10.1 2.3 NC NC X X X NC 2.8 12	-364 X X 11.9 45.0 45.0 4.3 3.1 3.4 3.3 5.3 144.0 34.5 5.3 144.0 144.0 34.5 8 2.9 14	901 - <u>362</u> X x 6.8 MC .4 2.2 X .3 1.7 1.6 NC NC NC .6 NS .7 1.8	-410 X 4.0 50.0 5.5 5.5 NC 5.5 2.0 1.8 2.3 NC NC S.3 NC S.3 NC S.3 NC S.3 NC S.3 S.2 S.3 S.2 S.3	-095 NC .4 .8 NC XC NC NC NC NC M 9.2 8.7 2.1 1.1 NS 9.2 8.7 2.1 1.1 NS 2.7 NC	-249 X X 3.2 2.2 X 2.2 1.1 4.3 23.4 9.2 20.0 220.0 20.0 20.0 20.0 20.0 1.1 4.2 3.8 7.0 3.5	-225 M 12.9 38.9 3.3 M 6.0 5.1 4.2 15.1 15.1 12.3 6.5 23.7 45.8 5.1 45.8 5.1 45.8 5.1 45.8 5.1 12.2 NS .4	- <u>112</u> NC NC NC X 4.3 X X 10.9 23.8 21.6 7.4 9.0 NC 4.4 1.5 X 2.3 8.3	-346 X NC NC NC NC NC NC NC 3.3 3.2 3.3 5.8 2.6 NC NC NC 1.0 5.8 1.7 3.1 3.5 10

Figure-5: Test Sensor Measurement Samplings for Percent Changes from Steady State Condit

Percent Changes from Steady State Conditions and Time Intervals from Anomaly Indications to (Redline) Cutoff However, the cost of the premature shutdown (\$250-thousand for engineering teststand personnel and facilities), would be more than offset by the millions of dollars saved for just one proper SAFD system shutdown command. Figure-1 displays such damage costs of previous incident tests.

6. The detection system should utilize the algorithm framework to be described in the following section. The detection techniques reviewed and outlined in Section 4.0 should be considered in some form if the latter scheme does not prove performance effective. The techniques should not be considered initially in the system development phase for reasons of:

•Need for a simple structured detection system.

- •Need in some cases for a quick performance responding system (i.e. 500 milliseconds before current redline cutoff).
- •Concern for susceptibility to instrument errors and random disturbances.

3.2 DETECTION SYSTEM DEVELOPMENT

The preliminary scheme for the SAFD's system development consists of an initial coding framework and basic approaches which may be used to measure the system's performance.

3.2.1 Coding Framework

The initial program coding framework incorporates the considerations cited in Section 3.1. The salient features of the framework are the three (3) approaches to sensing anomalies. The approaches are tailored to meet anomalies when they: occur shortly after a scheduled transient, occur slowly (e.g. 100-seconds before major damage), and occur rapidly (e.g. 500

milliseconds or less before major damage). The framework encompasses: input provisions, computations, decision making logic, and diagnostics. Diagnostics will be displayed, for example: to indicate corrective action for input errors or inconsistencies, to indicate the anomaly area within the SSME, and to identify the detection system's scanning approach which signaled an engine shutdown. A brief content description of the first three framework components are presented on the following pages. Figure-6 summarizes how they are logically linked with the three (3) anomaly sensing approaches.

- 1. <u>Input provisions</u>. Some of these provisions consist of:
 - a. Stored input data, i.e.

•Expected steady state average values (AVG1) for the number of engine sensors monitored by the detection system. There will be sufficient numbers of sensors which will indicate an anomaly even if a few monitored sensor measurements malfunction. The average values can be test data based or from an off-design model (influence coefficient governed) prediction for different power levels (to be start or throttled to for a particular test).

•Standard deviations (SD's) for each sensor's average value, as well as, multiplying N-factors on the SD's (i.e. N1, N2, and N3, see Figure-6 for the overall system utilization). The values for the SD's will be based on the data base described in Section 5.0. The N-factors will be derived from integrity verifications of the detection system on sensor measurement data indicating either SSME anomaly or nominal operation. The data reflecting anomaly operations will come from previous tests (causing major damage) and from transient and/or off-design model simulations of selected FMEA (Failure Mode Effects Analysis) critical-1 failure modes. The data reflecting nominal operations will come from previous nominal tests and transient model simulations of sensor measurement variations (for example noise, bias, or drift). During the latter

verifications, the detection system's ability to detect anomalies rapidly enough to improve upon the current detection system's performance and its ability to avoid a premature shutdown will be two (of several) significant criteria for final value assignments of the N-factors.

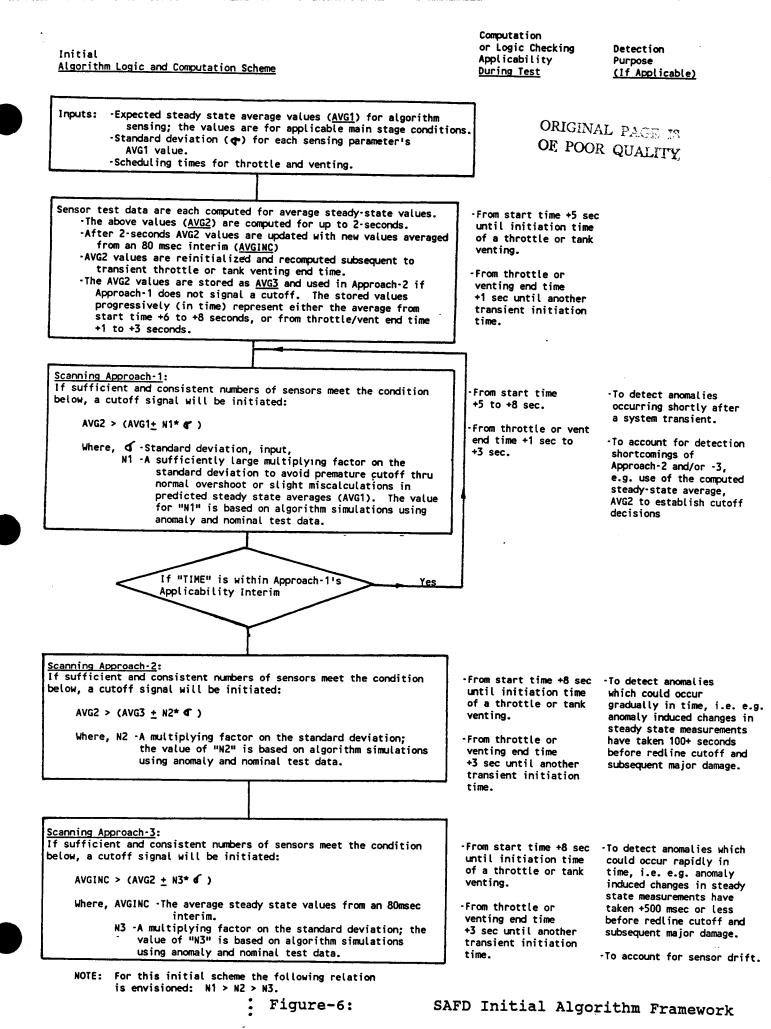
•Scheduling times for throttle and tank venting.

b. <u>CAD and FR sensor measurements monitored</u> by the system

- •Selection of the sensor measurements to be monitored are based on Section 5.0 data tables and recognition that the measurements should represent key aspects of the SSME operation. If all sensors of the detection system malfunction, the resulting premature shutdown would be justified for safety and adequate monitoring concerns.
- 2. <u>Computations</u>. The computations will be initiated during steady state power level intervals (see Figure-6 for the approximate time interims). During <u>scheduled transients</u> (i.e. scheduled start, throttling, or tank venting), detection system parameters holding calculated values will be re-initialized; computations will begin again once steady state operation is achieved. The computations will consist of, for instance:
 - a. <u>Delta-P calculations</u> around components (from individual sensor measurements).
 - <u>Average steady state values</u> (<u>AVG2</u>) <u>computed</u> for up to 2-seconds. After 2-seconds AVG2 values will be updated with new values (<u>AVGINC</u>) averaged from an 80 millisecond interim.
 - c. Two-seconds after scheduled transients, the <u>AVG2 value</u> for each sensor is <u>stored</u> under the array name <u>AVG3</u>.

- 3. <u>Decision Making Logic</u>. The logic decisions will apply during steady state power level intervals (see Figure-6 for the approximate time interims). During scheduled transients logic parameters will be re-initialized; logic decisions will again apply once steady state operation is achieved. The decision logic will consist of, for instance:
 - a. Logic to identify possible sensor malfunctions or <u>to verify</u> an anomaly is being sensed, i.e. cross checking with other parameters for change; for instance FPOV (Fuel Preburner Oxidizer Valve) or OPOV (Oxidizer Preburner Oxidizer Valve) positions, or cross checking for consistent directions in change for given directions of change (from other sensor measurements).
 - b. For a 2-3 second interim after the end time of a scheduled transient, <u>scanning Approach-1</u> will be used exclusively to screen for anomaly induced changes in sensor measurements. If sufficient and consistent numbers of sensors meet the condition below, a cutoff signal will be initiated. This approach is intended to detect anomalies occurring shortly after a scheduled transient.

AVG2 > (AVG1 + N1 * SD)


c. At the conclusion of scanning Approach-1's interim until the start time of the next scheduled transient, <u>scanning Approach-2</u> or <u>Approach-3</u> will be used to screen for anomaly induced changes in sensor measurements. If sufficient and consistent numbers of sensors meet the respective conditions below, a cutoff signal will be initiated. Approach-2 is intended to detect anomalies occurring slowly (for example,100-seconds before major damage); Approach-3 is intended for those anomalies occurring rapidly (for example, less than 500 milliseconds before major damage).

Approach-2 condition: AVG2 > (AVG3 + N2 * SD)

Approach-3 condition: AVGINC > (AVG2 \pm N3 \star SD)

3.2.2 <u>Detection System Performance Measurement</u>. During the latter portion of the verification effort (for the programming framework in Figure-6), three (3) measurements for the detection system's performance may be utilized. These measurements are generally described in Figure-7; they will be refined during detection system development for application.

1

Possible Approaches to Measuring the SAFD's Detection System Performance:

<u>General</u>: The detection performance relates to how effective the selected algorithm is in detecting a failure. If the detection algorithm requires a large amount of core memory and is "slow" to respond, the concept is not acceptable. The response of the concept in detecting various induced failures can be quantified in the following terms:

Miss......The concept detects no failure(s) for which it was programmed, despite the fact that such a failure was induced.

False Alarm.....A condition in which the concept incorrectly detects a failure when no failure actually occurred.

Response Time....Length of time after the failure before detection of the failure occurs. Time to detect.

The detection performance may be measured as follows:

I. <u>Hit/Miss_Ratio</u>:

DSCORE = <u>NIF - NOH*WT1</u> NIF

where: NIF....Number of induced failures. NOH....Number of hits. WT1....Chosen weighting portion of the weight importanace of this criteria.

WT1= 80 will yield 40 points.

II. <u>Time to Detect</u>: (15 points score)

Rationale: The advanced electronic control design for the SSME (Space Shuttle Main Engine) takes approximately 40-60 millseconds to detect a failure (assuming a 3-hit criteria); therefore the concept is penalized for times greater than this. A 120-180 millisecond time results in a worst score. The concept is penalized for excessive parameter changes between when the failure was induced to when the failure was detected for steady state opeation. A parameter change of 10% results in a worst score.

The typical scoring equation: DSCORE = (AMAX1(0., (TFD-TFI-60))/120) * WITD + (PNTI - PNTD)/PNTI * WPF

where: TFD....Time failure detected. TFI....Time failure induced. PNTI...Parameter value when failure induced. PNTD...Parameter value when failure detected. WITD...Weight on induced time delay. WPF....Weight on percent parameter change.

III. <u>Number of False Alarms</u>.

ંગ

Ground Rules- For every 10 hits, one false alarm is tolerable, three false alarms scores 15 points.

Scoring: DSCORE = NOFA/NOH * 50.

where: NOFA...Number of false alarms. NOH....Number of hits.

Figure-7:

Detection System Performance Measurements

4.0 LITERATURE REVIEW RESULTS

A literature search was performed on Failure Detection and Isolation (FDI) techniques. A list of over 70 papers were collected and contacts made with two research firms, Alphatech (Boston, Massachusetts) and Intermetrics (Cambridge, Massachusetts). A bibliography of the collected literature (in three pages) may be found at the end of this section. The methods/material which were reviewed are listed below. Each are subsequently discussed.

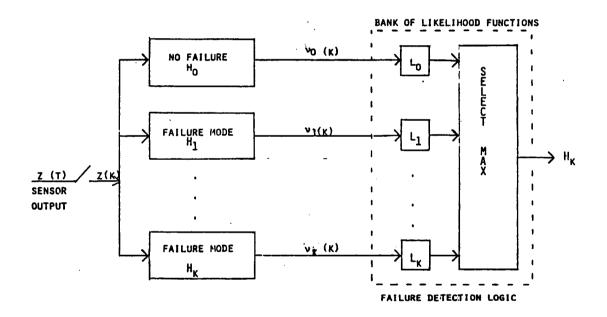
- I. Alphatech Material/Approach.
- II. Intermetric Material.
- III. Bank of Kalman Filters Technique.
- IV. Failure Sensitive Filter Technique.
- V. Observers Technique.
- VI. Voting Technique.
- VII. Innovations Based Failure Detection Scheme.
 - A. Generalized Likelihood Ratio (GLR) Test.
 - B. Sequential Probability Ratio Tests (SPRT).
 - C. Weighted Sum Square Residual (WSSR) Test.
 - D. Modified Kalman Filter.
- VIII. Parameter Estimation Technique.
 - IX. Jump Process Technique.

I. <u>Alphatech Material/Approach</u>.

Since all Failure Detection and Isolation (FDI) techniques are fundamentally based on models of system redundancy, it is not surprising that model error creates problems in FDI techniques which do not adequately address the issue. A design methodology described by Alphatech (ref. 29 & 37) provides an interesting framework for analyzing the impacts of such errors on FDI performance. A simple description can be found on page 4 of ref. 29. The difficulty with this method lies in the computational burden associated with the large number of linear models required to generate the redundancy relations for each steady state operating point. More work on a practical level needs to be done before this technique is plausible for plant failure detection. <u>Robustness</u> of an FDI system is defined by Alphatech as a measure of FDI performance. They consider the probability of a false alarm as a measure of FDI robustness. The FDI algorithm must also have robustness in the presence of unavoidable modeling errors. The overall design process is to design the FDI system to have the best performance when averaged over all the likely error sources.

II. Intermetric Material.

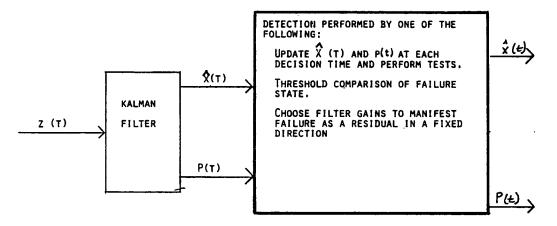
A very comprehensive review of failure detection techniques can be found in ref. 30 and 40. In ref. 30 Intermetrics Corporation reviewed over 73 publications on failure detection. In this review three key areas of implementation were discussed:

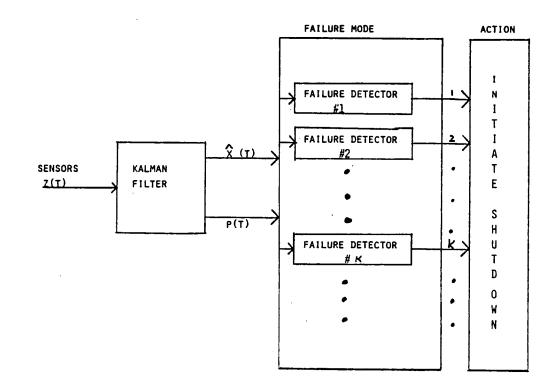

- <u>Kalman Filtering</u>. System states are often estimated using the sequential optimal Bayes linear estimator, known as the Kalman filter. For real time applications a reduced-order Kalman filter (extended) must be used. This is due to the computer memory and computation delay required for full-state Kalman filters.
- 2. <u>"Truth" Modeling Derivation</u>. When the "truth" model or the error model is derived, it is assumed that the state description has filter residuals that are unbiased and white for the nominal operating case. The filter residuals can be nonwhite or biased for the following reasons:
 - a. Because a failure occurred.
 - b. Because a bad measurement was received.
 - c. Because of the use of a reduced-order Kalman filter (suboptimal).

Any failure detection approach that does not account for the last two reasons above will attribute any nonwhiteness as solely due to the occurrence of a failure. One possible solution to this problem involves the on-line calculation of the mean and variance from the windowing of statistics, i.e.:

- a. Sampling a "frame" of time at a steady-state level and estimating the variance.
- b. Comparing the above to a suboptimal estimate from a reduced order extended Kalman error covariance matrix.
- c. Developing a "metric" based on the error between the statistical estimates.
- 3. <u>Robust Techniques</u>. Three other approaches to solving the nonwhite filter residual problem can be termed "robust" techniques.
 - a. Voting between three (or more) comparable components.
 - b. Mid-value selection (between three comparable components).
 - c. Reliance on parity equation checks between either identically redundant systems or functionally redundant systems or combinations of systems which together cover the function of another system (known as analytical redundant systems).
- NOTE: The first two of the above techniques are present in the SSME controller electronics (e.g. self-checking processors and sensor voting logic). The third type can be related to the SSME (Space Shuttle Main Engine) actuator electronics voting logic. This failure detection scheme relies on 2nd order transfer function simulation of the actuator dynamics that is then compared against the actuator's actual position. An error is then generated and a threshold value of 6% to 10% is then used to trigger engine shutdown.

III. Bank of Kalman Filters Technique.


This technique employs a group ('bank') of Kalman filters to hypothesize each failure mode. Normal operation of the system is represented by the null hypothesis. H-sub-o. The failure hypotheses are labeled as H-sub-i. The likelihood residuals of each filter are monitored and functions (e.g.probability density functions) are generated. Other statistical tests (ref. 60) can also be performed on the filter innovations. The hypothesis with the maximum likelihood of occurrence is then selected as representing the true failure mode. Concepts underlying the bank of filter's approach are discussed in ref. 61 and 62. The concept is schematically shown below:


The advantages of the bank of filters technique are: (1) it provides a good yardstick for comparison with simple techniques, and (2) it allows insight into the failure propagation dynamics after detection. The disadvantages are: (1) the bank of filters approach results in excessive computational complexity, and (2) there is the possibility of the bank of filters becoming oblivious and failures going undetected.

IV. Failure Sensitive Filter Technique.

Failure sensitive filters can be classified as filters using failure states in dynamics and detection filters. The block diagram below illustrates this technique.

1. <u>Failure State Augmented Filters</u>. This type of filter augments the state vector with failure states to form a higher dimensional system in state space. Several techniques which use these filters and are sensitive to specific types of failures have been developed. Kerr (ref. 63) discusses an approach where a bounded region is defined around the nominal and estimated trajectories and tests are performed to determine overlapping of the two regions. It is a geometrical approach and simulates failures as states (for detection purposes). The figure below demonstrates this concept.

2. <u>Detection Filters</u>. Detection filters were developed by Beard (ref. 64) and Jones (ref. 65). The basic idea is to select the gain matrix such that filter innovations tend to zero in the no-failure state and give an indication of plant failure in the failed state. Beard's choice of gains is directed towards making the innovations point in a fixed direction in case of a failure. For example, it is easy to show that if a component fails, the components of the filter residual vector have distinguishing characteristics that are large relative to other component failure characteristics.

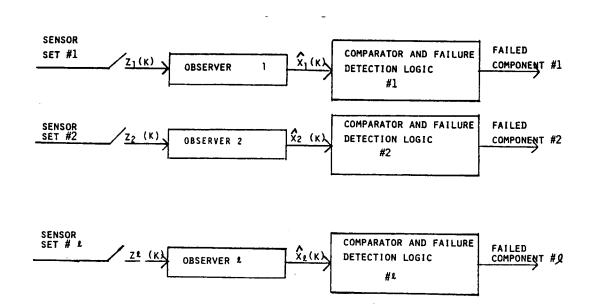
The major advantage of detection filters is the simplicity with which they can be used. The disadvantages are: (1) susceptibility to instrument errors and random disturbances, (2) applicable in theory only to linear regimes where the model structure does not change, (3) modeling errors may appear as soft failures, (4) criteria for declaring faults are hard to set, and (5) in general, this method requires measurements of all state variables.

If the mathematical model of a system is "close to" the actual physical system, Kalman filtering is the optimal technique for estimation. Performance may be degraded, however, due to modeling errors and the tendency of Kalman filters to become "oblivious" to the sensor outputs. As more and more information is received, the state estimation error covariance is decreased. Consequently, the filter gains are reduced and the filter band-width is reduced.

If a failure occurs early in the measurement sequence, while the filter gain and bandwidth are large, the filter can respond properly to the change. However, as the error covariance and gain decrease, the filter begins to "know the state too well". Thus, as time goes on, it becomes oblivious to incoming information and fails to track the actual system behavior. In fault tolerant systems, it is desired to have filters which are sensitive to new data so that abrupt changes are reflected in the filter behavior.

Two techniques exist for avoiding the oblivious filter. They are the exponentially age weighted filtering and the limited memory filtering (ref. 66). Both techniques ensure that the filter gains on all failure modes never approach zero. Hence, the filters remain sensitive to failures.

V. Observers Technique.


A traditional scheme for protecting a system against failures in its feedback sensors is to provide the system with three (or more sets of sensors, so that there is redundancy in the feedback information. A voting logic may then be used to identify a faulty component's output sensor. This approach works well in systems where redundant instrument sets do not cause cost, weight, or size problems.

The technique of using observers requires only one set of instruments for each incident type. The redundancy provided by multiple sets of instruments is provided artificially in the failure detection computer by a subsystem of

multiple observers (see the figure below). It is assumed that the single set of instruments consists of three or more individual sensors. The outputs of each set of sensors is used to drive an observer, which is designed for that incident type. Thus each incident type has its own observer. Each observer estimates the states, so there is redundancy in estimates. These observer estimates are compared in a voting manner. For perfect components and perfect system dynamics, the estimates will converge to the real state vector in a very short time.

If a component fails, however, the observer estimate (corresponding to that component) is in error and a comparison between the estimated states identifies the faulty component. Ref. 67 discusses a scheme using multiple observers.

A plant failure detection system will utilize a set of sensors feeding in to an observer that simulates the behavior of the normal system but is sensitized to detecting a particular plant failure mode.

BANK OF OBSERVERS TECHNIQUE

VI. Voting Technique.

When redundant sensor channel information is available (analytic or hardware redundancy) voting techniques are useful. These methods work very well for hard failures and certain types of soft failures.

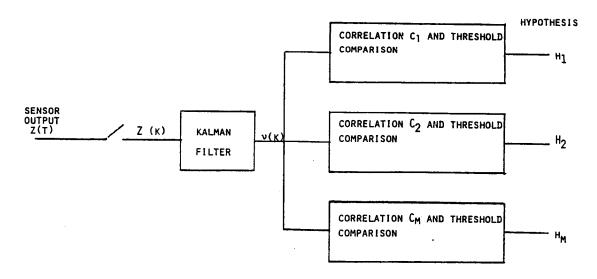
The standard voting process considers three (or more) "identical" signals. A marked deviation in one of the three redundant signals is sufficient to identify a failure. A recent voting scheme is presented in ref. 68 by Broen.

The voting test technique has the following advantages (from ref. 30):

- Can be applied either directly to the raw measurements prior to possible contamination from subsequent processing or applied to subsequently filtered and therefore further refined estimates of the sources of potential problems; or applied to both.
- Voting tests can be posed in a form that is compatible for representation as a parity vector/table cross checking to simplify failure isolation.
- 3. To account for differing accuracies of contributing components, parity equations can be modified from merely being equated to zero, to being equated to a quantity that is operationally equivalent to zero (for all practical purposes) by using variable decision thresholds for comparison. This can provide sufficient additional leeway for expected standard deviations of each participant along with components to account for noise and maneuvers.
- 4. Sophisticated generalization of the voting test operates on the output of the Kalman filter and gently de-weights dissenting contributions to the overall solution.

¥.

The disadvantages of the voting technique include:


- Detection of hard failure is possible, but only for systems with a high level of parallel redundancy.
- 2. Soft failures, like bias shifts, are hard to detect.

VII. Innovations-Based Failure Detection Schemes.

These schemes involve monitoring of the innovations of a filter based on the hypothesis of no-failure operation of the system. For a system described by a set of linear differential equations, a Kalman filter is often used to generate this innovation process (or sequence). Mehira and Peschon (ref. 60) have discussed various innovations in testing for failure detection and isolation. Four detection schemes will be discussed here.

A. <u>Generalized Likelihood Ratio (GLR) Test</u>.

The generalized likelihood ratio (GLR) technique requires existing functional redundancy to extract fault detection information. This technique monitors the output of one Kalman filter, see the block diagram below:

INNOVATIONS BASED DETECTION SCHEME

A bank of simple correlation operations and threshold comparisons is driven by the filter innovations. These very complex correlations were obtained from two papers. The first paper is titled "The Controversy Over Use of SPRT and GLR Techniques and Other Loose-Ends in Failure Detection. The second paper is titled "A Conservative View of the GLR Failure and Event Detection Approaches". See reference 3 and 5 respectively.

The GLR technique detects the onset of abrupt changes in linear systems. It allows simultaneous detection of failure, the time of occurrence of failure and the extent of the failure. The failure of a plant produces a nonwhite residual.

$$\gamma(k) = \gamma'(k) + G_{i}(k,\Theta)\gamma$$
⁽¹⁾

where $\gamma'(k)$ is the residual for the normal operating filter and $G_i(k, \Theta)$ describes the effect of failure γ of type "i", occurring at a time Θ on a residual at time "k". A set of hypotheses are established to distinguish between failure and no failure modes, as follows:

 $H_0 = No$ failure mode. $H_i = Failure$ mode of type "i" (γ and Θ unknown)

The generalized likelihood ratio is defined as:

$$L_{i}(k) = \frac{P(\gamma(1), \dots, \gamma(k))/H_{i}, \Theta = \widehat{\Theta}(k), \gamma = \widehat{\gamma}(k)}{P(\gamma(1), \dots, \gamma(k))/H_{o}}$$
(2)

where "P" is the probability density function of the innovations sequence $(\gamma(i), i = 1, ...k)$, given the hypothesis H_i and given the maximum likelihood estimates of Θ and γ .

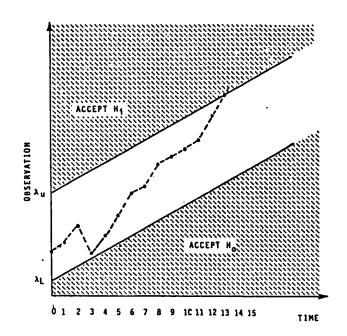
When a failure occurs, the decision rule for choosing between a failure and no failure is

for H_i TRUE: $L_i(k) > \lambda_D$ (3) for H_o TRUE: $L_o(k) < \lambda_D$

where $\boldsymbol{\lambda}_n$ is a predetermined threshold.

The advantages of this technique are: (1) built in functional relationships allow reduced requirements for multiple redundancy, (2) the technique is computationally feasible, (3) fast failure recovery is obtained since the time of failure occurrence is explicitly determined. The technique therefore does not have oblivious features.

The major disadvantage of this technique is that it is very sensitive to modeling errors. An accurate model is therefore required for a good estimate of failure parameters.


The <u>likelihood ratio</u> (<u>LR</u>) technique is in principle similar to GLR technique except that it does not involve prediction of failure time or the extent of failure. The LR is simply a ratio of two probabilities, i.e.:

$$L_{i}(k) = \frac{P(\gamma(1), \dots, \gamma(k))/H_{i}}{P(\gamma(1), \dots, \gamma(k))/H_{o}}$$
(4)

B. <u>Sequential Probability Ratio Tests (SPRT)</u>.

The sequential probability ratio test (SPRT) differs from the likelihood ratio test (LR) in that SPRT compares the likelihood ratio $L_i(k)$ (equation (4)) against two thresholds

If the ratio exceeds one threshold or falls below the other, a decision is made corresponding to the threshold that was crossed (see the schematic below). The decision is, however, deferred until a threshold is crossed.

This technique requires a valid state estimate at each time step for the control logic. Therefore a decision on whether or not a failure has occurred has to be made. This reduces the SPRT to a simple hypothesis test.

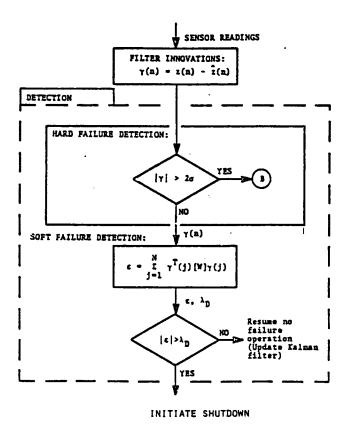
C. Weighted Sum Square Residual (WSSR) Test.

This technique was devised to suppress extremely large residuals, obtained from bad sensor data, by modifying the least squares criterion. A very small weighting is given to large residuals. This method essentially involves performing a static test at each point in time, incorporating the new measurement and the predicted estimate of this measurement based on previous data.

To be more specific, this technique (ref. 61) uses filter innovations for decision making. The innovation sequence $\gamma(k)$ is white with known covariance if the model is perfect and there is no failure. In case of a failure the residual becomes:

 $\gamma(k)$ = White Noise + Effect of Failure

and the detector is used to identify the failure using a priori knowledge of white noise covariance and the new statistics.

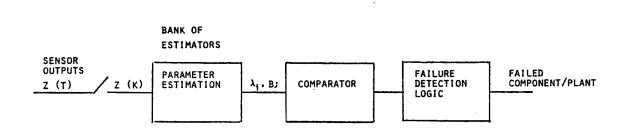

To detect a failure, one therefore has to compute the quantity, over the last "N" observations.

$$l_{j}(k) = \frac{1}{N} \sum_{j=k}^{k} \gamma^{T}(j) \gamma^{-1}(j) \gamma(j)$$
(5)

where $\gamma(j)$ is given by ref. 77.

The quantity l(k) is called the weighted sum square residual. For normal (no failure) operation, l(k) is expected to remain small. However, in case of a failure, l(k) will increase. If λ is the threshold value to make a decision between H₀ and H₁, we have:

The size of "N" and λ are chosen to provide acceptable trade-off between false alarms and misses. A flow chart for this technique is in the figure below:


D. Modified Kalman Filter.

÷.

This procedure uses the functional redundancy in the system together with a modified Kalman filter as a means of fault detection. Several methods have been developed which modify the design of the Kalman filter to achieve specific requirements. For example, a nonlinear single-stage filter algorithm with filter gains calculated using a linearized system model is discussed in ref. 74. This approach reduces the computational burden of a bank of Kalman filters running in parallel. A second example is the application of nonlinear filtering to failure detection in linear systems. This is discussed in ref. 75. This approach derives linear optimal estimator equations using nonlinear filtering equations. Several other techniques are discussed in ref. 76 and 77. These techniques control the estimate error divergence in the case of a failure.

VIII. Parameter Estimation Technique.

The failure modes (such as scale factor, failure parameters, and bias) are estimated from input and output data. These estimated values are compared with known values and substantial differences between the two indicates a failure. The technique is discussed in ref. 71. A simplified block diagram of the above concept is shown below:

IX. Jump Process Technique.

This technique considers failures as jump processes with known probability distribution (ref. 71). It allows the formulation of failure sensitive control laws and computation of conditional probabilities of failure.

Another technique (ref. 9) based on nonlinear filtering theory reparameterizes the Kalman filter for both tracking the state and detecting a fault. It is, however, limited to specific types of failures. This approach is still in early stages of theoretical development.

BIBLIOGRAPHY

- Goff, W., "Artificial Intelligence in Process Control", Mechanical Engineering, October 1985.
- Tov, Xi-Chang, Willisky, Allan S. Verghese, "Failure Detection with Uncertain Models", Department of Electrical and Computer Science, MIT, Cambridge, MA 02139.
- Kerr, T. H., "The Controversy Over Use of SPRT and GLR Techniques and Other Loose-Ends in Failure Detection," Intermetrics, Inc., 733 Concord Avenue, Cambridge, MA 02138.
- Chow, E. T., Willisky, A.S., "Issues in the Development of a General Design Algorithm for Reliable Failure Detection", 1980, IEEE.
- 5. Kerr, T. H., "A Conservative View of GLR Failure and Event Detection Approaches", Intermetrics, Inc, 733 Concord Avenue, Cambridge, MA 02138.
- Pattipati, K. R., et. al., "A Design Methodology for Robust Failure Detection and Isolation,", 1984 American Control Conference, 6-8 June 1984.
- Kerr, T. H., "Real-Time Failure Detection: A Nonlinear Optimization Problem That Yields a Two-Ellipsoid Overlap Test", pages 509-535, Journal of Optimization Theory and Applications, Vol. 22, No. 4, August 1977.
- Kerr, T. H., "Statistical Analysis of a Two-Ellipsoid Overlap Test for Real Time Failure Detection", IEEE Transactions on Automatic Control, Vol. AC-5, No. 4, August 1980.
- 9. Kerr, T. H., "False Alarm and Correct Detection Probabilities Over a Time Interval for Restricted Classes of Failure Detection Algorithms", IEEE Transactions on Information Theory, Vol. IT-28, No. 4, July 1982.

- 10. Kerr, T. H., "Failure Detection Aids for Human Operator Decisions in a Precision Inertial Navigation System Complex", Proceeding of Symposium on Applications of Decision Theory to Problems of Diagnosis and Repair, The American Statistical Association, June 2-3, 1976, pp. 98-129.
- Gablirsch, D. M. et. al., "An Approach to Failure Detection in Uncertain Systems", Proceedings on the 24th Conference on Decision and Control, Ft. Lauderdale, Florida, December 1985.
- Polenta, H. P. et. al., "Implementation and Testing of a Microcomputer -Based Fault Detection System", MIT, Proceedings of the 24th Conference on Decision and Control, Ft. Lauderdale, Flordia, December 1985, pp. 439-440.
- Bouvet, Michel, "On Bayesian Quickest Detection", Proceedings of the 24th Conference on Decision and Control, Ft. Lauderdale, Flordia, December 1985.
- 14. Weiss, J.L., et. al., "Detection and Isolation of Control Surface Effectiveness Failures in High Performance Aircraft", NAECON '85, February 1985.
- 15. Hertel, J.E. et. al., "Instrument Failure Detection in Partially Observable Systems", IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-18, No. 3, May 1982.
- 16. Demott, L. R., "TF41/A7-E Engine Monitoring System Implementation Experience, Detroit Diesel Allison, GMC, Indianapolis, Indiana.
- 17. Rosko, J.S. et. al., "Approximate Identification of Dynamic Systems from Sampled Data", United Aircraft Research Laboratories, East Hartford, Connecticut.

- 18. Ho, B. L., et. al., "Effective Construction of Linear State-Variable Models from Input/Output Data", NASA NCR05-20-073, Standford University, CA.
- 19. Xia, Guo-Hong, "Transfer Function Identification for Multi-Variable Linear Systems", SUNY, Stony Brook, NY and Chinese Academy of Space Technology.
- 20. Intermetrics Presentation, "16 Years of Continuous Growth".
- Intermetrics Incorporated, "Background Experience and Facilities", 1 November 1984.
- 22. Intermetrics Incorporated, "Intermetrics' Experience in Failure Detection Alternatives".
- 23. Kerr, T. H., "Decentralized Filtering and Redundancy Management/Failure Detection for Multisensor Integrated Navigation Systems", Intermetrics, Inc., Cambridge, MA.
- 24. Beard, R. V., "Failure Accommodation in Linear Systems Through Self-Reorganization", Doctor of Philosophy at MIT, February 1971.
- 25. Gelb, A. et. al., "Applied Optimal Estimation, MIT Press, The Analytic Sciences Corporation, 1974.
- 26. Biggs, R. E., "Engine Redline Mechanization", November 1985.
- 27. Emani-Naeini, et. al., "Robust Detection Isolation and Accommodation for Sensor Failures", NAS3-24079, Systems Control Technology, 1801 Page Mill Road, Palo Alto, CA 94304.

- 28. Lyon, Richard, H., "Failure Detection and Diagnostics Using the Cepstrum", Paper Presented at the 40th MFP6 Symposium, April 16-19, 1985, Gaithersburg, MD.
- 29. Weiss, J., et. al., "Robust Detection/Isolation Accommodation for Sensor Failures--Final Report", NASA-CR-174797, NAS3-24078, September 1984.
- 30. Intermetrics, Inc., Internal Report, "Overview of the Failure Detection Approaches", page C-2-F-6.
- 31. Kerr, T. H., "Presentation on the Controversy Over Use of SPRT and GLR Techniques and Other Issues in Failure Detection.
- 32. Handelman, D. A., et. al., "Combining Quantitative and Qualitative Reasoning in Aircraft Failure Diagnosis.
- 33. Merrill, W. C., "Sensor Failure Detection for Jet Engines Using Analytical Redundancy", J. Guidance and Control, Nov-Dec 1985, pp. 673-682.
- 34. Bierman, G.J., et. al., "A Decentralized Square Root Information Filter/Smoother", Presented at the 24th IEEE Conference on Decision and Control, Dec 1985.
- 35. Hague, S.I., et. al., "A New Method for Hardware/Software Integration of Strategic Systems: Case Study for the Space Shuttle," Intermetrics Corp., AIAA/SETP/SFTE/SAE/ITE/IEEE, 1st Flight Testing Conference (Nov. 11-13, 1981), Las Vegas, NV.
- 36. Weiss, J. & Hsu, J.Y., "Design and Evaluation of a Failure Detection and Isolation Algorithm for Restructurable Aircraft Control", Technical Progress Report, September 1985, NAS1-18004.

- 37. Weiss, J. J., "A Decentralized Approach to Design of Robust Failure Detection and Isolation (FDI) Algorithms", July 1985, NAD1-18004.
- 38. Merrill, W. C., "Sensor Failure Detection for Jet Engines Using Analytical Redundancy", NASA Technical Memorandum AIAA-84-1452.
- 39. Sidar, M., "Design of Analytical Failure Detection Systems Using Secondary Observers", NASA Technical Memorandum 64284.
- 40. Willisky, A. S., "A Survey of Design Methods for Failure Detection in Dynamic Systems," Autonetica, Vol., 12, pp. 601-611, 1976.
- 41. Bucy, R.S., "Linear and Nonlinear Filtering", Invited Paper, Proceedings of the IEEE, Vol. 58, No. 6, June 1970.
- 42. Guimond, B.W., "Passive Target Motion Analysis in a Maneuvering Target Environment", NASC Technical Report 5766, 16 May 1979, Naval Underwater Systems Center.
- 43. Moose, R. L., et. al., "Modeling and Estimation for Tracking Maneuvering Targets, IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-15, No. 3, May 1979.
- 44. Franco, P.C., "Mathematical Modeling Using Adaptive Kalman Filtering Techniques", Naval Air Development Center, Communication Navigation Technology Directorate, Normingster, PA 18974, pp. 905-911.
- 45. Nahi, N., et. al., "Decision-Directed Adoptive Recursive Estimators: Divergence Prevention.", IEEE Transactions and Automatic Control, Vol. AC-7, No. 1, Feb 1922.
- 46. Thank, H. H., "Adaptive Linear Filtering in the Presence of an Evolution Noise of Poorly Known Variance," Unknown Publication.

- 47. Perriot-Mathonna, D., "Adaptive Kalman Filtering, Application to the Tracking of Maneuvering Targets, HAC Translation Request No. AD-120, November 1980, Revue-Technique Thomson-CSF, Vol. 12, No. 1, March 1980, pp. 143-183.
- 48. Gholson, N. H., et.al., "Maneuvering Target Tracking Using Adaptive State Estimation", IEEE Transactions on Aerospace and Electronic Systems, Vol., AES-13, No. 3, May 1977.
- 49. Godbole, S. S., "Kalman Filtering with No Prior Information About Noise-White Noise Case: Identification of Covariances", IEEE Transactions on Automatic Control, October.
- 50. McClone, M. E., "Fault Authority Fault-Tolerant Electronic Engine Control Systems for Variable Cycle Engines", AFWAL-TR-81-2121, December 1981.
- 51. Yeichner, J. A., "Interim Test and Analysis Report, Stability and Performance and Failure Detection Isolation Tests and Analyses for the Verification of the Main-Engine Actuation Subsystem, Contract NAS9-14000, IRDSE-639T2A, Rockwell International.
- 52. Birbilis, N., "AFCS/CITS Fault Isolation Study", TFD-76-1150-1, B-1 Division.
- 53. Van de Graf, R. C., "An Experimental Analysis of Human Monitoring Behavior in Multivariable Detection Tasks", NLB-TR-81063-U, p. 78.
- 54. Teeter, R. R., "Diagnostic Needs of the Space Shuttle Main Engine", SAE Technical Paper Series, Aerospace Congress & Exposition, Oct. 15-18, 1984.
- 55. Laparo, K., "Process Diagnosis", Systems Engineering Department, Case Institute of Technology, Case Western University, Cleveland, Ohio, 44106.

- 56. Valponi, A. J., "Gas Path Analysis: An Approach to Engine Diagnostics", 35th Symposium Mechanical Failures Prevention Group, Gaithersburg, MD, April 20-22, 1982.
- 57. Cikanek, H., "SSME Failure Detection", Proceedings of the American Control Conference, June 19-21, 1985, NASA MSFC.
- 58. Evatt, T. C., "Advanced Control and Health Maintenance for Reusable Rocket Engines", Presentation to NASA, February 1985.
- 59. Polenta, Hector, P., "Implementation and Testing of a Microcomputer-Based Fault Detection System", MIT, Proceedings of the 24th Conference on Decision and Control, Ft. Lauderdale, FL, December 1985, pp. 443-447.
- 60. Mehira, R. K., "An Innovation Approach to Fault Detection and Diagnosis in Dynamic Systems", Automatica, Vol. 7, pp. 637-640, 1971.
- 61. Willisky, A. S. et. al., "Adaptive Filtering and Self Test Methods for Failure Detection and Compensation", Proc. of the JACC, Austin, Texas, June 1974.
- 62. Montgomery, R. C., "Management of Analytical Redundancy in Digital Flight Control Systems for Aircraft", AIAA Mechanics and Control of Flight Conference, Anaheim, CA, August 5-9, 1974.
- 63. Kerr, T. H., "A Two Ellipsoid Overlap Test for Real Time Failure Detection and Isolation by Confidence Regions", Paper No. FA5.2, IEEE Conference on Decision and Control of Flight Conference, Phoenix, Arizona, November 1974.
- 64. Beard, R. V., "Failure Accommodation in Lear Systems Through Self Reorganization" Report, MVT-71-1, Man Vehicle Laboratory, Cambridge, Mass., February 1971.

- 65. Jones, H. I., "Failure Detection in Linear Systems", Ph.D. Thesis, Department of Aeronautics and Astronautics MIT, Cambridge, Mass., September 1973.
- 66. Jazwinski, A. H., "Limited Memory Optimal Filtering", IEEE Trans. Aut. Control, Vol. 13, pp. 558-563 (1968).
- 67. Clark, R. N. et.al., "Detecting Instrument Malfunctions in Control Systems", IEEE Transactions on Aerospace and Electronic Systems, Vol. AES 11, No. 4, July 1975.
- Broen, R. B., "A Nonlinear Voter Estimator for Redundant Systems", Proc. 1974, IEEE Conference on Decision and Control, Phoenix. Arizona, pp. 743-748.
- 69. Bueno, R., "Performance and Sensitivity Analysis of the GLR Method for Failure Detection", MS Thesis, Department of Aeronautics and Astronautics, MIT, 1976.
- 70. Chow, E. Y., "Analytical Studies of the Generalized Likelihood Ratio Technique for Failure Detection", MS Thesis, Department of EE and Computer Science, MIT, February 1976.
- 71. Van Trees, H.L., "Estimation and Modulation Theory, Part III: Radar Sonar Signal Processing and Gaussian Signals in Noise?, Wiley, New York (1971).
- 72. Davis, M. H., "The Application of Nonlinear Filtering to Fault Detection in Linear Systems", IEEE Transactions on Automatic Control, April 1975.
- Papoulis, A., "Probability, Random Variables and Stochastic Processes", McGraw Hill Book Company, New York, 1965.

- 74. Montgomery, R. C., et. al., "Failure Accommodation in Digital Flight Control Systems Accounting for Nonlinear Aircraft Dynamics", AIAA Mechanics and Control of Flight Conference, Paper 74-887, Anaheim, CA, August 5-9, 1974.
- 75. Schlee, F. H., et. al., "Divergence in the Kalman Filter", AIAA Journal, Vol. 5, June 1967, pp. 1114-1120.
- 76. Fitzgerald, R. J., "Error Divergence in Optimal Filtering Problems", 2nd IFAC Symposium on Automatic Control in Space, Vienna, Austria, September 1967.

5.0 DATA EXAMINATION RESULTS

This section describes the results of examining data from forty (40) past incident tests (see Figure-1). As outlined in section 2.0, the data included: CRT-time slice plots (CADS and FR sensor measurements) and written documentation. The results are presented under four (4) headings, i.e: general overview, data base support to detection system development, delineation of data base, and data base observations/comments.

5.1 GENERAL OVERVIEW

After screening thru the CRT-data of Figure-1's incident tests (excluding six tests where the incidents occurred after cutoff), 82% revealed pre-cutoff (redline or nominal) indications of an anomaly. Included in the 82% are 20 of 27 major incident tests. The other four tests (approximately 18%) either appeared to reveal no early anomaly indications or the anomaly occurred during a start or throttle transient. A list of these tests along with tests where the incident occurred after cutoff are presented below.

Test

Designation Category

*901-147	Anomaly occurred in the middle of a throttle
*901-222	Anomaly occurred during transient (c/o at 4.3 sec)
901-345	Anomaly occurred after cutoff (c/o)
*902-132	Anomaly occurred during transient (c/o at 2.3 sec)
902-383	Anomaly occurred after cutoff
*750-041	Anomaly occurred after cutoff
*750-160	Anomaly occurred during transient (c/o at 3.2 sec)
750-165	No changes were strikingly indicated
*750-168	Anomaly occurred after cutoff
*SF6-003	Anomaly occurred after cutoff
STS-8	Anomaly occurred after cutoff
FRF-2	No changes were strikingly indicated

*Indicates a major incident

5.2 DATA BASE SUPPORT TO DETECTION SYSTEM DEVELOPMENT

A data base was derived to support the detection system development. This base encompasses the contents of Tables I, IIA, IIB, and III; it ranges from the specific to the general. Tables-IIB thru -III are examples of the specific data; Tables I and Tables IIA are examples of the general. A brief description of and purpose for each table in the system's development are presented on the next page. Each table's contents are described in more detail in section 5.3.

> Tables in the Detection System <u>es</u> <u>Dev</u>elopment

Purpose of

<u>Tables</u> <u>Content Description of Tables</u>

Brief Background/

III-4	These	tables	were	generated	

- thru for every applicable incident test.
- III-31 Fifty-seven measurements were examined for:
 - •Anomaly induced percentage change from the steady state condition.
 - •Rate of percent change.
 - Interim from first indications of an anomaly to cutoff (redline or nominal).
 - •Each of the above items were weighted.

-To identify possible sensors for system utilization; the weighing values permit (in most cases) an ease in spotting likely candidates.

Brief Background/

Tables Content Description of Tables

III-1 These tables contain data related thru to test-to-test sensor measurement III-3 envelopes, as well as, the standard deviation (SD) around each sensor measurement's average steady state value. The three SD's (STD1, STD2, and STD3) collectively indicate a sensor's deviation behavior. They also can define different bandwidths around the average steady state sensor measurement, i.e. (from Table III-2 and III-3):

> BAND1 = AVG1 + STD1 BAND2 = AVG2 + STD2 BAND3= 2 * (3*STD3)

IIB-1 These tables were generated for thru every applicable incident test.
IIB-32 The tables, for example, describe in all cases, the incident and damage and in most cases the direction of (anomaly induced) changes in selected sensor measurements. Purpose of Tables in the Detection System Development

-The sensors identified from the tables above will be further screened for use by Table III-1. For each such selected sensor the worst case bandwidth among BAND1, BAND2, and BAND3 will be used in the sigma value within Figure-6, page 3-9. This figure presents the initial algorithm framework.

To identify e.g.,
how sensitive the
system should be
to certain anomaly
changes (some tests
revealed minimal
damage).
To be part of a
sensor malfunction

determining scheme.

Brief Background/

Tables Content Description of Tables

I thru These tables were generated for IIA-6 six (6) failure types (see Figure-1, page 2). They generalize and summarize the anomaly indicating characteristics. Purpose of Tables in the Detection System <u>Development</u>

-To assist in defining specific anomaly characteristics which the detection system should be able to detect (in conjunction with the content set of Table IIB).

5.3 DELINEATION OF DATA BASE

_ _ .

As noted in the previous section, the data base consists of three (3) tables. They are headed and subdivided as follows:

<u>Criteria Table</u>	e.	Generic Characteristic Table	3.	Range & Damage Summary Table
TABLE III		TABLE II		TABLE I
SUB -		SU8-	1	SUB-
DIVISIONS CONTENT		DIVISIONS CONTENT		DIVISIONS CONTENT
III-1Summary of Sensor Standard Deviations	4	Characteristics for:		Range & Damage for:
<pre>III-2Test-to-Test Envelope Data Base</pre>		IIA-1Injector Failure		I-1Injector -MCC failure
Definition		IIA-2Control Failure		I-2Injector -FPB Failure
III-3Data Base for Time Sliced Value	1	IIA-3Duct, Manifold, HX Failure	[I-3Control Failure
Deviations from the Average		IIA-4Valve Failure		I-4Duct, Manifold, HX-Failu
Steady State Sensor Measurement		IIA-5HPOTP Failure		I-5Valve Failure
Anishing Tables for Tontos		IIA-6HPFTP Failure		I-6HPOTP Failure
<u>Criteria Tables for Tests</u> :		Failure Summary for Tests:		I-7HPFTP Failure
<u>w/injector failure</u> 111-4901-173		<u>w/Injector failure</u> IIB-1901-173		
111-4		IIB-2		
111-6		118-3		
111-7		118-4		
111-8		118-5		
111-9		118-6		
111-10SF10-01	1	118-7SF10-01		
w/Control Failure		w/Control Failure		
111-11		118-8		
w/Duct, Manifold Failure	1	w/Duct Manifold Failure		
111-12		<u>w/Duct Manifold Failure</u> 11B-9750-259		
111-13	I.	IIB-10901-485		
111-14	1	I 18 · 11750 · 175		
111-15		IIB-12902-112		
<u>w/Valve Failure</u>		w/Valve_Failure		
111-16SF6-001	1	IIB-13SF6-01		
111-17901-225	1	LIB-14901-225		
W/HPOTP Failure	I.	W/HPOTP Failure		
111-18		IIB-15		
111-19901-136	i i	IIB-16901-136		
111-20902-120	I I	IIB-17902-120		
W/HPFTP Failure	l l	W/HPFTP failure		
111-21901-340	1	118-18901-340		
111-22		IIB-19901-363		
III-23	1	118-20902-118		
111-24		118-21901-436 118-22901-364		
111-25901-364 111-26902-209	1	118-22901-304		
111-26	1	118-25		
111-27	1	118-25902-249		
[11-29		118-26901-346		
111-30	i	11B-27901-362		
111-31		118-28901-410		
111 - JIIIII - IIII - III - III	1	w/Anomalies During Transients		
	1	118-29901-222*		
		118-30902-132*		
	1	118-31750-160*		
	1	118-32901-147*		

The tables above (with four exceptions) focus on anomalies occurring at steady state operation**. This section delineates the contents of each table.

ORIGINAL PAGE IS OF POOR QUALITY **NOTE: A definitive cutoff criteria when anomaly induced changes occur during start or throttle should be formulated in a future study. For this latter study sufficient test data should be gathered to adequately define the "nominal" start and throttle profiles. The four (4) incident tests which should be studied are identified with asterisks (*) in the table listing. Tables IIB-29 thru IIB-32 contain descriptions of the incident and damage, exclusive.

<u>Criteria Tables</u>, <u>Table III</u>. Each of 57-sensor measurements (derived for each test time slice) was examined for its pre-cutoff (anomaly induced) percentage change from the steady-state condition, the rate of percent change, and the interim from first indication of an anomaly to cutoff. The latter measurement data were weighted (subjectively) to more easily identify possible sensors for detection system development use. The results for twenty-eight (28) incident tests are presented in Tables III-4 thru III-31. In addition to these results the information/data below are included in the tables:

- 1. A brief description of the test.
- 2. A summary of the damage and impact (cost and delay time).
- 3. A schematic describing the terms used within the table.
- 4. Weighting provisions for sensor algorithm selection.

Tables III-1 thru III-3 contain measurements of each sensor's variance during steady-state conditions. Table III-1 will be used to refine the selection of detection system sensors, initially assembled from Tables III-4 thru III-28 and assist in other algorithm definitions (as listed on page 5-2). Table III-1 lists three standard deviations. Two standard deviations (STD1 and STD2 in Table III-1) reflect a sensor's test-to-test envelope variance and are derived from test envelope measurements at 2-seconds and 10-seconds from the first early indication of an anomaly. Table III-2 (in three pages) presents a schematic illustrating the necessity of a 2-second and 10-second envelope

measurement for each test. Table III-2 also lists the data source of the sensor standard deviations, i.e. ten (10) tests and their corresponding average (under the headings AVG1 and AVG2 in Table III-2). STD3 in Table III-1 measures a sensor's variance around its average steady state value. Table III-3 schematically illustrates the type and volume of data encompassed in this standard deviation. Where available, STD3's standard deviation was assigned from the derivation of data taken every 20 milliseconds over a 5-second interval (generated by New Technology Inc. of Hunstville, Alabama); and where the latter data was unavailable, STD3's value was assigned from the derivation of data taken every 100 milliseconds over a 1-second interval. A comparison in Table III-3 of these two standard deviations (where both existed) reveals a close agreement in most cases.

Using Table III's data set, a list of possible sensor measurements which may be utilized during the detection system development is presented in Figure-5 (of section 3.0).

<u>Generic Characteristic Tables</u>, <u>Table II</u>. These tables describe the generic characteristics of six failure types with examples of sensor measurement traces, as well as describing the anomaly characteristics for individual incident tests. The tables are subdivided into Table IIA and Table IIB. These tables are further subdivided as shown on page 5-3 and are described for content below:

Table IIA The elements of this subdivision narrate the generic characteristics for six failure types and displays examples of sensor measurement traces.

Table IIBThe elements of this subdivision describe the anomaly
characteristics for individual incident tests thru:

- 1. A narration of the incident.
- A description of the engine/facility damage, along with a schematic.
- A time line of anomaly indicative parameters, along with the direction of change, and the excursion and duration interval. There are four (4) exceptions to this content; these are tests where the anomaly occurred during a transient.

The data set of Table IIB will be used to identify how sensitive the detection system should be to certain anomaly changes (i.e. some tests revealed minimal damage). Table IIB's parameter direction of change data will be used (along with verification incident tests* and other approaches) to develop the detection system's sensor malfunction decision logic.

*<u>NOTE</u>: Use will be made of the sensor malfunctions which occurred in the twenty-eight incident tests examined. They are summarized here:

Sensor Malfunctions	
Sensor Identification	Test No.(s) of Occurence
INJ CLNR PR-MCC HG IN PR	901-225
MCC HG IN PR- MCC PC	901-225
HPFT Delta-P	901-225
HPOT Delta-P	901-225
MCC FU INJ PR	750-148
MCC LN CAV PR	901-331, 750-148, 902-198, 901-284, 750-259, 901-485, 901-363,
	901-364, 902-209, 902-249, 901-362, 901-410, 901-436
MCC CLNT DS T	
MCC OX INJ T	
FAC FU FL CT	901 - 331
HPFP BAL CAV PR	
HPFT DS T1 B	750-148, 901-284, 902-209, 902-095
ENG FU FLOW CT	
PBP DS PR	901-331, 901-284
FAC OX FLOW CT	
FAC OX FLOW	
HPOT DS T2	
HPFP DR TEMP	
HX INT T	.901-225

<u>Range & Damage Summary Tables, Table I</u>. A data summary of the anomaly indicative parameters in Table IIB are presented in these tables by failure type. This summary is in the form of a data range for the direction of change and the excursion and duration interval. A data range is also defined for the direction of percentage change from steady state conditions. The table concludes with a schematic summary of either the test-to-test damage or the location of the damage source by failure type. The subdivisions of this table are presented on page 5-3.

Tables I and IIA have been used to define three basic failure characteristics which the detection system should be able to detect. These characteristics consist of anomalies which occur:

- 1. Shortly after a scheduled transient.
 - a. "Shortly after" is the approximate interim of +1 to <+3 seconds after the completion time of the scheduled transient.
 - b. "Scheduled transient" is defined as a start, throttle, or tank venting.
- 2. Well after a scheduled transient and occur slowly.
 - a. "Well after" is approximately \geq +3 seconds after the completion time of the scheduled transient.
 - b. "Occur slowly" is where major damage occurs approximately 5 to
 300+ seconds after the first anomaly indications.
- 3. Well after a scheduled transient and occur rapidly.
 - a. "Well after" has the same general definition as above.
 - b. "Occur rapidly" is where major damage occurs approximately <5 seconds after the first anomaly indications.

5.4 DATA BASE OBSERVATIONS/COMMENTS

This section concludes with data base comments, incident test observations, and/or lessons learned from incident tests (other than re-design needs or life related discoveries).

These topics will be presented by failure type with the following outline structure:

- I. Injector Failure.
- II. Control Failure.
- III. Duct, Manifold, and Heat Exchanger Failure.
- IV. Valve Failure.
- V. HPOTP (High Pressure Oxidizer Turbopump) Failure.
- VI. HPFTP (High Pressure Fuel Turbopump) Failure.

I. Injector Failure

- A. <u>Sensitive Sensors</u>. The injector failure sensors listed within Tables I thru IIB were chosen based on:
 - A sensor's closeness to the Level A+B criteria maximum (2.0), see Table III-4 for an example of what is meant by a Level A+B criteria.
 - 2. Item-1's condition is true for the majority of injector failure tests. One of five MCC injector failure tests e.g. was cutoff earlier than the other tests by a malfunctioning sensor. This test's parameters therefore reflect low percentage change from steady state values (less than 1%) as well as low Level A+B values, see Table I-1.

3. The anomaly tests listed below.

MCC Injector Failure Type	FPB Injector Failure Type
Test 901-173	Test 901-307
Test 901-331	SF10-01
Test 902-198	
Test 901-183	
Test 750-148	

B. <u>Injector Failure, Sensitive Sensor Observations</u>. Nine of the fourteen MCC-injector failure sensors (in Table I-1) show the same direction of change for all five data base tests; the remaining five parameters have different directions depending on the extent of damage. For the cases where the secondary and primary faceplates were burned through e.g. the injector hotgas delta-P trace consistently shows a rise from steady state conditions (see Table IIB-1 thru IIB-3). A consistent drop in injector hotgas delta-P is shown if only the primary faceplate was burned through (see Table IIB-4 and IIB-5).

Another observation can be noted in regards to the latter two types of faceplate damage. For burn throughs of only the primary faceplate the algorithm has more than 2.9 seconds for cutoff assessment and implementation; for burn throughs of both the primary and secondary faceplates, the algorithm has less than 1-second.

<u>NOTE</u>: Due to the different damage sources for the preburner injector failures (Test 901-307 and SF10-01), a common direction or trend of anomaly change cannot be defined.

II. Control Failure

- A. <u>Sensitive Sensors</u>. The sensors listed in Tables I-3, IIA-2, and IIB-8 were:
 - Based on Test 901-284. This test represents an incident where the engine was miscontrolled due to erroneous chamber pressure measurements.
 - Chosen to match some of the parameters selected for the MCC or FPB injector failures (if the sensors were available).
- B. <u>Sensor Observations</u>. Almost all of the available sensor measurements for this miscontrolled chamber pressure failure reflected:
 - 1. Large changes (>3%) in steady state conditions.
 - 2. Maximum Level A+B criteria values (see Table III-11).
 - 3. A time interval between first indications of an anomaly to redline cutoff of approximately 6 seconds.

III. Duct, Manifold, and Heat Exchanger Failure

- A. <u>Sensitive Sensors</u>. The sensor measurement ranges presented in Table
 I-4 are based on the following tests:
 - 750-175 750-259 901-485 902-112

B. <u>Sensor Observations</u>. Half of the above tests reflected sensor measurement changes (induced by an anomaly) which had a duration interval* of less than 500 msec.

*See Table I-4 for a schematic definition of this interval.

C. Lessons Learned. One the tests which had less than a 500 msec duration interval (Test 750-175) provided a lesson on the need for more extensive analysis and testing. Catastrophic failure of the high pressure oxidizer duct was initiated by a high cycle fatigue (HCF) crack adjacent to a specially developed ultrasonicflow transducer. The high cycle fatigue was caused by a combination of thinning the duct wall to install the transducer blocks, physically adding the block masses to the duct, and increasing local stresses brought about by brazing the blocks to the duct wall. From Rocketdyne's incident report (cited in Table IIB-11): "...it is clear that brazed joints are not to be relied upon for HCF application without extensive analysis and testing. The HCF properties of Rocketdyne braze alloys do not exist, but should be presumed to be lower than parent metal properties. Braze fillet geometry is difficult to control, and the surface of braze fillets inherently have shrinkage voids. Therefore, relying on braze fillets to reduce stress concentration is unconservative".

Test 902-112 (another test with less than a 500 msec duration interval) provided insight on relocation of a redline sensor. In this test the facility fuel inlet Franz-screen was partially blocked by solidified nitrogen. Nitrogen was inadvertently introduced into the tank during chilling. Cavitation of both HPFP (High Pressure Fuel Pump) and LPFP (Low Pressure Fuel Pump) occurred due to the LPFP inlet pressure dropping below zero psig. From Rocketdyne's incident summary sheet the facility hardware and procedures were revised; and the fuel inlet pressure redline was relocated from the tank bottom to below the valve and screen.

IV. <u>Valve Failure</u>

- A. <u>Sensitive Sensors</u>. The sensor measurement ranges in Table I-5 are based on Test 901-225 and SF6-01.
- B. <u>Sensor Observations</u>. In both test cases the measurement changes (induced by an anomaly) had a duration interval of less than 500 msec.

V. <u>HPOTP Failure</u>

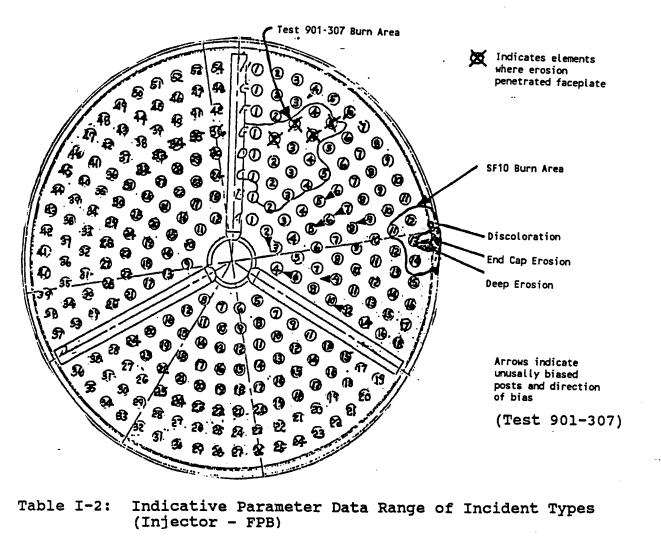
- A. <u>Sensitive Sensors</u>. The sensor measurement ranges in Table I-6 are based on Test 901-110, 901-136 and 902-120.
- B. <u>Sensor Observations</u>. In all cases the measurement changes (induced by an anomaly) had a duration interval greater than 500 msec, however, the percentage change from steady-state conditions was less than 2% in some cases.
- C. <u>Lessons Learned</u>. Test 902-120 provided a lesson on the need for more analysis and testing. Failure of the HPOTP was centered on the first time use of a capacitance device which was designed to determine HPOTP shaft, bearing, and bearing cartridge movement. Rubbing between the device pads and speed nut ignited a fire which burned into the turbine end bearings and main pump. From Rocketdyne's incident report (cited in Table IIB-17): "...the following changes were therefore recommended before testing of the HPOTP could be resumed:
 - 1. No capacitance device.
 - 2. Increase the LOX seal slinger clearance.
 - 3. Eliminate round-cornered cup washers.

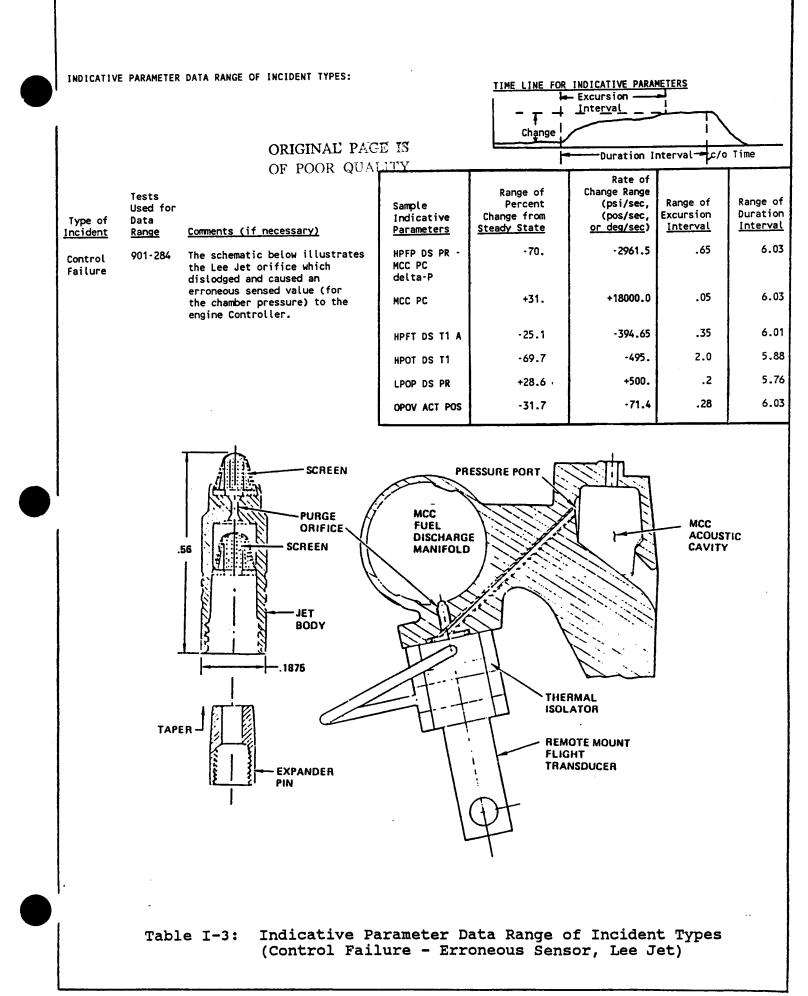
VI. <u>HPFTP Failure</u>

A. <u>Sensitive Sensors</u>. The measurement ranges in Table I-7 were based on eleven incident tests:

901-340	901-364	901-346
901-363	902-209	901-362
902-118	902-095	901-410
901-436	902-249	

- B. <u>Sensor Observations</u>. All tests under this category appear to possess sufficient sensors which have large duration intervals (as much as 200 to 300 seconds) and large changes from steady state conditions (>3%).
- C. <u>Lessons Learned</u>. Test 901-364 (Kaiser Hat Failure) provided a lesson on the need for more analysis and testing. From NASA's incident report (as cited in Table IIB-22): "During the investigation, it was established that all changes, including the nut which caused this failure, (were) reviewed formally both by Rocketdyne and NASA. Late changes to a design, such as the undercut feature of this nut, may not have had the thorough evaluation that the original design had been given. The undercut was made for structural consideration and its significance as a potential flow path cause apparently was overlooked." A schematic of this nut is presented in Table IIB-22.




....,

INDICATIVE PARAMETER DATA RANGE OF INCIDENT TYPES: TIME LINE FOR INDICATIVE PARAMETERS Excursion -Interval Ŧ Change Duration Interval, c/o Time (sec) Rate of Tests Range of Change Range Used for Percent Sample (psi/sec, Range of Range of Type of Data Indicative Change from (pos/sec, Excursion Duration Incident Range Comments (if necessary) Parameters Steady State or deg/sec) Interval Interval 901-307 Injector The schematic below summarizes HPFT DS T1 A -4.0 to +6.3 -17.4 to 324. .25 - 3.5 5.15 -14.0 (FPB) SF10-01 the FPB injector burn areas. HPFT DS T1 B -4.6 to +5.3 -1.1 to 413. .15 - 44. 5.15 -44.0 HPFP CL LR PR--25. -60.0 .5 20.3 MCC HG IN PR MCC OX -8. - .89 28.0 28.0 Inlet PR -MCC PC HPOT DS T1 -4.4 to +8. -1.80 to 25. 3.2 -26.0 5.2 - 26.0 ORIGINAL PAGE IS HPOT DS T2 -4.5 to +9. -1.75 to 26.6 3.2 -28.0 5.2 - 28.0 OF POOR QUALITY LPOP DS PR -9.2 -.71 31.0 31.0 OPOV ACT POS -3.4 to +3.43 -.2 to .88 2.5 - 9.0 5.2 - 37.0

INDICATIVE PARAMETER DATA RANGE OF INCIDENT TYPES:

MCC OUTLET

NOZZLE TUBE LOCATIONS

MANIFOLD

CCV

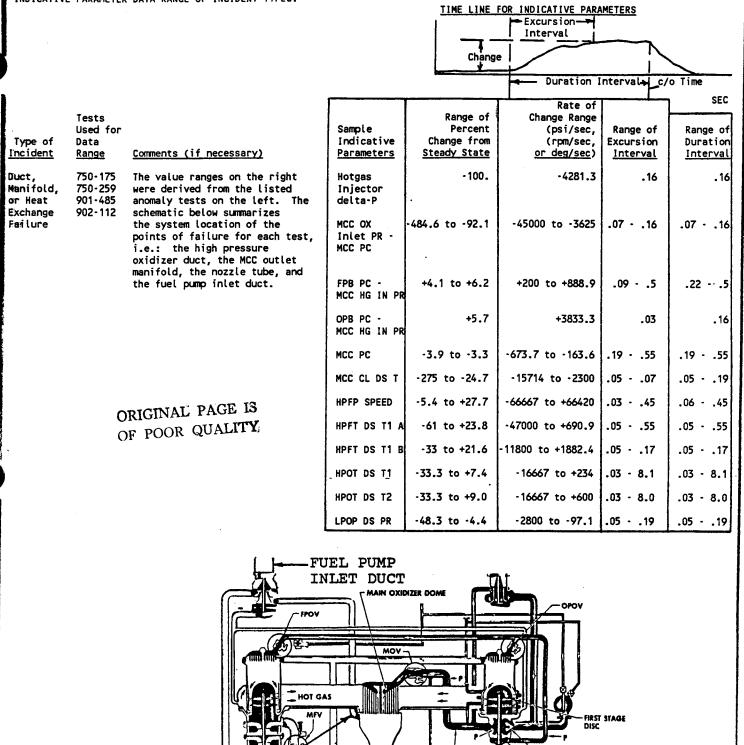
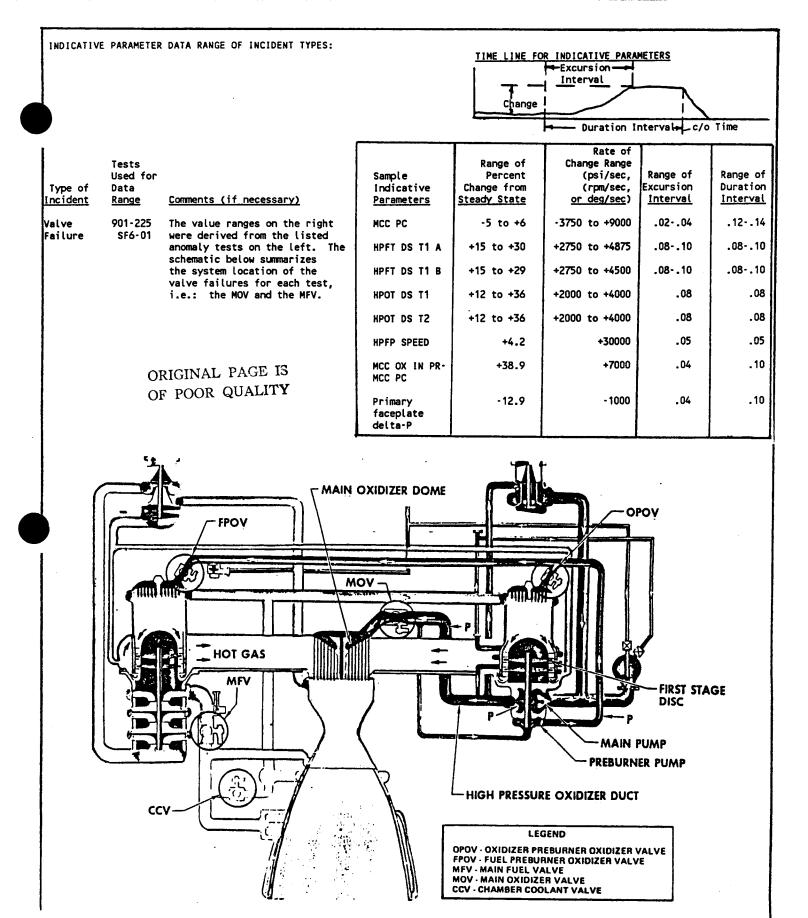


Table I-4: Indicative Parameter Data Range of Incident Types (Duct, Manifold, or Heat Exchanger Failure)

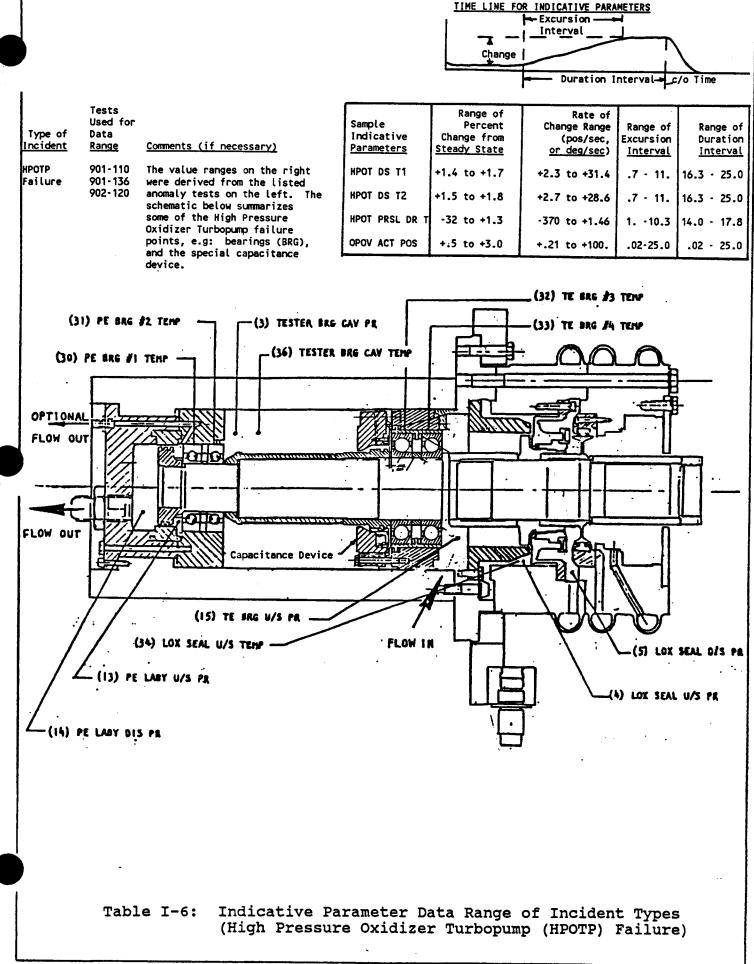

÷

- MAIN PUMP PREBURNER PUMP

HIGH PRESSURE OXIDIZER DUCT

OPOV - OXIDIZER PREBURNER OXIDIZER VALVE FPOV - FUEL PREBURNER OXIDIZER VALVE MFV - MAIN FUEL VALVE MOV - MAIN OXIDIZER VALVE CCV - CHAMBER COOLANT VALVE

LEGEND



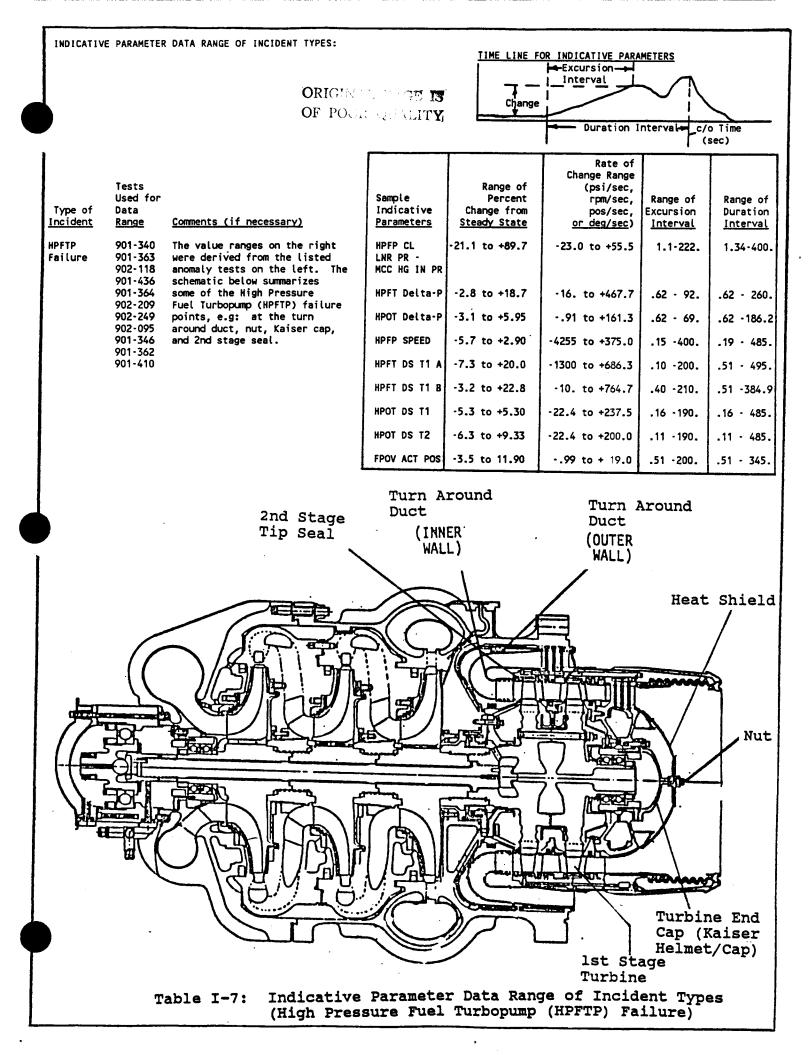
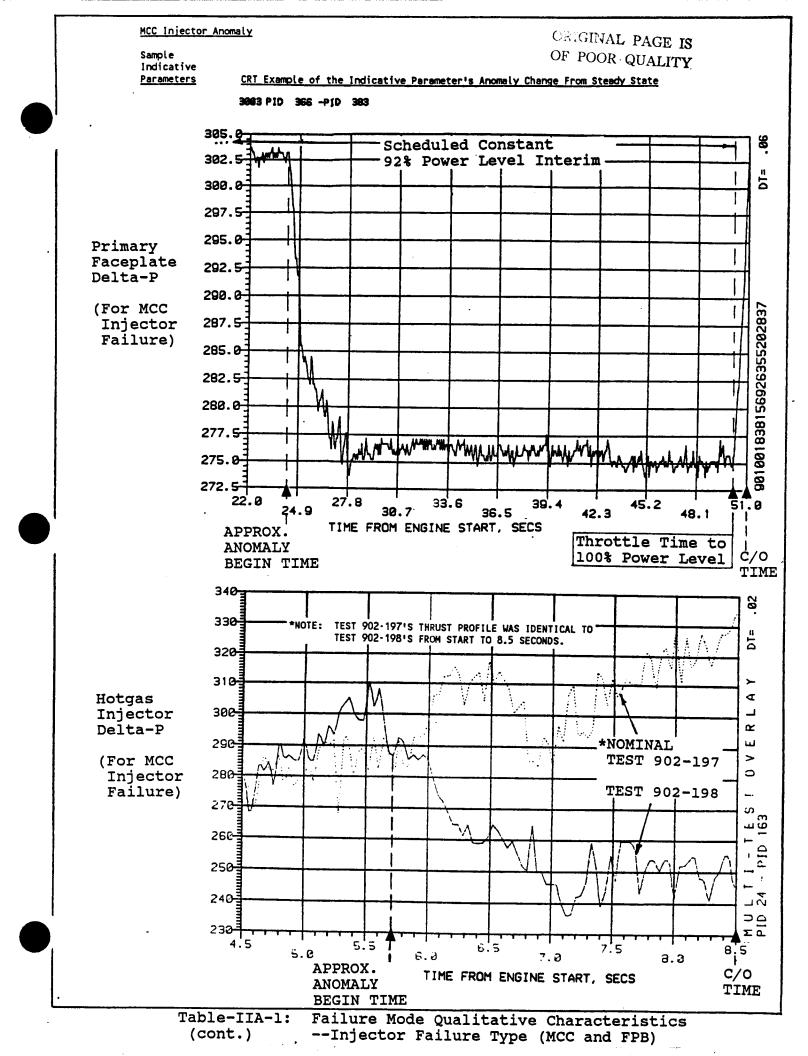
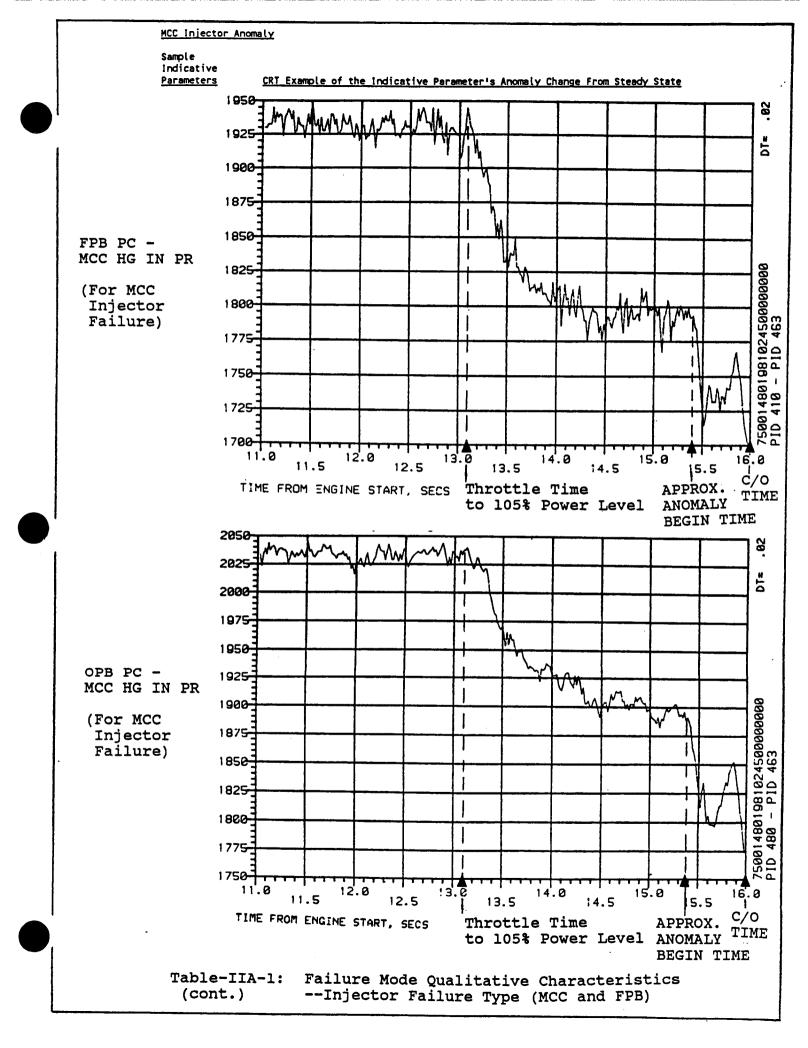

SSME Propellant Flow Schematic

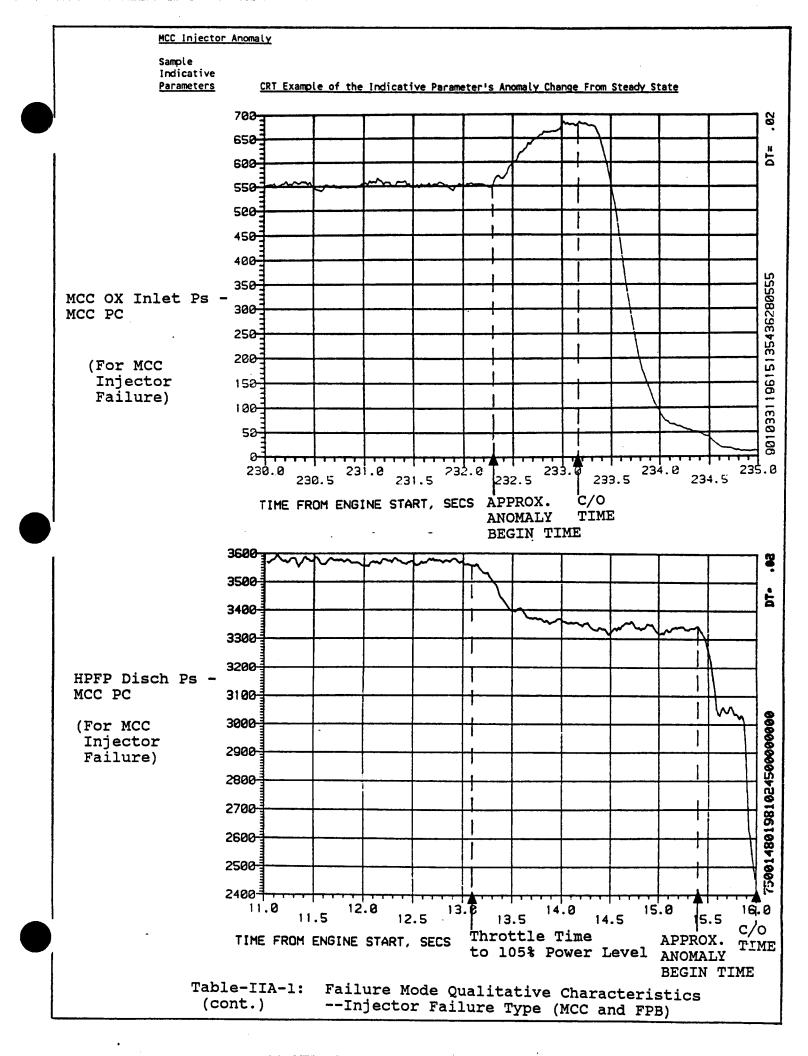
Table I-5: Indicative Parameter Data Range of Incident Types (Valve Failure)

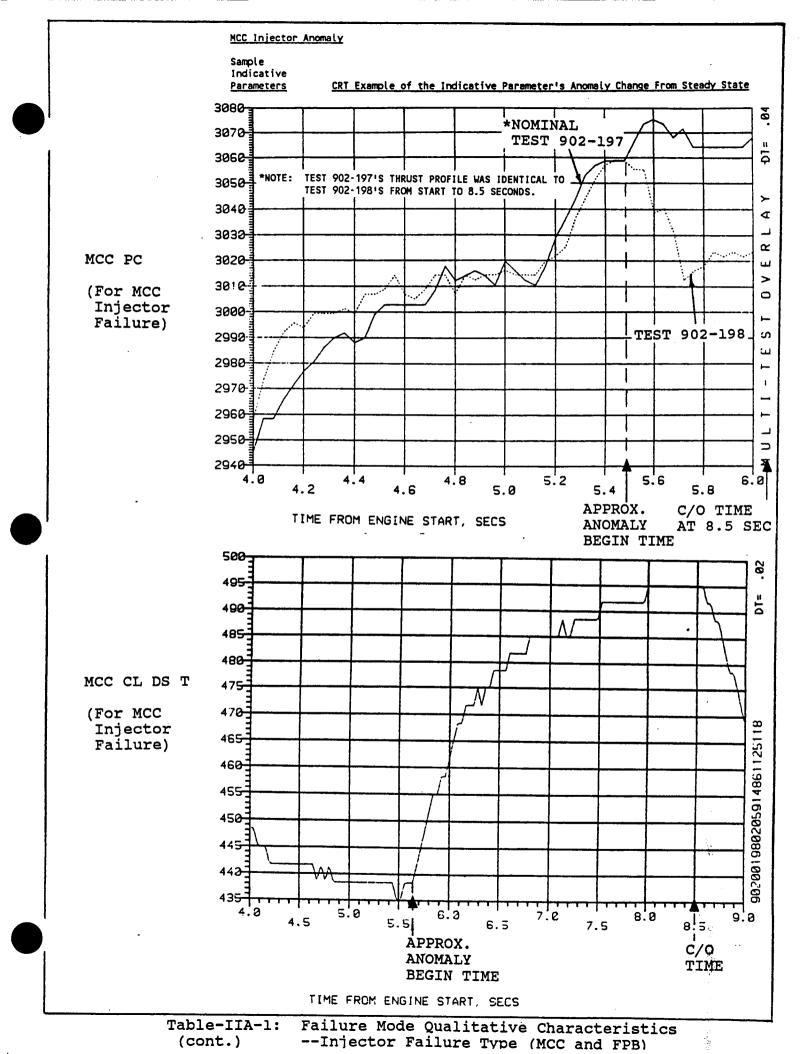
.

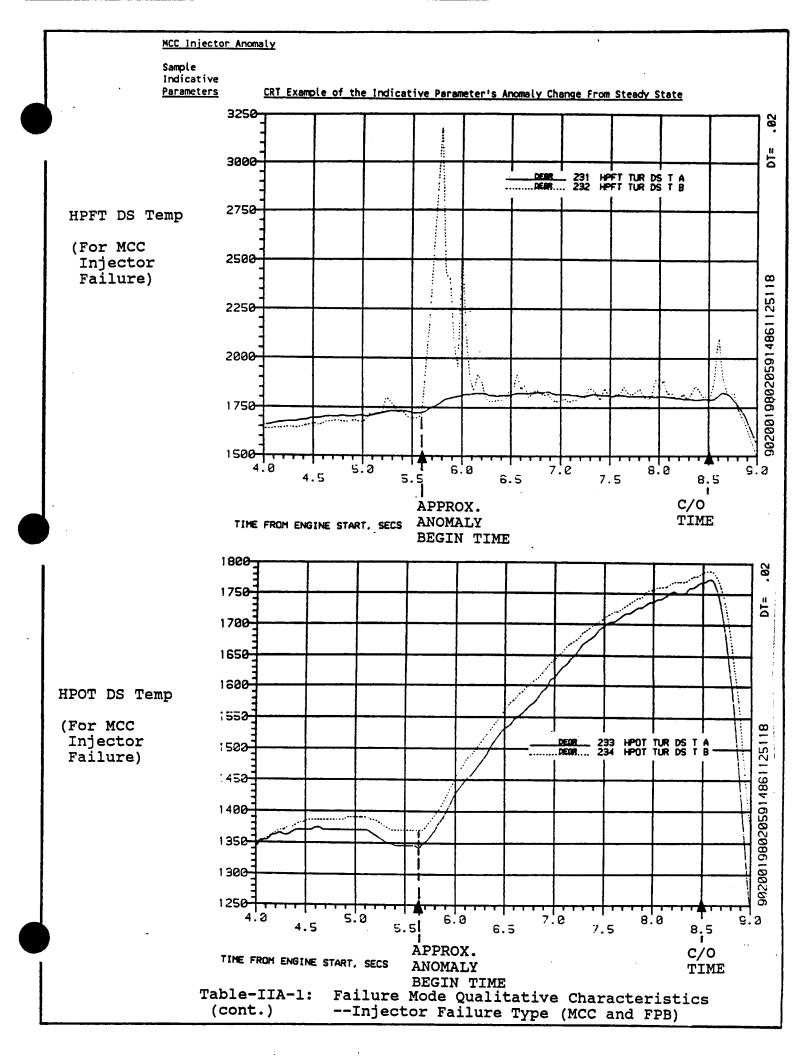


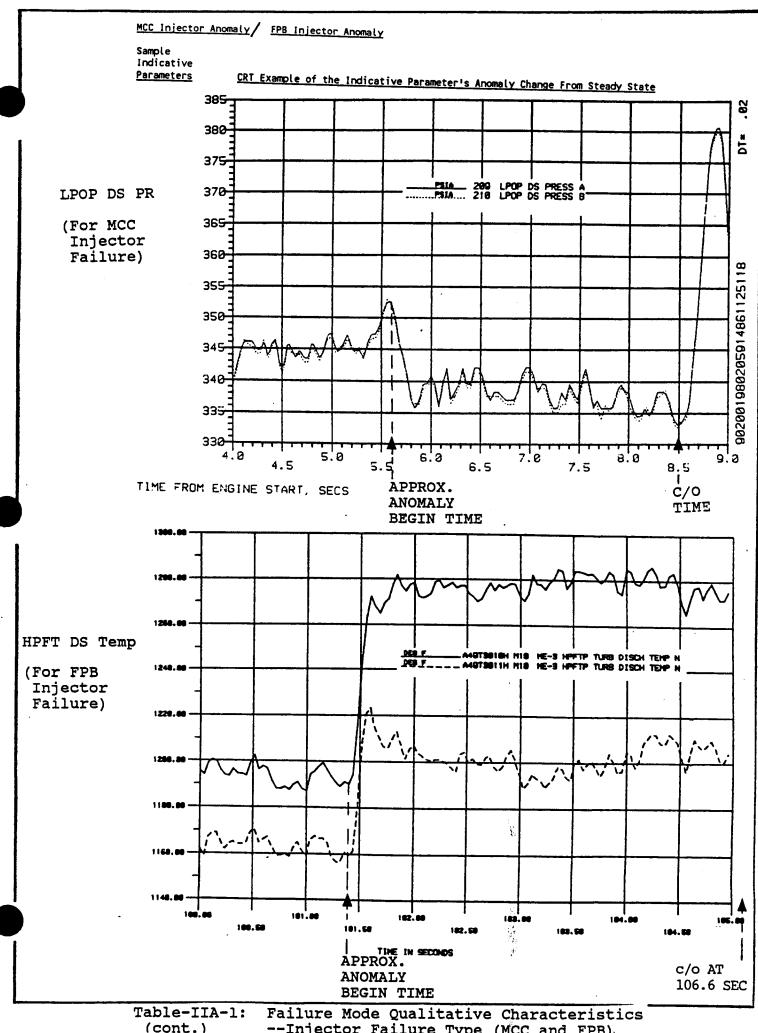

Parameters

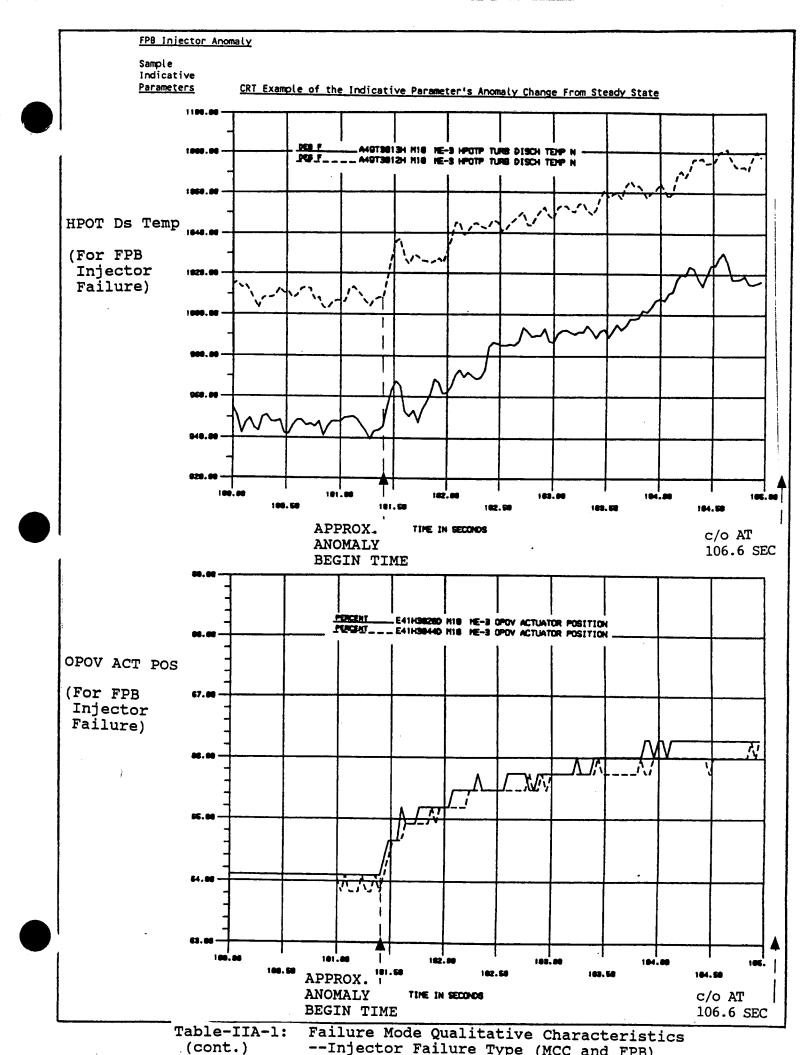

Type of <u>Incident</u>	Generic Description of Incident Type and Sample Indicative Parameters:
Injector (MCC and FPB)	The <u>MCC (Main Combustion Chamber) injector</u> anomalies observed in five-previous SSME tests can be characterized as being initiated from a LOX injector post element failure. This failure is followed briefly by:
	 Additional damage to other posts and a burn through of either the primary and secondary faceplate, or primary faceplate exclusive.
	2. Ejection of burned debris causing damage to the MCC liner and severe damage to the nozzle tubes.
	3. A loss in C-star efficiency and the associated MCC pressure.
	 The controller opening of the OPOV (Oxidizer Preburner Oxidizer Valve) in response to the loss of MCC pressure.
	One of the high pressure turbines exceeding its redline temperature with the above controller response and fuel loss to the preburners.
	The <u>FPB (Fuel Preburner) injector</u> anomalies observed in two-previous tests also can be characterized as being initiated from a failure of a LOX injector element post. This causes subsequent damage to other posts, the fuel preburner injector, and moderate to severe damage to the HPFT blades.
	MCC Injector Anomaly
	Sample


CRT Example of the Indicative Parameter's Anomaly Change From Steady State


3082 PID 366 -PID 372







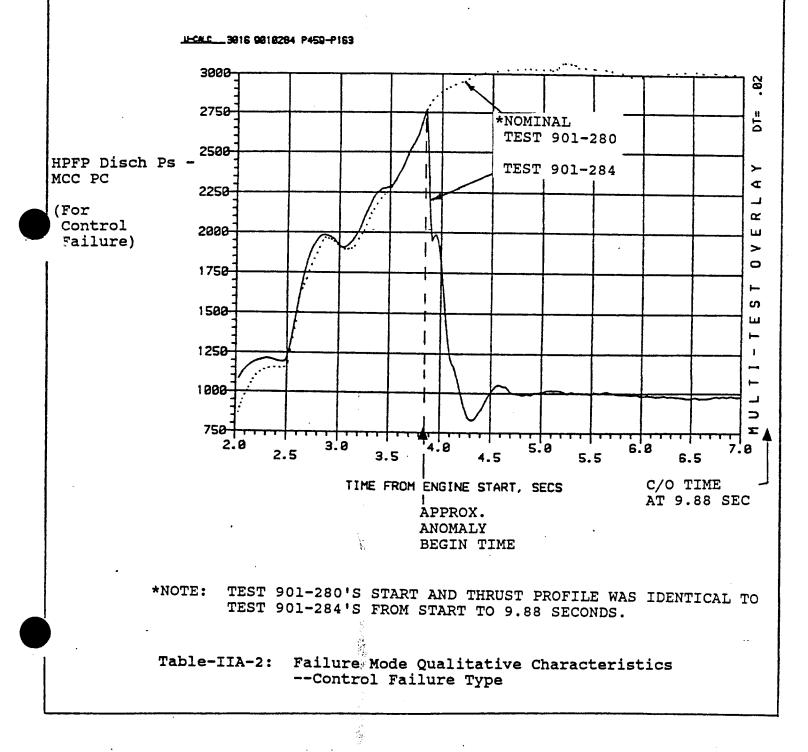
--Injector Failure Type (MCC and FPB).

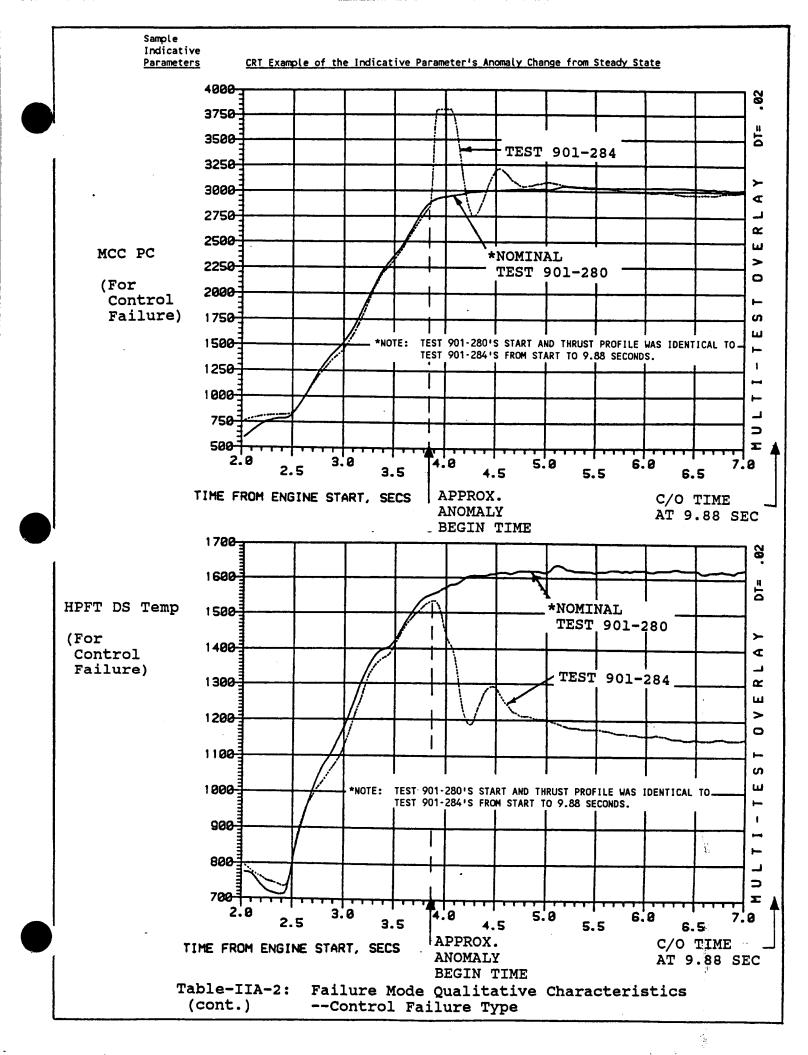
Incident Generic Description of Incident Type and Sample Indicative Parameters:

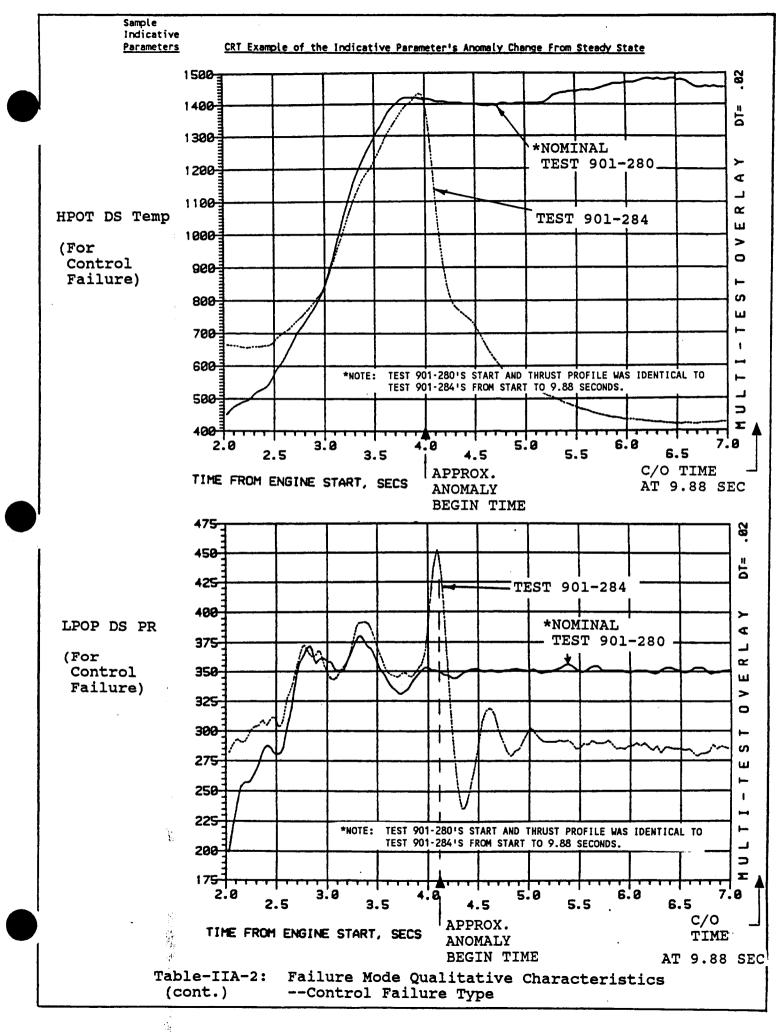
Control The <u>miscontrolled chamber pressure</u> anomaly observed in one test can be characterized as being based failure on proper operation of the engine Controller under the two circumstances below. (Erroneous

Sensor, Lee Jet)

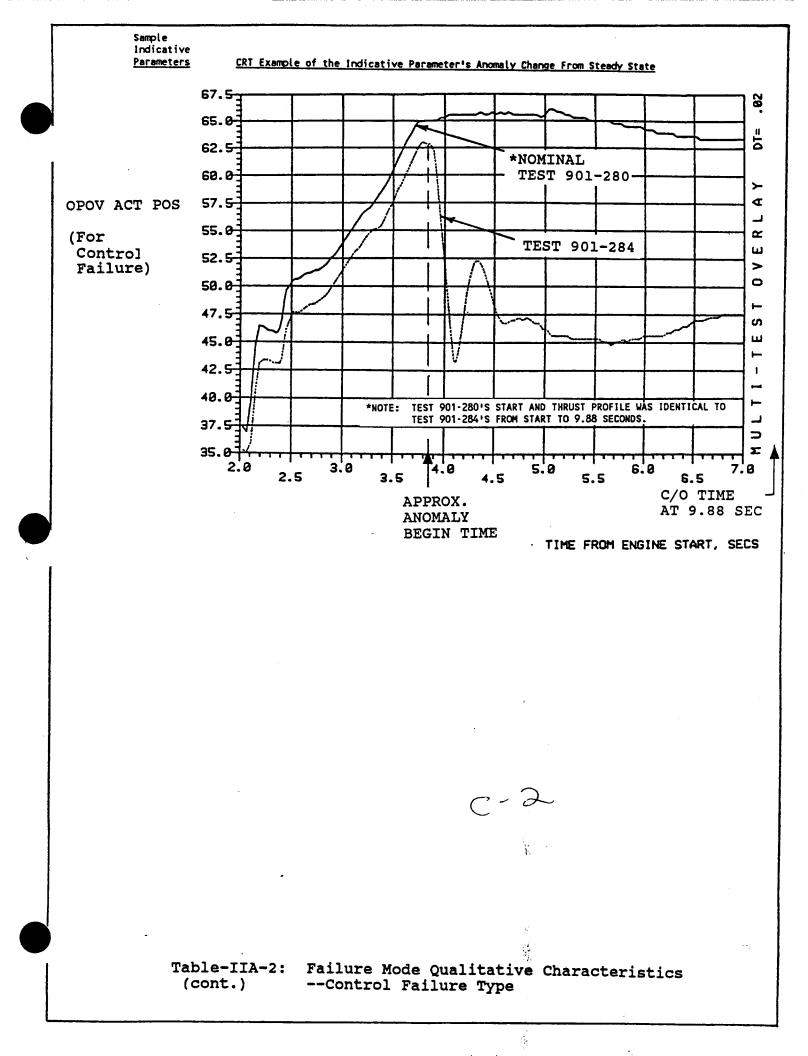
Type of


1. The loss of redundance in chamber pressure sensing.


2. The malfunction of the remaining Controller sensor on chamber pressure.


Operating under errorenous sensor data the Controller causes certain SSME components to exceed their designed tolerances (all sensor measurements reflect large changes from nominal conditions).

Sample Indicative Parameters


CRT Example of the Indicative Parameter's Anomaly Change from Steady State

Type of Incident

Manifold,

r Heat

Failure

÷.

xchange

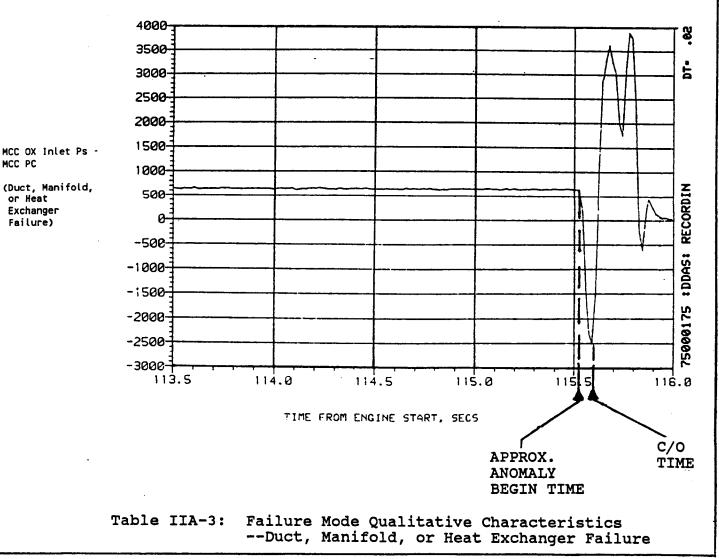
Duct.

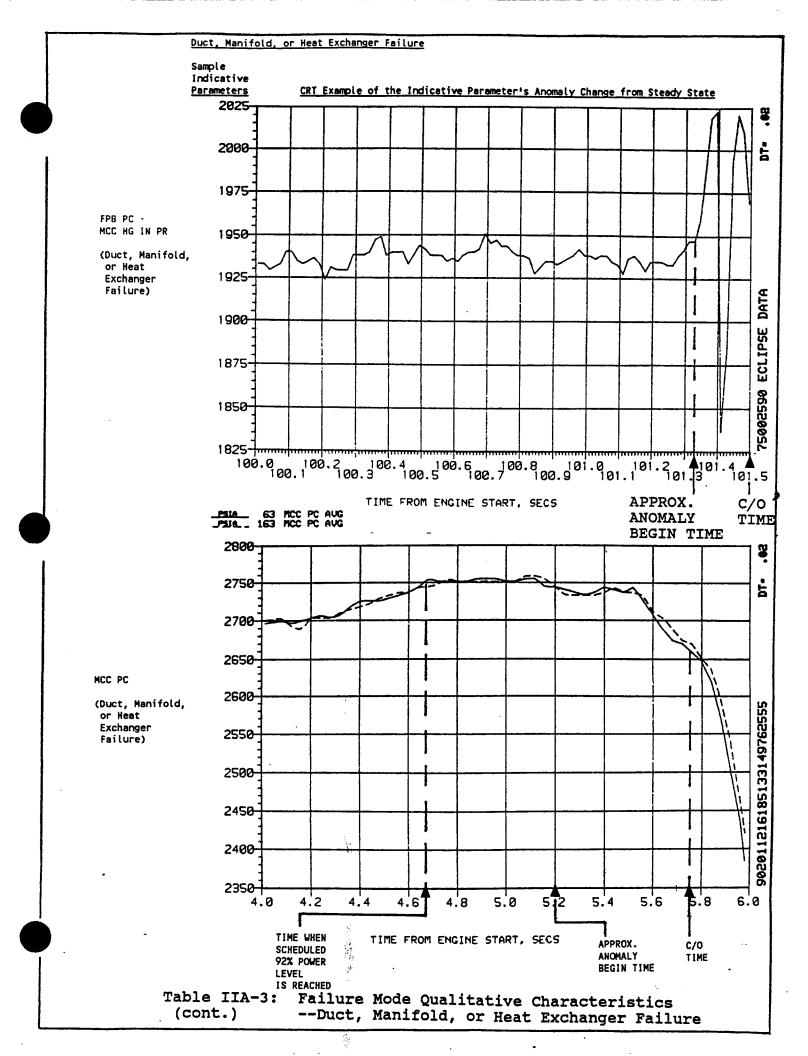
Generic Description of Incident Type and Sample Indicative Parameters:

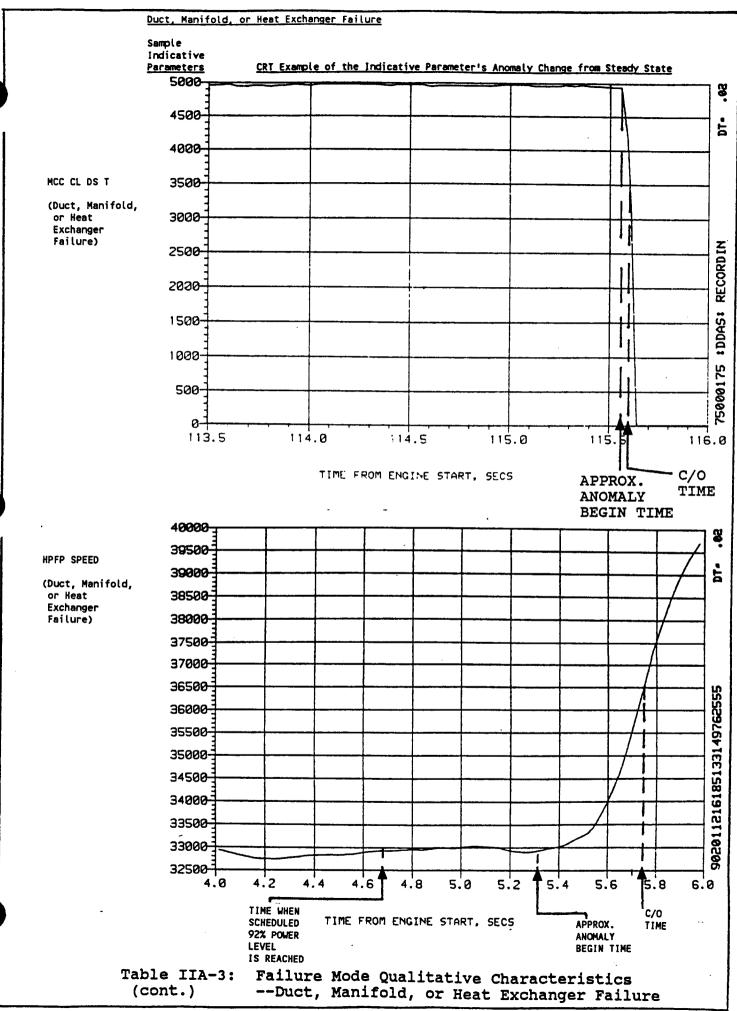
The <u>duct, manifold, or heat exchanger</u> anomalies observed in four previous SSME tests can be characterized as being initiated from a leakage or restriction of fluid through either of the three components. The extent and/or rate of damage to other components is dependent on their response to: (1) the amount of fluid leaked or restricted and (2) the existence or absence of redundancy for the failed duct, manifold, or heat exchanger.

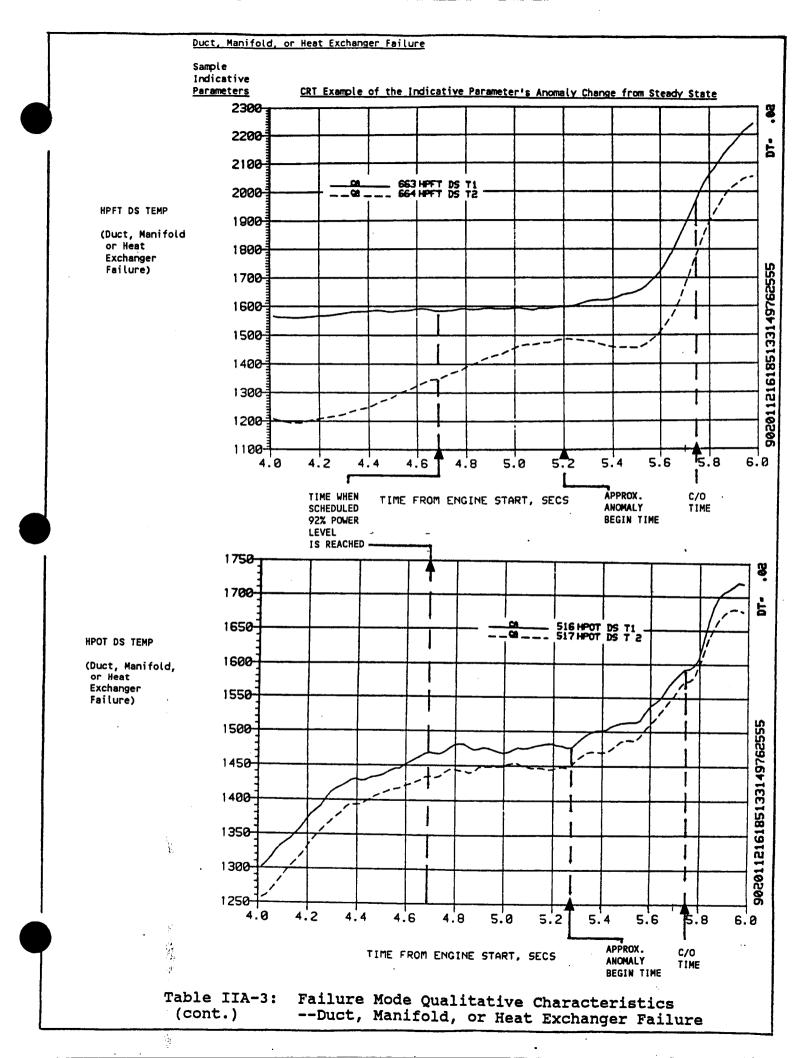
A leakage of one of several nozzle cooling tubes in Test 901-485 caused little damage to other components; the test shutdown when the HPOT (High Pressure Oxidizer Turbine) temperature reached its redline temperature. The temperature rose 3.9% from its steady state condition before the cutoff time in 8.06 seconds. Six days after the test the damage was repaired to the cooling tube and a 520 second program duration test was completed.

A rupture or blockage of a one-of-a-kind duct/manifold have caused major damage to other components (for three of three tests where these types of failure have occurred). After the initial duct/manifold failure the sequence below is generally followed:


- One or more pumps are rapidly driven to extreme off-design conditions, e.g. an increase of 27.7% pump speed from the nominal and cavitation (within .14 and .55 seconds), and/or increased vibrations in less than .1 seconds.
- 2. During the drive to pump off-design conditions, other related components are damaged.
- Subsequent to the above, either the pump(s) and/or the engine system separate from the test stand (for the cases of an initiating duct or manifold leak).


CRT Example of the Indicative Parameter's Anomaly Change from Steady State


Sample Indicative


Parameters

_U-CALC__ 3009 PID 395 -PID 163

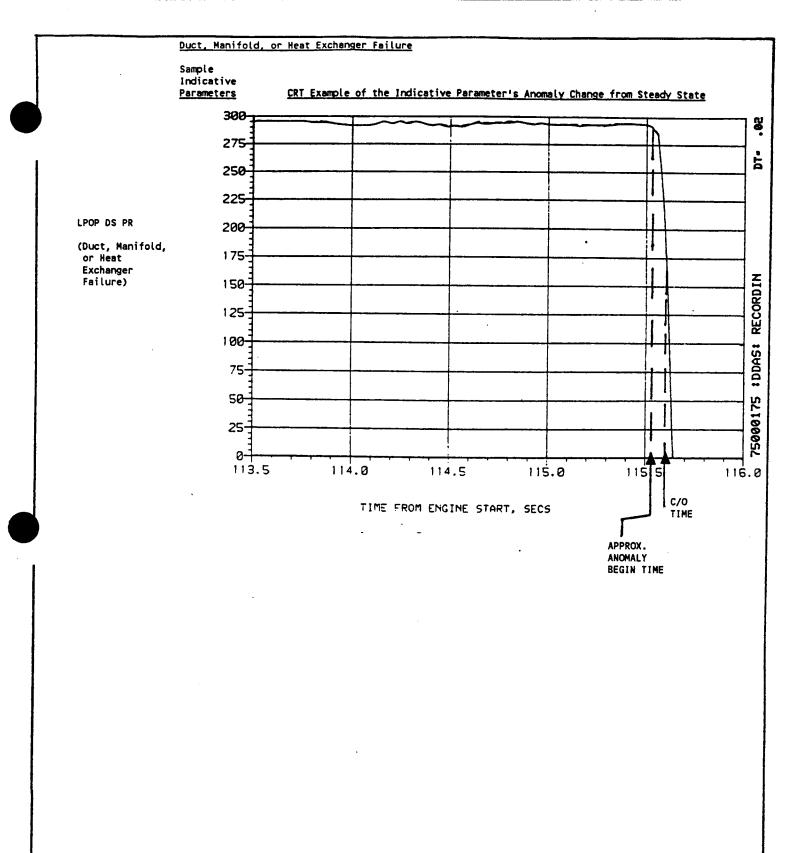


Table IIA-3: Failure Mode Qualitative Characteristics (cont.) --Duct, Manifold, or Heat Exchanger Failure

.

.

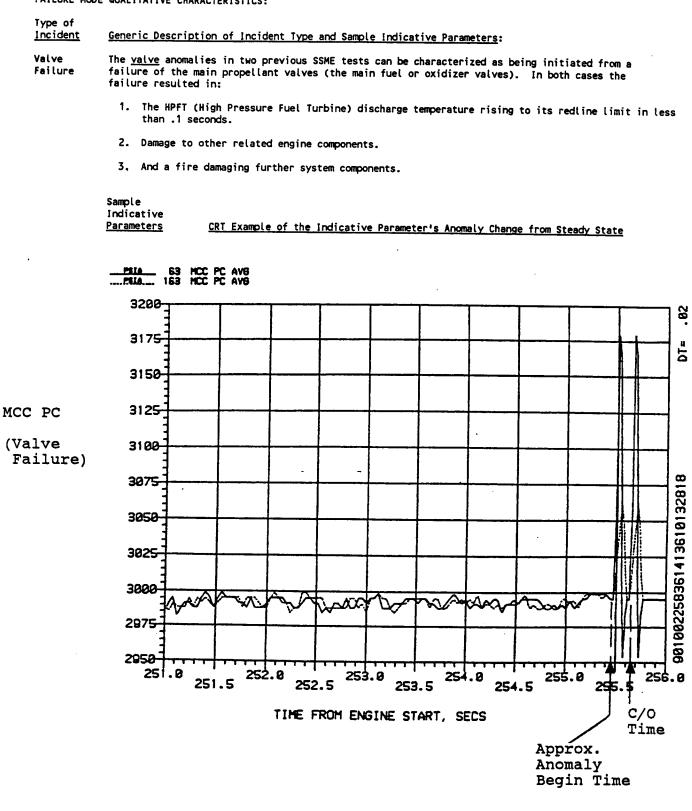
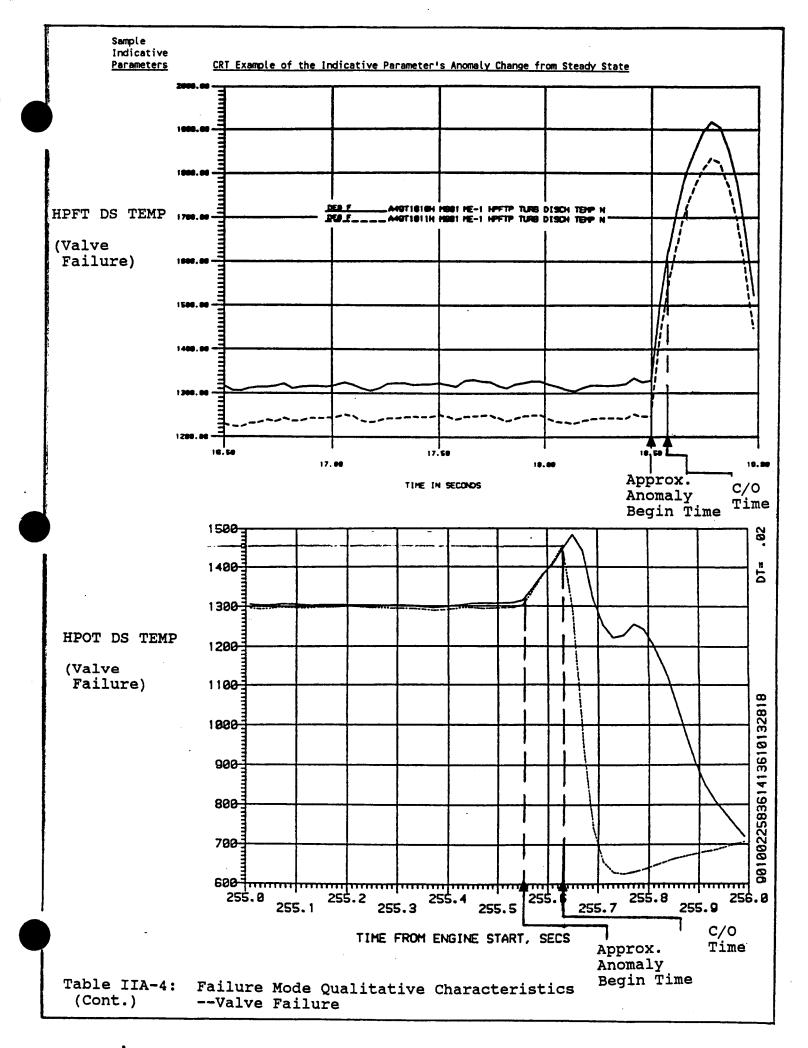
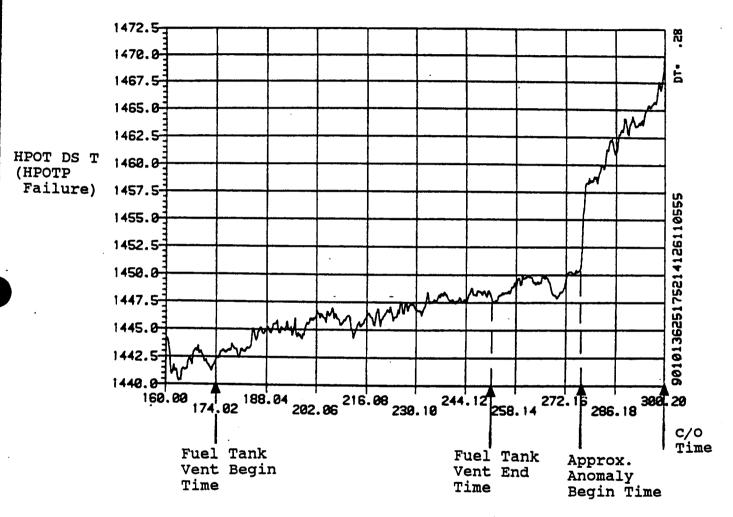
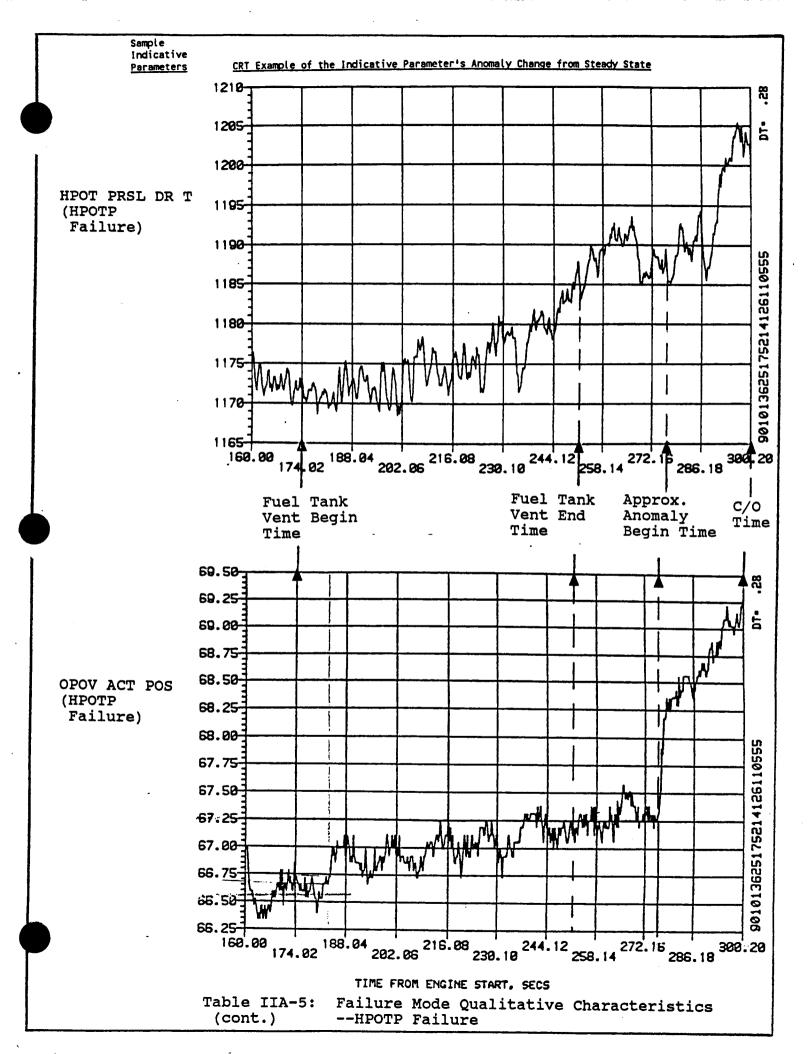



Table IIA-4: Failure Mode Qualitative Characteristics --Valve Failure


Type of Incident <u>Generic Description of Incident Type and Sample Indicative Parameters</u>:

HPOTP Failure The <u>HPOTP</u> (High Pressure Oxidizer Turbopump) anomalies in three previous SSME tests can be characterized as being initiated from either a rubbing, interference, or structural failure of one or more components of the HPOTP. The latter failure results in LOX (liquid oxygen) ignition within .02 to 25. seconds from cutoff (dependent on the failured component's location).

Sample Indicative <u>Parameters</u>

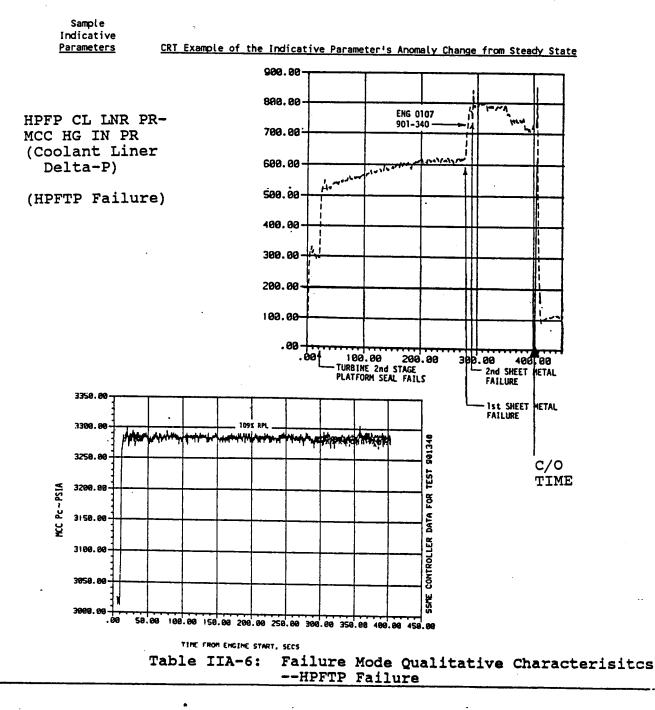

CRT Example of the Indicative Parameter's Anomaly Change from Steady State

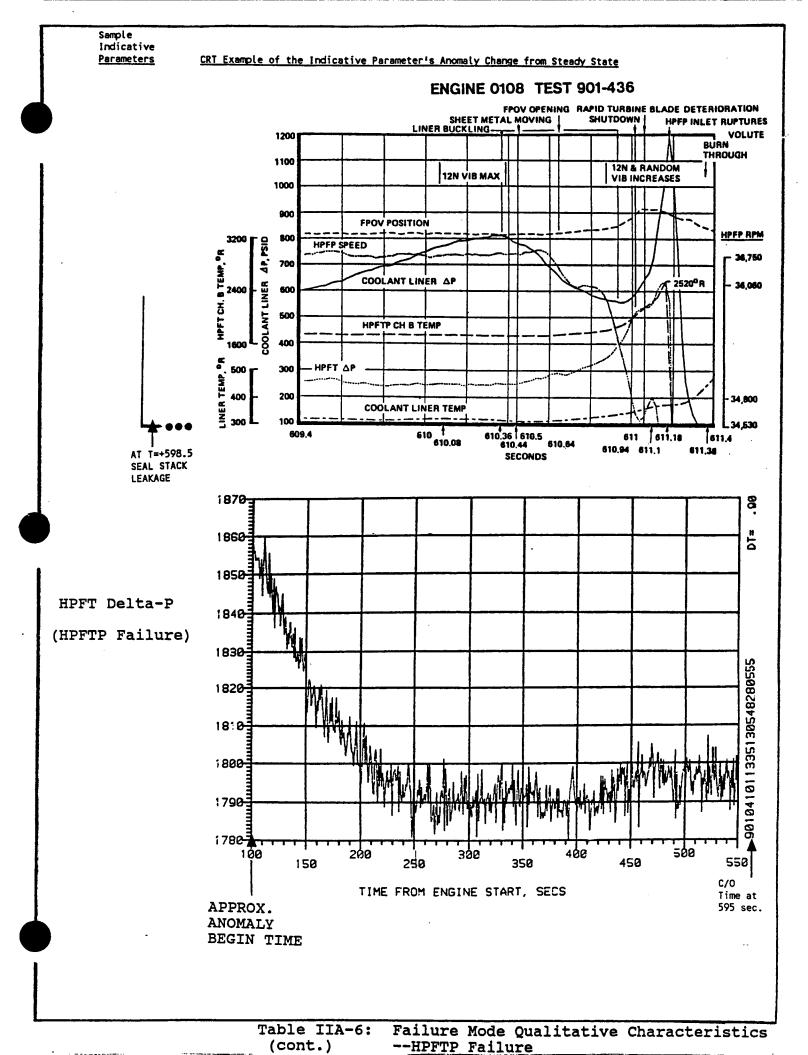
MIT HED BUT TOPH 234 HPOT TURE DSH THP

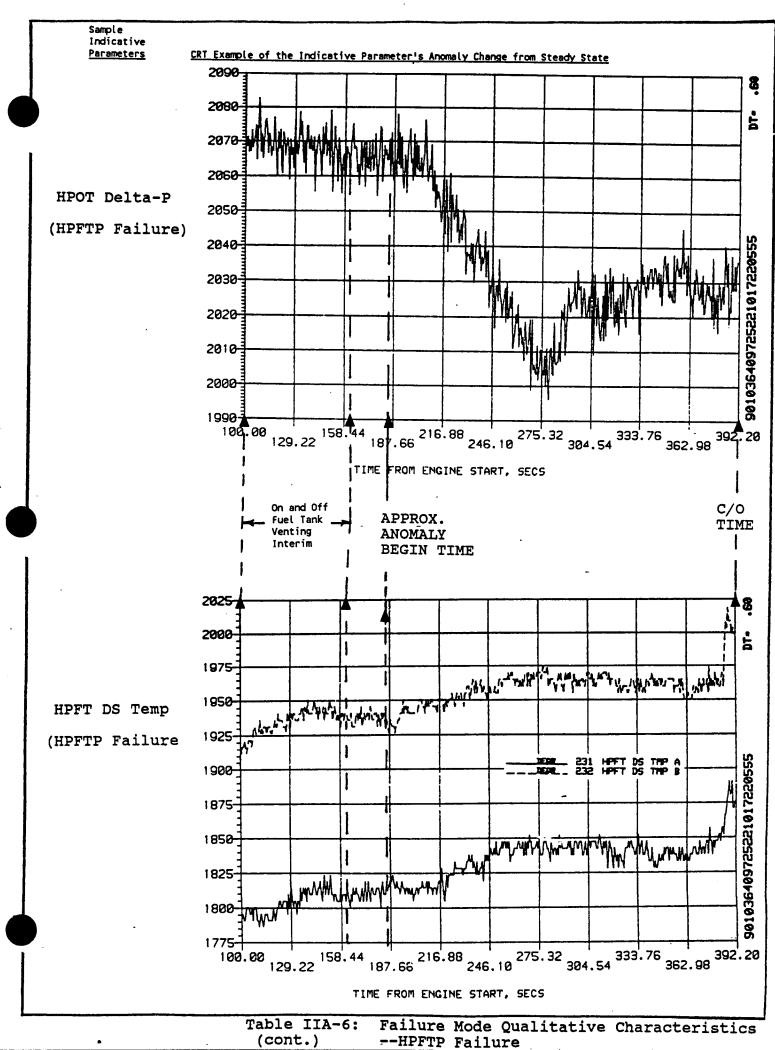
TIME FROM ENGINE START, SECS

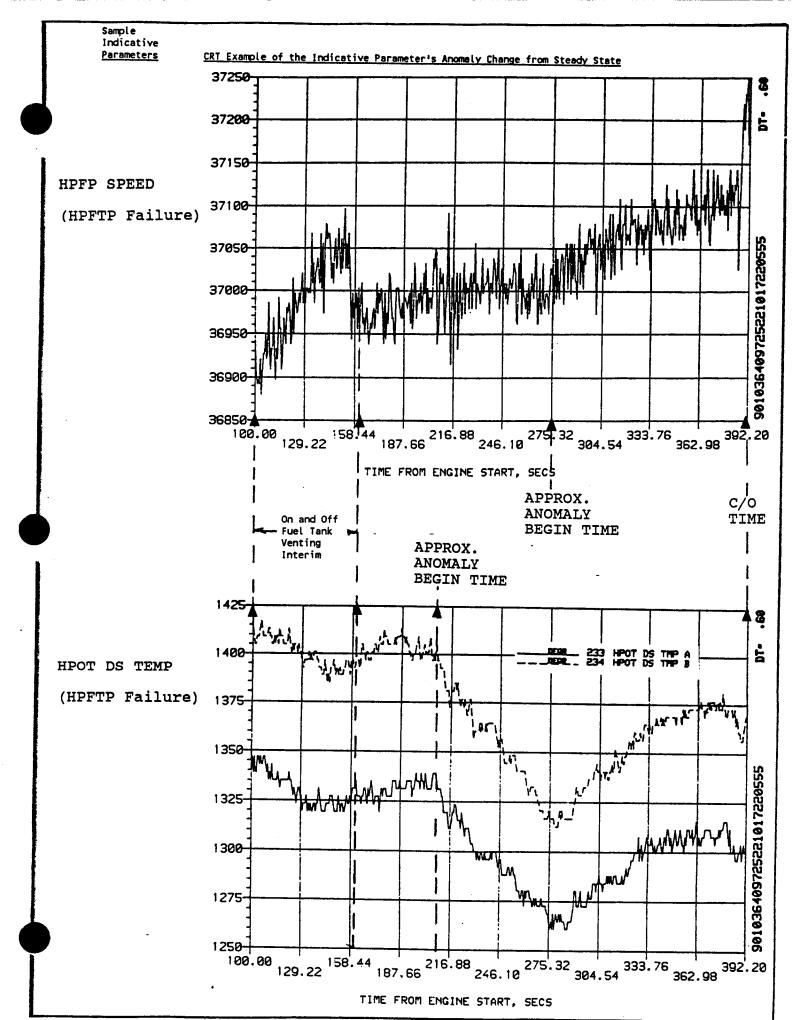
Table IIA-5: Failure Mode Qualitative Characteristics --HPOTP Failure

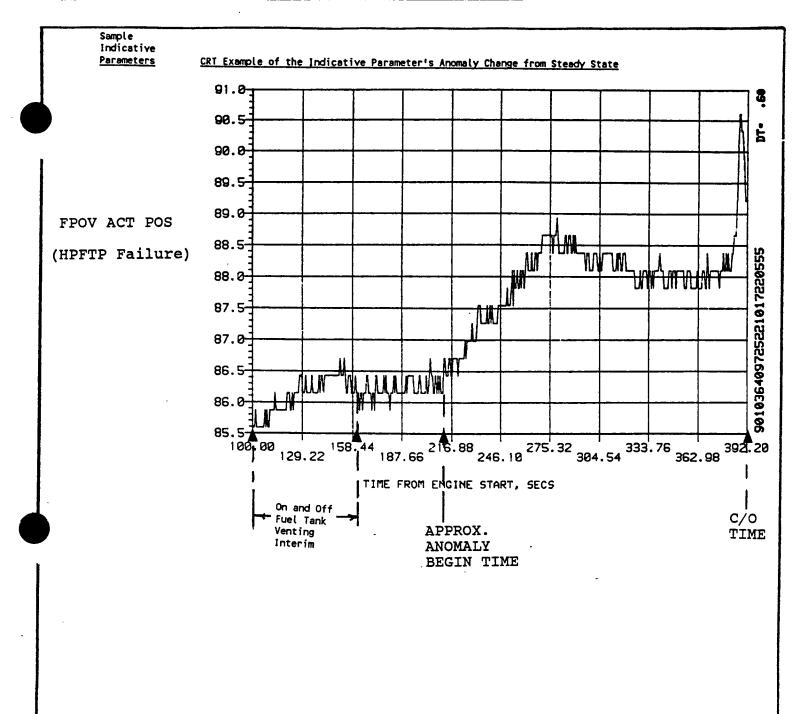
Type of Incident

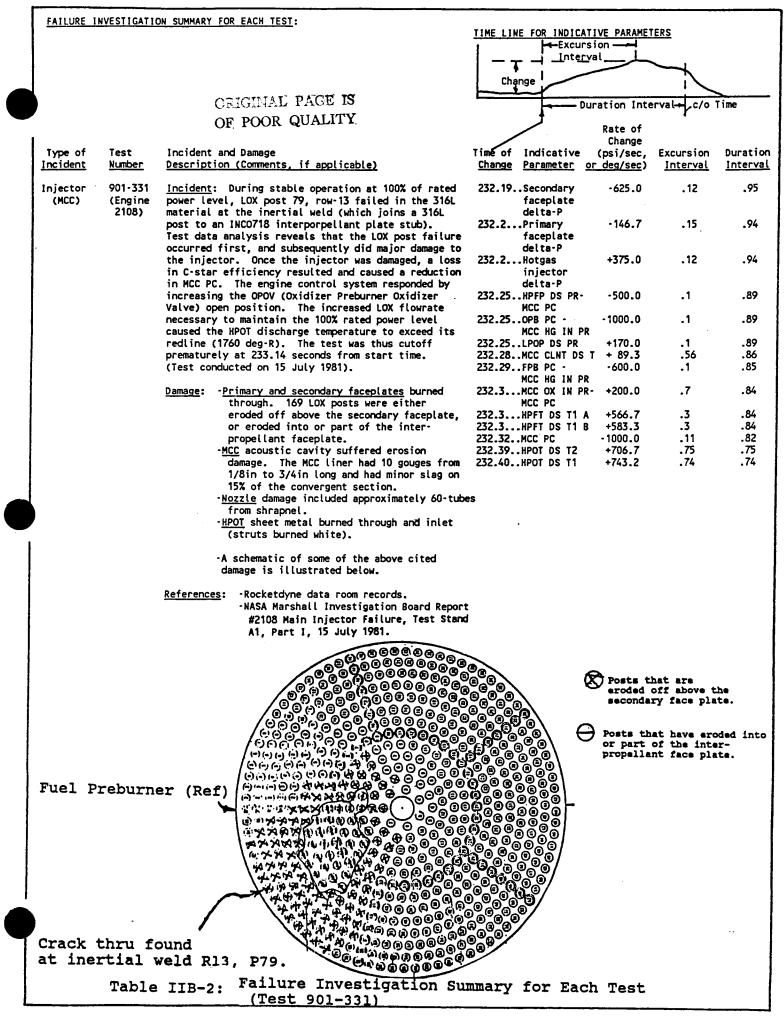

HPFTP Failure Generic Description of Incident Type and Sample Indicative Parameters:


The <u>HPFTP</u> (High Pressure Fuel Turbopump) anomalies in eleven (11) previous SSME tests can be characterized as being initiated by failure of one component of the HPFTP. Subsequent to this failure one of the following occurs:


1. The engine system rebalances itself (to maintain the thrust level) in response to the initial HPFTP failure. This new balance lasts between 1.1 to several hundreds of seconds until other related HPFTP components fail. The engine system again responses by rebalancing itself. This second new balance lasts from .24 seconds to hundreds of seconds until other engine components suffer damage and redline cutoff is initiated. The tests which follow this sequence of events are: 901-340, 901-364, 901-436, 902-118, and 902-249.


2. The engine system rebalances itself (to maintain the thrust level) in response to either the initial HPFTP failure or a combination of the initial failure and subsequent failures to other engine components. The new balance does not cause redline limits to be exceeded and lasts several hundreds of seconds until scheduled cutoff. The tests which follow this sequence of events are: 901-362, 901-363, 901-346, 901-410, and 902-209.


3. The engine system rebalances itself (to maintain the thrust level) in response to a combination of the initial HPFTP failure and subsequent failure of other engine components. The new balance exceeds redline limits and cutoff is initiated. Test 902-095 follows this sequence of events.



FAILURE INVESTIGATION SUMMARY FOR EACH TEST: TIME LINE FOR INDICATIVE PARAMETERS Excursion -<u>Interval</u> Change ORIGINAL PAGE IS Duration Interval / c/o Time OF POOR QUALITY Rate of Change Type of Test Incident and Damage Time of Indicative (psi/sec, Excursion Duration Description (Comments, if applicable) Incident Number Change Parameter or deg/sec) Interval **Interval** 901-173 Injector Incident: During stable operation at 92% of rated 200.5...OPB PC -- 90.9 .66 .66 (MCC) (Engine power level, LOX post 10, row-13 cracked through at MCC HG IN PR 0002) the tip radius between the primary and secondary 200.68..Secondary ·212.5 .48 .48 faceplates. Hotgas flow into the LOX post ignited faceplate and burned out the post. LOX pouring into the face delta-P coolant manifold caused burn through of the primary 200.68..Hotgas + 93.8 .16 .48 and secondary faceplates, dumping face coolant into injector the hotgas manifold. Ejection of burned debris delta-P caused severe nozzle tube rupture (46-tubes). Fuel 200.68..MCC PC -250.0 .48 .48 loss to the preburners coupled with engine control 200.68..Primary -282.3 -48 .48 reactions to maintain MCC PC caused the HPFT faceplate discharge temperature to exceed its redline, delta-P producing a premature cutoff at 201.16 seconds from 200.79..FPB PC-+216.2 .37 .37 start time. (Test conducted on 4 April 1978) MCC HG IN PR 200.8... HPFP DS PR--500.0 .36 .36 Damage: -Primary and secondary faceplates burned MCC PC through. Primary faceplate burned away 200.8...HPFT DS T1 A +388.9 .36 .36 in a 2.5in by 1.5in area. 18-elements 200.8... HPFT DS T1 B +388.9 .36 .36 were burned away to within 1/8in above 200.8...HPOT DS T1 +236.1 .36 .36 the secondary faceplate. Numerous high 200.8...HPOT DS T2 +111.1 .36 .36 cycle fatigue cracks were found in LOX 200.8...LPOP DS PR - 34.7 .36 .36 post threads in the outer rows. 201.06..MCC OX IN PR--350.0 .1 .1 MCC showed flame spray and erosion at one MCC PC acoustic cavity and upstream, adjacent to ...MCC CLNT DS T (Sensor does not exist) the main injector at the burned out area. <u>Nozzle</u> damage included 46-tube ruptures, primarily from impact damage, and numerous impact dents. A schematic of the primary faceplate damage is illustrated below. References: -Rocketdyne data room records. Rocketdyne internal letter, #IL-78-CD-3135, Engine 0002 Main Injector Failure Data Review, 4 April 1978. LOCATION OF CRACKED LOX POSTS AND BURNOUT AREA INJECTOR S/N 0002/ENGINE 0002 මා 0 FP8 -OFB ⁽¹⁾Ŋ C 00 00 00 00, O. 00 ര ര (1 6 Table IIB-1: Failure Investigation Summary for Each Test (Test 901-173)

Injector (MCC)

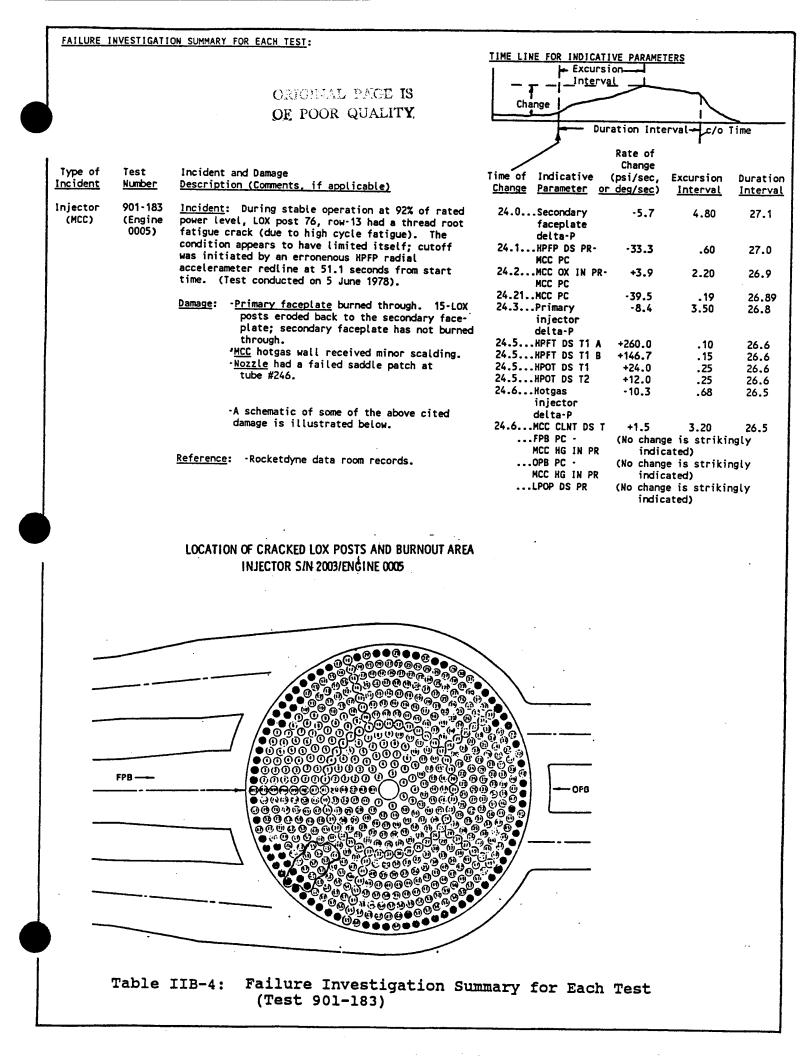
(Engine

0110)

CRECIPIAL PARTE IS OF POOR QUALITY

Type of	Test	Incident and Damage
<u>Incident</u>	<u>Number</u>	Description (Comments, if applicable)

750--148 Incident: During stable operation at 105% of rated power level, LOX post 12, row-13 failed at the inertial weld. Test data analysis reveals that the LOX post failure occurred first, and subsequently did major damage to the injector. The loss in combustion efficiency (due to damage in the injector area), combined with a sudden loss of fuel from many nozzle tube ruptures (due to injector debris) caused the controller to command the OPOV open to the limit value in an attempt to maintain the required chamber pressure. The OPOV opening with the fuel loss to the oxidizer preburner, caused the HPOTP turbine discharge temperature to exceed its redline value at 16 seconds from start time. (Test conducted on 2 September 1981).


> Damage:
> • Primary and secondary faceplates burned through. 149 LOX posts burned through. Erosion evident in the interpropellant plate, severe erosion in MCC injector. -MCC erosion downstream of one acoustic cavity, 1-three channel wide erosion through the hotgas wall in the convergent section, 50-dings or nicks, slag deposits.

-<u>Nozzle</u> damage included approximately 150 tube ruptures.

References: -Rocketdyne data room records. -NASA Marshall Investigation Board Report SSME 0110 Main Injector Failure Test Stand A-3, Part I, 2 September 1981.

TIME LINE FOR INDICATIVE PARAMETERS				
Excur	sion —			
Inter	¥ ^{al}			
Change		iN		
	uration I-		>	
	uration Int	terval c/o	inme	
	Rate of			
	Change			
Time of Indicative	(psi/sec.	Excursion	Duration	
<u>Change</u> <u>Parameter</u> of	or deg/sec)	Interval	Interval	
		<u> </u>	<u>incervat</u>	
15.37OP8 PC -	-533.3	. 15	.63	
MCC HG IN PR	-			
15.4HPFP DS PR-	-1500.0	.2	.6	
MCC PC				
15.4FPB PC -	-750.0	.1	.6	
MCC HG IN PR				
15.4. LPOP DS PR	+72.2	. 18	.6	
15.42Hotgas	+562.5	.08	.58	
injector			-	
delta-P			1	
15.45. Secondary	-666.7	. 18	.55	
injector			1	
delta-P			1	
15.45Primary	-589.3	.28	.55	
injector				
delta-P		~		
15.48. MCC CLNT DS 1	r +101.9	.52	.52	
15.5MCC OX IN PR-	-862.5	.08	.5	
MCC PC		_	l	
15.5HPFT DS T1 A 15.52MCC PC		.5	.5	
15.54HPOT DS T1	-425.0	-48	.48	
15.54HPOT DS T1	+978.0	.46	.46	
HPFT DS T1 B	+1169.6	.46	.46	
***ULLI NO 11 R	(sensor)	malfunction)	ł	

Failure Investigation Summary for Each Test Table IIB-3: (Test 750-148)

ORIGINAD PAGE IS OF POOR QUALITY

Type of Incident

Injector

(MCC)

Test

902-198

(Engine

2004)

Incident and Damage Description (Comments, if applicable) Number

Incident: During stable operation at 102% of rated power level, LOX post 61, row-12 cracked through between the primary and secondary faceplates. Test data analysis reveals that the LOX post failure occurred first, and subsequently did major damage to the injector. The loss of fuel through the primary faceplate and from the ruptured nozzle tubes resulted in a oxidizer rich condition in the oxidizer preburner and led to a HPOT discharge temperature redline cutoff at 8.5 seconds from start time. (Test conducted on 23 July 1980).

Damage: Primary faceplate burned through between rows 5 and 13. Minor erosion of the secondary faceplate; burn through of 56-LOX posts; the interpropellant plate and most of the basic injector reusable. •MCC minor erosion in acoustic cavity and

to coolant channels. Nozzle damage included 38 tube damage from injector shrapnel; holes found in 11 tubes and dents in 27 tubes.

7				
Çha	inge			
	Dur	ation Inte	ervalc/o	Time
	>	Rate of		
/		Change		
ime of	Indicative	(psi/sec,	Excursion	Duration
Change		deg/sec)		<u>Interval</u>
55	Secondary	-200.0	.25	3.0
2.2	faceplate	- 200.0	. 25	
	delta-P			
5.5	.Primary	-266.0	.30	3.0
	faceplate			
	delta-P	700.0	.20	3.0
5.5	.HPFP DS PR-	-300.0	.20	5.0
55	MCC PC -	+92.3	1.30	3.0
3.3	MCC HG IN PR	*76.5	1.50	5.0
5.5	MCC PC	-213.6	.22	3.0
	.HPOT DS T1	+1620.0	.25	3.0
	.HPOT DS T2	+1560.0	.25	3.0
	.HPFT DS T1 A	+3625.0	.40	2.9
5.6	.HPFT DS T1 B	+237.5	.40	2.9
5.6	LPOP DS PR	-66.8	.25	2.9
5.66.	.MCC CLNT DS 1	+23.5	2.34	2.84
	.Hotgas	-44.1	1.45	2.8
	injector			
	delta-P		_	. –
5.75.	.FPB PC -	+120.0	.5	2.75
	MCC HG IN PR			
••	.MCC OX IN PR-	(Sensor	does not ex	ist)
	MCC PC			

TIME LINE FOR INDICATIVE PARAMETERS - Excursion-

Interval

۲

T

-A schematic of some of the above cited damage is illustrated below.

References: -Rocketdyne data room records. -NASA Marshall Investigation Board Report SSME #2004 Main Combustion Chamber Failure Test Stand A-2, National Space Technology Laboratory, 22 August 1980.

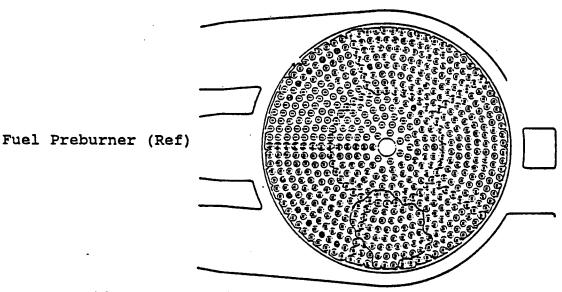


Table IIB-5: Failure Investigation Summary for Each Test (Test 902-198)

ORIGINAL PAGE IS OF POOR QUALITY

Type of	Test	Incident and Damage
Type of Incident	Number	Description (Comments, if applicable)

Injector

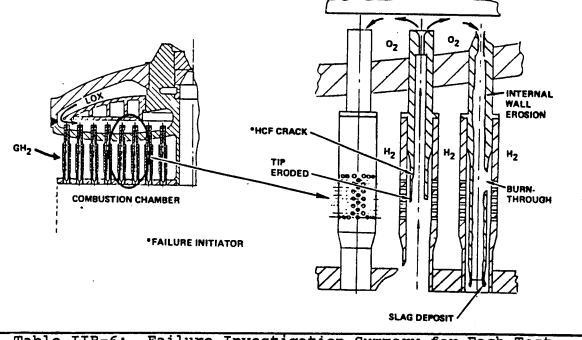
(FPB)

901-307

(Engine

0009)

Incident: This test was one of several designed to determine the minimum LOX level upstream of the LPOP (i.e. minimum NPSH) with which the pump could operate without overspeed. The test terminated as designed with a redline cutoff at the elevation-J level of the LPOP inlet duct. During operation at 109% rated power level a High Cycle Fatigue (HCF) through crack developed at the fuel preburner's injector LOX post/element C-8. The fuel mixed with the LOX through this crack, ignited and burned the LOX post tip. Additional damage followed to the fuel sleeve and faceplate. After cutoff initiation, the GH2 backflowed and ignited the residual LOX within the dome, causing the remaining damage. (Test conducted on 28 January 1981)


Damage: -Fuel preburner injector had an eroded area from number-1 baffle out past number 5, and from row B thru row G. The average depth of the erosion was .02 inches with 4-holes burned through the fuel sleeve. There was severe face and post damage. Only one LOX post/element had crack damage. Slag buildup was found on the inside diameter of the LOX posts (40 of 250 posts). -<u>HPFT</u> inlet burned completely through at the 1 o'clock position; most 1st stage_turbine blades had heavy spalling and appeared to have cracks at the root; turbine seals had moderate erosion.

> -The schematic below illustrates one area of damage described above.

References: -Rocketdyne data room records.

-Rocketdyne's Fuel Turbomachinery Post Test Report, Engine 0009, 29 January 1981. -Unsatisfactory Condition Report (UCR), FPB Injector Assy, 29 January 1981. -Rocketdyne report RSS-8595-24, SSME Accident/Incident Report, Engine 0009/0204, 22 December 1981, NAS8-27980.

T

Change Dur	ation Inte	erval-+ c/o 1	Time
	Rate of Change (psi/sec,		
ime of Indicative <u>Change Parameter or</u>		Excursion Interval	Duration <u>Interval</u>
31.03HPFT DS T1 B	-1.10	44.0	44.0
38.030POV ACT POS	20	9.0	37.0
44.03LPOP DS PR	71	31.0	31.0
47.03MCC OX IN PR- MCC PC	89	28.0	28.0
47.03HPOT DS T2	-1.75	28.0	28.0
49.03HPOT DS T1	-1.80	26.0	26.0
54.73HPFP CL L PR- MCC HG IN PR	-60.00	.5	20.3
61.03HPFT DS T1 A	-17.40	3.5	14.0

TIME LINE FOR INDICATIVE PARAMETERS

Table IIB-6:

Failure Investigation Summary for Each Test (Test 901-307)

Type of

Incident

Injector

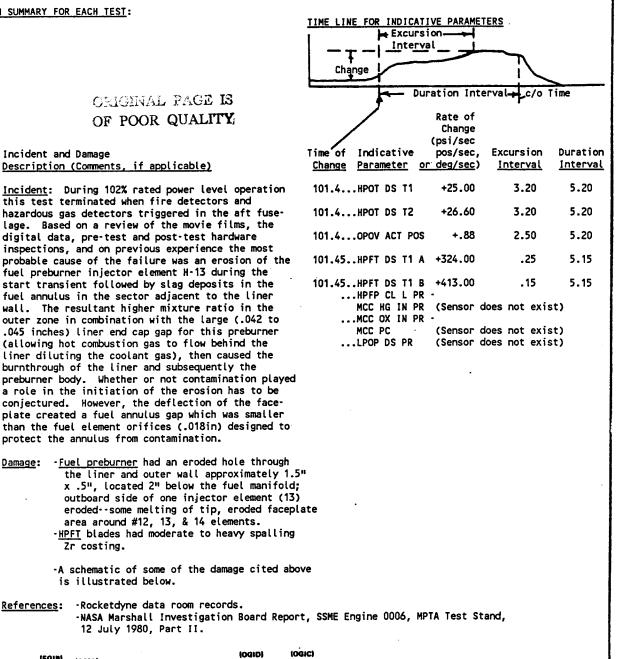
(FPB)

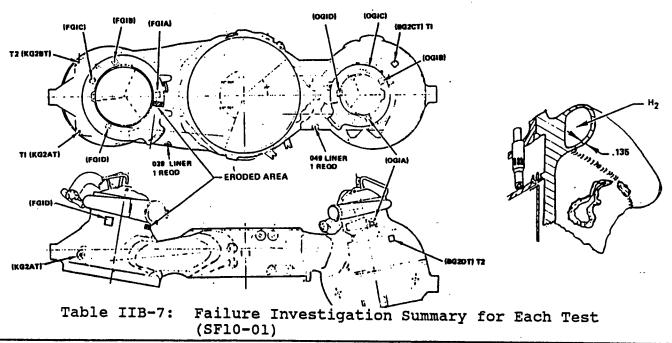
Test

Number

SE10-01

(Engine


0006)


Incident and Damage

Zr costing.

References:

is illustrated below.

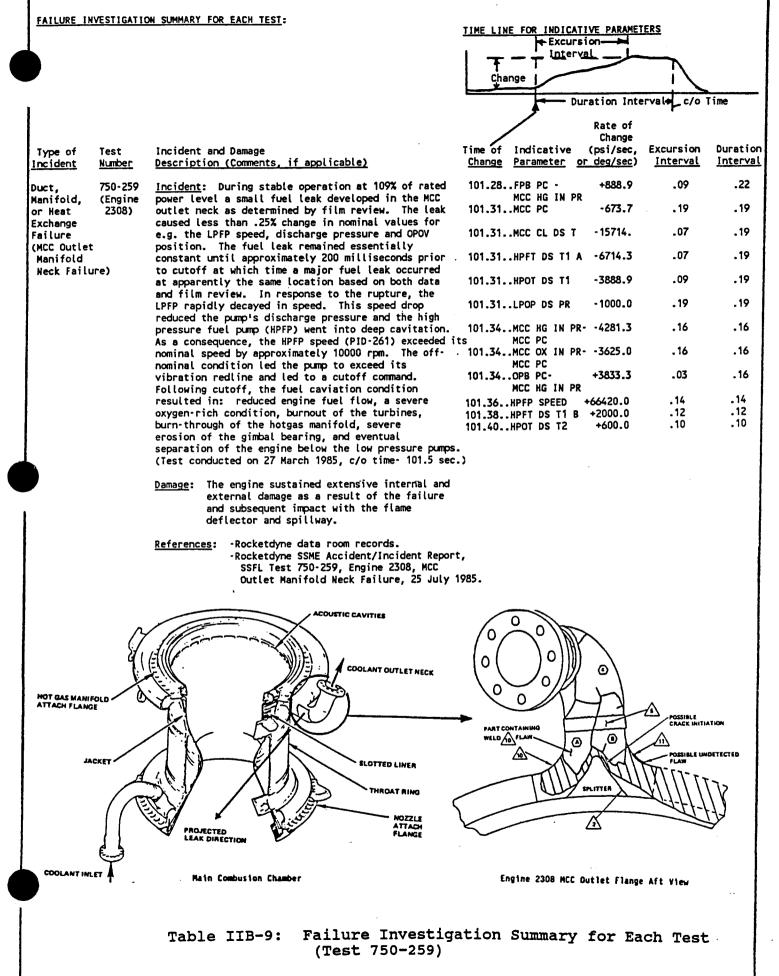

FAILURE INVESTIGATION SUMMARY FOR EACH TEST: TIME LINE FOR INDICATIVE PARAMETERS Excursion -<u>Interva</u>l Change Duration Interval-c/o Time Rate of Change (psi/sec, Type of Test Incident and Damage Time of Indicative pos/sec, Excursion Duration Description (Comments, if applicable) <u>Incident</u> Number Change Parameter or deg/sec) Interval Interval 901-284 3.85...HPFP DS PR-Control Incident: Near the close of a nominal start the -2961.5 .65 6.03 Failure (Engine following major events occurred: MCC PC (Erroneous | 0010) delta-P Sensor. 1. Channel B of the Controller cut itself off 3.85...MCC PC +18000.0 .05 6.03 Lee Jet) : at 3.25 seconds (under launch conditions this would have resulted in engine shutdown due to "Major 3.85...OPOV ACT POS .28 6.03 -71.4 Component Fail"). The Channel B shutdown was caused 3.87... HPFT DS T1 A -394.65 .35 6.01 by a failure of electronic components in the facility 4.00....HPOT DS T1 -495.0 5.88 2.0 4.12...LPOP DS PR power supply. +500.0 .2 5.76 2. At approximately 3.9 seconds the Lee Jet orifice (used to purge the Channel A PC transducer passage) became dislodged and caused the PC transducer to sense the MCC coolant flow pressure instead of chamber pressure (see the schematic below). This erroneous reading (3800 psi) caused the Controller to close the OPOV to reduce PC to the desired 3012 psi level. A few milliseconds later, the Controller calculated a mixture ratio of 9.0 and commanded the FPOV full open in an attempt to reduce the mixture ratio to 6.0. a. The immediate result of the Controller's actions (based on an erroneous PC) was operation in an abnormal mode, characterized by high fuel flow and low turbine inlet temperatures of the oxidizer and fuel preburner. In fact, the oxidizer preburner turbine inlet temperature fell quickly to about 440 deg R which assured freezing of the water which makes up about 10% of the total flowrate of 40 lbs/sec. b. The ultimate result of the Controller's actions was a fire in the HPOTP at about 9.7 seconds due to rubbing in the area of the LOX primary seal slinger. The rubbing was caused by a high axial load which displaced the rotor assembly toward the pump end of the HPOTP housing. This high axial load was caused by ice formation in the cavity between the housing and the second stage turbine wheel which resulted in reduction in the cavity pressure from about 2500 psi to near ambient. This reduced pressure on one side of the turbine wheel caused an estimated increase in rotor axial force of about 31000 lbs which far exceeded the control capability of the balance pistons to control the position of the rotor. 3. At 9.88 seconds the test was terminated when the high pressure oxidizer preburner pump radial accelerometer exceeded the 10g redline. (Test conducted on 30 July 1980). . Damage: Post test inspection of the facility and the engine revealed extensive fire damage to the high pressure oxidizer turbopump (HPOTP), the engine Controller, and harnesses and ducting in the vicinity of the HPOTP. The major facility damage was limited to instrumentation, electrical cables, and photo equipment. References: -Rocketdyne Incident Report (RSS-8595-22), Engine 0010 Test 901-284, dated 15 January 1981. -NASA Failure Investigation Team Report SSME 0010, Test 901-284, Part I & II, 30 July 1980. - SCREEN PRESSURE PORT мсс PURGE MCC FUEL ORIFICE ACOUSTIC DISCHARGE SCREEN CAVITY MANIFOLD 56 JET BODY . 1875 THERMAL ISOLATOR

Table IIB-8: Failure Investigation Summary for Each Test (Test 901-284)

REMOTE MOUNT FLIGHT TRANSDUCER

TAPER-

EXPANDER PIN

······

Type of

Incident

Manifold,

Exchanger

or Heat

Failure (Nozzle

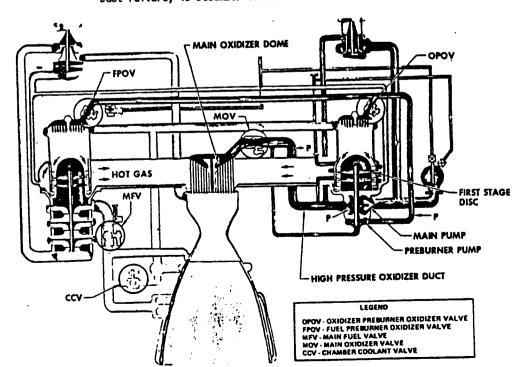
Tube Rupture)

Duct,

Test

Number

901-485


(Engine

2105)

ON SUMMARY FOR EACH TEST:	
	TIME LINE FOR INDICATIVE PARAMETERS Excursion Interval Change Duration Interval C/o Time
Incident and Damage Description (Comments, if applicable)	Rate of Change Time of Indicative (psi/sec, Excursion Duration <u>Change Parameter or deg/sec</u>) <u>Interval Interval</u>
<u>Incident</u> : During stable operation at 109% of rate power level nozzle tube number 99 was ruptured on the hot-wall side. The rupture caused the high	20.56HPOT DS T2 +6.25 8.00 8.00
pressure oxidizer turbine HPOT to exceed its redli value. This led to a cutoff at 28.56 seconds from start. The test was conducted on 24 July 1985; six days later the damage was repaired (MRD #29020 and a 520 second program duration test was complet	MFPB PC - (No change is strikingly MCC HG IN PR indicated) MCC PC (No change is strikingly
Damage: The rupture was l/4 in. long x l/8 in. wide, located l4.5 in. aft of G15. A Class II	MCC CL DS T (No change is strikingly indicated) HPFT DS T1 A (No change is strikingly
and Class I nozzle cold-wall side leakage were noted (and also repaired).	indicated) HPFT DS T1 B (No change is strikingly indicated)
References: Readiness Review, Engine 2105, 26 Ju	LPOP DS PR (No change is strikingly
1985, Briefing Charts, 5 August 1985 -Material Review Disposition (MRD)	MCC HG IN PR• (Sensor does not exist) MCC PC
No. 290206, Nozzle Assembly, 6 pp.	MCC OX IN PR- (No change is strikingly MCC PC indicated) OPB PC - (No change is strikingly MCC HG IN PR indicated)
•	HPFP Speed (No change is strikingly indicated)

Table IIB-10: Failure Investigation Summary for Each Test (Test 901-485)

	TIME LINE FOR INDICATIVE PARAMETERS				
	Excursion				
	Change				
	Dura	tion Inte	rval = _c/o 1	ime	
		Rate of Change	·		
	Time of Indicative (<u>Change Parameter or</u>	psi/sec,	Excursion Interval	Duration Interval	
d					
	115.53MCC OX IN PR- MCC PC	-45000.	.07	.07	
	115.54HPFP SPEED 115.55MCC CL DS T			.06 .05	
ed	115.55HPFT DS T1 A			.05	
	115.55HPFT DS T1 B	-11800.	.05	.05	
	115.55LPOP DS PR	-2800.	.05	.05	
	115.57HPOT DS T1	-16667.	.03	.03	
	115.57HPOT DS T2	-16667.	.03	.03	
	MCC HG IN PR- NCC PC	(Sensor	does not e	xist)	
	FPB PC -	(Sensor	· does not e	xist)	
	NCC HG IN PR	(Sensor	does not e	xist)	
n	NCC HG IN PR NCC PC	(No cha indica	ange is stri ated)	kingly	

Failure Investigation Summary for Each Test Table IIB-11: (Test 750-175)

Type of Incident

Duct,

Manifold,

or Heat

Exchange Failure

(Catastropic

Structural:

High Cycle

Fatigue in

Oxidizer

Duct)

High Pressure

Test Number

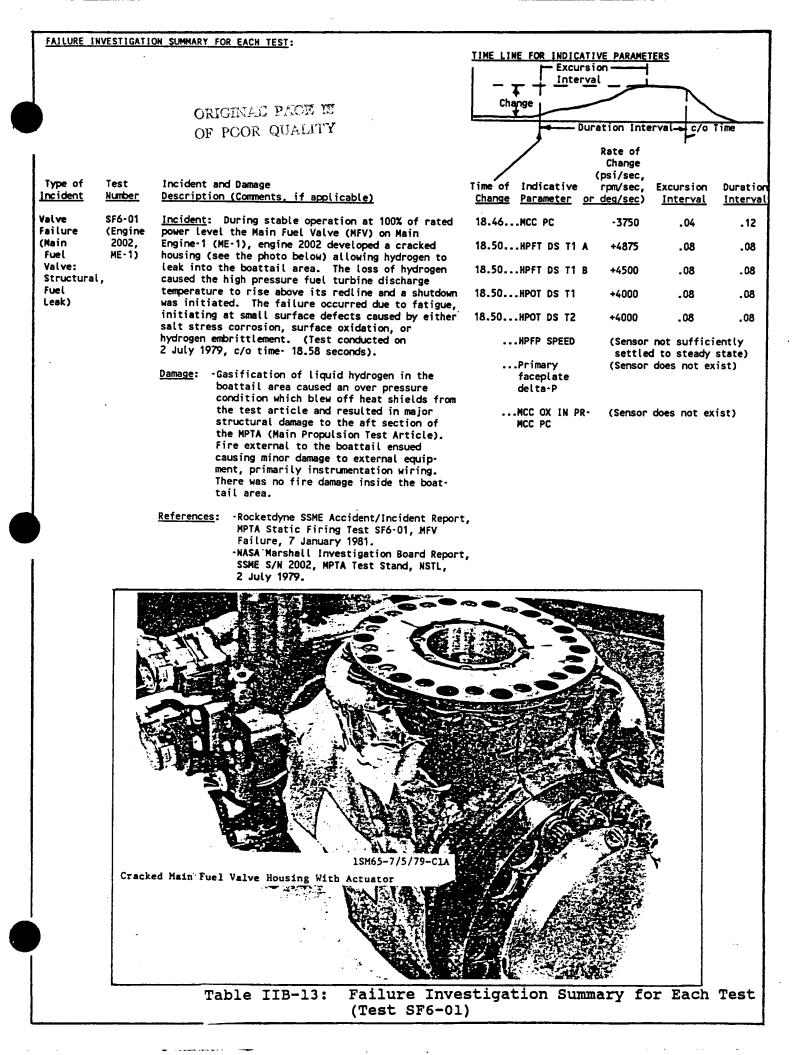
> (Engine 2208)

Incident and Damage Description (Comments, if applicable) Incident: During stable operation at 111% of rated 750-175

power level a specially developed high pressure oxidizer duct failed. The system location of the duct is shown below. The special development consisted of ten ultrasonic flow transducer blocks mounted on the duct exterior. The failure initiate by a 2.5 inch long High-Cycle Fatigue (HCF) crack adjacent to ultrasonic flowmeter block No. 9-10. The HCF crack was caused by a combination of thinning the duct wall to install the transducer blocks, physically adding the block masses to the duct, and the increased local stresses brought about by brazing the blocks to the duct wall. The ruptured duct e.g. resulted in a drop in system pressures and increase in vibrations in less than 100 msec. (Test conducted on 27 August 1982, c/o time- 115.6 sec due to a preburner oxidizer pump accelerometer redline).

ORIGINAL PAGE IS OE POOR QUALITY

Damage: The preburner oxidizer pump separated from the engine, and the oxidizer preburner section of the hot-gas manifold and the oxidizer system were damaged extensively. The first-stage turbine disk failured. Both the engine and the facility test stand (A-3) sustained damage.


References: -Rocketdyne data room records. -Rocketdyne SSME Accident/Incident Report, SSFL Test 750-175, 27 August 1982, Engine 2208, High Pressure Oxidizer Duct Failure, 15 December 1983.

FAILURE INVESTIGATION SUMMARY FOR EACH TEST: TIME LINE FOR INDICATIVE PARAMETERS -Excursion Interval Change Duration Interval - c/o Time Rate of Change (psi/sec, Excursion Duration Time of Indicative Test Incident and Damage Type of Interval Description (Comments, if applicable) Change Parameter or deg/sec) <u>Interval</u> Incident Number .55 .55 Incident: During stable operation at 92% of rated 5.20..MCC PC -163.6 Duct, 902-112 power level cutoff was initiated by the High Manifold, (Engine 5.20.. HPFT DS T1 A +690.9 .55 .55 0101) Pressure Fuel Turbopump (HPFTP) speed when the or Heat values exceeded the maximum redline setting (at Exchange 5.25..FPB PC -5.75 seconds from start time). The incident was Failure .50 +200.0 .50 MCC HG IN PR (Solidified caused when the facility fuel inlet Frantz-screen was partially blocked by solidified nitrogen. 5.28.. HPOT DS T1 +234.0 .47 .47 Nitrogen Blockage of Nitrogen was inadvertently introduced into the 5.28.. HPOT DS T2 .47 .47 +382.9 Fuel Pump tank during chill. Cavitation of both the high and low pressure fuel pump occurred when the Inlet) +8000.0 .45 5.30... HPFP SPEED .45 LPFP (low pressure fuel pump) inlet pressure dropped below zero psig. (Test conducted on .17 5.58..HPFT DS T1 B +1882.4 .17 10 June 1978). -97.1 .17 .17 Damage: As a consequence of the excessive pump 5.58..LPOP DS PR ..MCC HG IN PR-(No change is strikingly speed and cavitation both the LPFP and high pressure indicated) MCC PC fuel pump (KPFP) were damaged; the LPFP would not rotate; the HPFP shaft was stuck in the upward ..MCC OX IN PR-(No change is strikingly indicated) MCC PC position, and the turbine tip seal separated. ...OPB PC -Damage also occurred in the HPOP (High Pressure Oxidizer Pump), it would not rotate. Seven (7) MCC HG IN PR (Sensor does not exist) ..MCC CL DS T (Sensor does not exist) main injector baffle elements were eroded.

<u>References</u>: -Rocketdyne data room records. -Rocketdyne SSME Accident/Incident Report, Test 902-112 Fuel Inlet Blocked by Nitrogen, RSS-8595-14, June 1978.

Table IIB-12:

2: Failure Investigation Summary for Each Test (Test 902-112)

TIME LINE FOR INDICATIVE PARAMETERS					
		cursion	Ţ		
S		-Duration Inte	ervala c/o	Time	
Y	<u>^</u>	Rate of Change	F		
	Time of Indicativ	(psi/sec, e rpm/sec,	Excursion	Duration	
<u>.</u>	Change Parameter		Interval	Interval	
t 100% of rated Device initiated	255.49MCC PC	+9000	.02	.14	
el Turbine was exceeded.	255.53HPFT DS T	1 A +2750	.10	.10	
ent was caused ve (MOV) inlet	255.53HPFT DS T	1 B +2750	.10	.10	
h result ed in MOV. Flow pressure icient	255.53Primary faceplate delta-P	- 1000	.04	.10	
come the fretting between s (see the	255.53MCC OX IN MCC PC	PR- +7000	.04	.10	
d by fretting ment.	255.55HPOT DS T1	+2000	.08	.08	
n over pressuré tial LOX flow	255.55HPOT DS T2	2 +2000	.08	.08	
back pressure ump (HPOTP).	255.58HPFP SPEED	+30000	.05	.05	

ORIGINAL PAGE IS OF POOR QUALITY

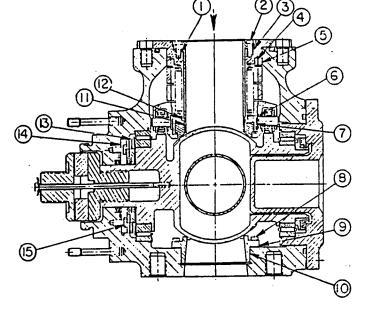
Type of <u>Incident</u>	Test <u>Number</u>	Incident and Damage Description (Comments, if applicable)
Valve Failure (Main Oxidizer Valve: Heat Addition 1 Liquid Oxygen (LOX))	901-225 (Engine 2001)	Incident: During stable operation at 100% of rated power level the Voting Logic Cutoff Device initiate a shutdown when the High Pressure Fuel Turbine (HPFT) discharge temperature redline was exceeded. Failure analysis indicates the incident was caused by fretting at the main oxidizer valve (MOV) inlet sleeve-to-bellows flanged joint which resulted in the initiation of a fire within the MOV. Flow oscillations at four times the high pressure oxidizer turbopump speed caused sufficient excitation of the MOV sleeve to overcome the retention screw preload and allowed fretting betwee the bellows mating surfaces and shims (see the schematic below). The heat generated by fretting produced ignition of the LOX environment. Metal combustion of the MOV caused an over pressure at the valve which increased the initial LOX flow to the main injector and raised the back pressure to the high pressure oxidizer turbopump (HPOTP). The back pressure increase uprated the HPOTP turbine power and resulted in an increase of LOX to the fuel preburner causing the HPFT discharge

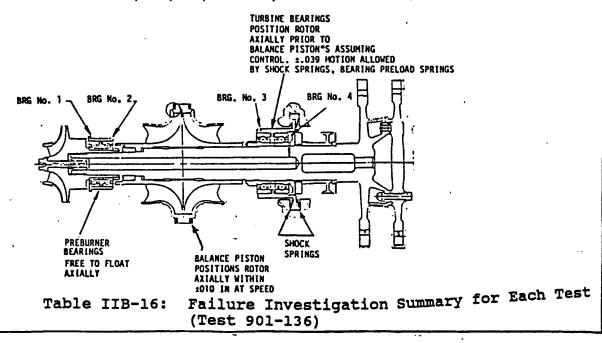
temperature to exceed its redline. (Test conducted on 27 December 1978, c/o time- 255.63 seconds.) Damage: The heat and overpressure generated by the fire caused failure of the high pressure oxidizer duct (see Table IIB-11 for a

schematic), the low pressure oxidizer turbopump, main injector oxidizer inlet, and other extensive engine and electrical facility damage. <u>References</u>: Rocketdyne SSME Accident/Incident Report,

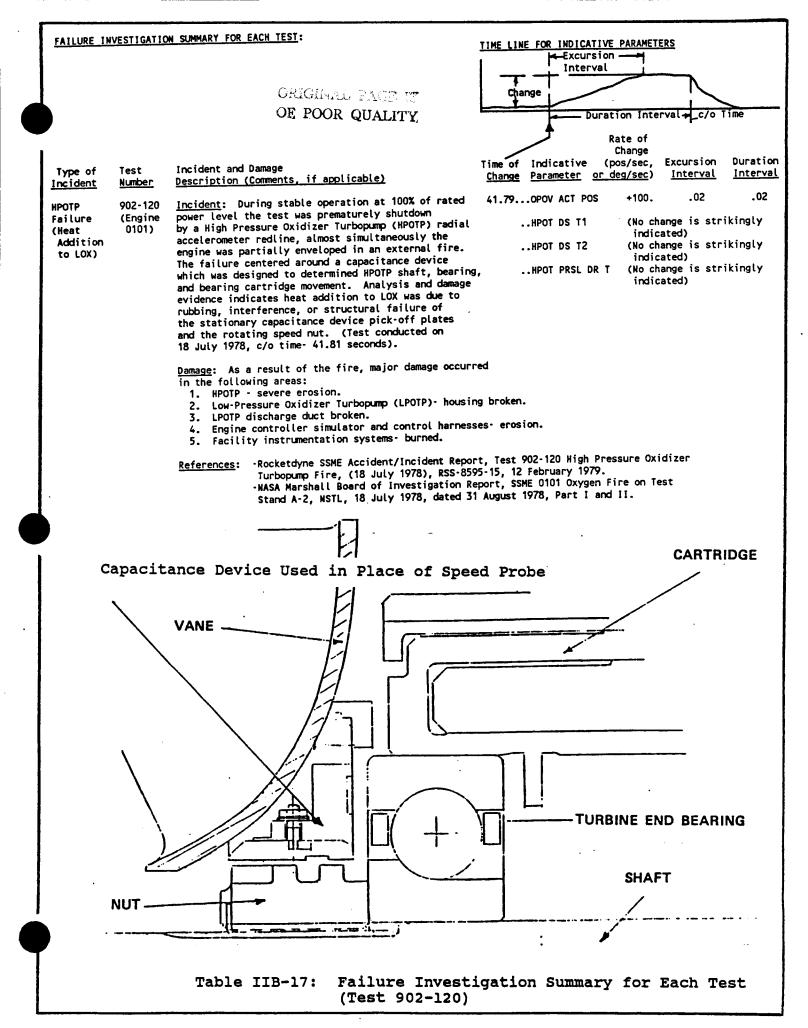
- SSME Test 901-225, MOV Fire, RSS-8595-18, 1 August 1979.
- -NASA Marshall Investigation Board Report, SSME S/N 2001 Oxygen System Fire, Test Stand
- A-1, NSTL, 27 December 27, 1978, Part I.

identification No.	Nomenciature	
1	inlet Sleeve to Bellows	
2	inlet Sleeve Screw .	
3	inlet Sleeve to Bellows Shim	
4	CAH Follower to Bellows Interface	
5	CAM Follower to Housing Interface	
6	CAM Follower Guide	
7	Bellows Guide	
8	Downstream Sleeve Screws	
9	Downstream Sleeve Shim	
10	Sleeve to Housing Interface	
11	Iniet Sieeve	
12	Bellows Stop	
13	Shaft Axial Adjustment Shim	
14 -	Seal Plate	
15	Seal Plate Screw	




Table IIB-14: Failure Investigation Summary for Each Test (Test 901-225)

FAILURE INVESTIGATION SUMMARY FOR EACH TEST: TINE LINE FOR INDICATIVE PARAMETERS Excursion-Interval Change ORIGINAL PAGE 13 Duration Interval+ c/o Time OF POOR QUALITY Rate of Change Type of Test Incident and Damage Time of Indicative (pos/sec, Excursion Duration Description (Comments, if applicable) Incident Number Change Parameter or deg/sec) Interval Interval NPOTP 901-110 Incident: During stable operation at 75% of rated 55.5... OPOV ACT POS +.21 1.4 18.5 Failure power level, the engine controller issued a cutoff (Engine (Rotor/ 0003) command when a fire occurred in the High Pressure 56.2... HPOT PRSL DR T -370. 1.0 17.8 Oxidizer Turbopump (HPOTP). The fire started in the Seal (PID #1186) Support: LOX primary seal drain cavity. The exact cause of the fire could not be positively determined, however Heat 57.7... HPOT DS T1 +31.4 .7 16.3 nine sources were determined to have the potential Addition to Liquid of causing the ignition. These are listed below: 57.7... HPOT DS T2 +28.6 .7 16.3 Oxygen (LOX)) 1. Loss of hydrodynamic lift resulting in rubbing of the primary oxidizer seal against the mating ring, creating enough heat to initiate burning. 2. Primary oxidizer seal bellows weld failure allowing oxygen leakage. 3. Ignition at the interface of the bellows and its vibration damper as a result of friction. 4. Contamination in the primary oxidizer seal area. 5. Rubbing of the primary oxidizer seal due to changing phase (liquid to gas). Effects of hotgas leakage past the intermediate seal into the primary oxidizer seal cavity. 6. Rubbing of the primary oxidizer seal against the mating rating due to mating ring vibration. 7. Leakage of hotgas containing hydrogen past the intermediate seal into the primary oxidizer 8. seal cavity creating a combustible mixture. 9. Other leak paths allowing communication between the drain systems. (Test conducted on 24 March 1977, cutoff time- 74 seconds). Damage: Major damage occurred in the HPOTP, low pressure oxidizer turbopump discharge duct, engine controller simulator and control harnesses, main combustion chamber fuel inlet manifold, fuel system insulation, and the facility instrumentation systems. References: -Rocketdyne SSME Accident/Incident Report, Test 901-110 High Pressure Oxidizer Turbopump Fire, (24 March 1977), RSS-8595-11, dated 30 June 1977. -NASA Marshall Investigation Report SSME 0003 Oxygen Fire on Test Stand A-1, NSTL 24 March 1977, Part 1 and 11, dated 17 May 1977. INTERMEDIATE SEAL PURGE LOX PRIMARY SEAL DRAIN INTERMEDIATE SEAL DRAIN TUPBINE BIN 18 SEAL DRAIN تدغنه ا Carbon C- 84 Chrome Carboz Plate P-692 OXYGEN SIDE Amcermet Seals Dame Web Bello Turbine Seal rimarv Intermediate Seal HPOTP SEAL Failure Investigation Summary for Each Test Table IIB-15: PACKAGE (Test 901-110)


FAILURE INVESTIGATION SUMMARY FOR EACH TEST: TIME LINE FOR INDICATIVE PARAMETERS + Excursion Interval 7 2 Change ORIGINAL PAGE IS c/o Time Duration Interval OF POOR OUALITY Rate of Change Time of Indicative (pos/sec, Excursion Duration Type of Test Incident and Damage <u>Interval</u> Interval Change Parameter or deg/sec) Incident Number Description (Comments, if applicable) 275.2... HPOT DS T1 +2.27 10.98 25. HPOTP 901-136 Incident: During stable operation at 90% of rated Failure (Engine power level the engine controller initiated a shut-275.2... HPOT DS T2 +2.73 10.98 25. 0004) down because of loss of engine elctrical control. (Rotor/ Simultaneously, a fire was observed in the area of Seal 275.2...OPOV ACT POS the High Pressure Oxidizer Turbopump (HPOTP) due to +.08 25.00 25. Support) bearing failure. The failure resulted from three 10.30 14. 286.2...HPOT PRSL DR T +1.46 root causes acting in combination: poor load sharing of pump-end and turbine-end bearings, insufficient cooling of the turbine-end bearings, and large unbalance of the rotor-excessive bearing loads. The most probable failure sequence is as follows: The coolant flow at the pump-end bearings caused pressure induced loads that were sufficient to radially clamp and axially unload the No. 1 bearing (BRG) and increase the axial load on the No. 2 bearing (BRG) which was forced to carry 90% or more of the rotor radial loads. This, combined with the small length/diameter ratio cartridge pilot, allowed considerable radial motion and nutation of the bearing carrier, and resulted in the effective spring rate of the preburner bearing package to deteriorate. The increased radial motion increased the effective rotor unbalance which resulted in increased radial loads on both the pump end and turbine end bearings and increased overhung rotor deflections at the turbine seal. The coolant flow at the turbine-end bearings was insufficient to prevent bearing degradation with the increased radial loads and heat generation. Coolant flow induced axial loads on the turbine end bearings and cartridge, decreased the axial preload on the No. 4 bearing and increased the axial preload on the No. 3 bearing, causing the No. 3 bearing to carry most of the rotor radial loads. 3. As loads at the bearings built up, shaft deflections increased until there was interference and a fire. Internal rubbing apparently began during fuel tank venting (at t= +185 seconds). Approximately 24-seconds after venting was complete (i.e. at t= +275.2 seconds) analysis indicates the HPOTP began to loose its performance, pump vibration increased, and LOX heating due to internal rubbing increased. (Test conducted on 8 September 1977, c/o time- 300.2 seconds). Damage: The HPOTP was extensively damaged, the following ducts were eroded: the preburner supply and

Damage: The HPOTP was extensively damaged, the following ducts were eroded: the preburner supply and discharge duct, HPOTP drain lines, LPOTP turbine drive duct, fuel and oxidizer preburner supply line, head exchanger supply and discharge lines. The oxidizer preburner LOX supply inlet duct ruptured downstream of the OPOV (oxidizer preburner oxidizer valve). The controller simulator, and facility instrmentation received extensive fire damage.

<u>References</u>: -Rocketdyne SSME Accident/Incident Report, Test 901-136 High Pressure Oxidizer Turbopump Fire, (8 September 1977), RSS-8595-13, 20 March 1978. -NASA Marshall Board of Investigation Report, SSME 0004 Oxygen Fire on Test Stand A-1, NSTL, 8 September 1977, dated 14 November 1977.

Type of

Incident

HPFTP

(Turn Around

Duct Cracked/

Torn)

Failure

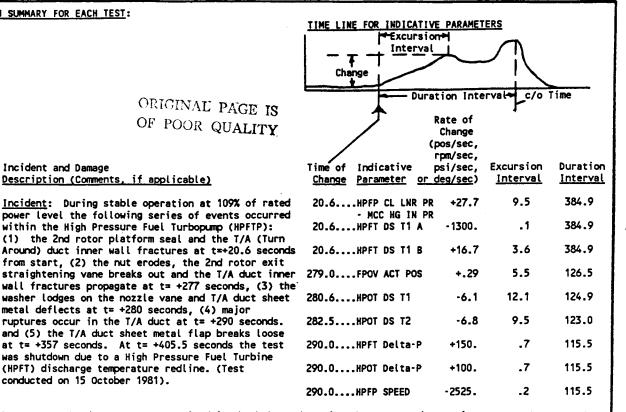
Test

Number

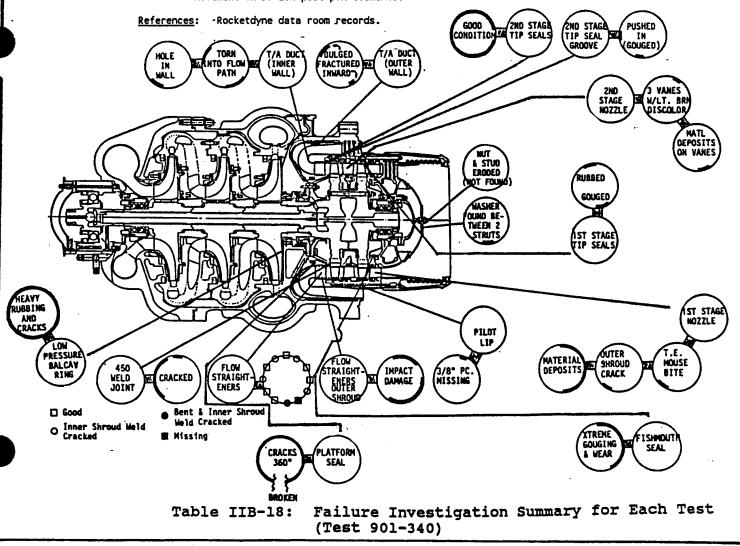
901-340

(Engine

0107)


Incident and Damage

Description (Comments, if applicable)


metal deflects at t= +280 seconds, (4) major

(HPFT) discharge temperature redline. (Test

conducted on 15 October 1981).

Damage: HPFTP damages are summarized in the below schematic. Damage to other engine components are as follows: main injector- dent in post 76/77 flow shield, erosion of six face nuts, 21 hot gas filters broken, nozzle- damage to nozzle belly band and jacket, and fuel preburner--movement in 59 LOX post pin elements.

FAILURE INVESTIGATION SUMMARY FOR EA

-

Type of Incident

HPFTP

Failure (Turn

Around

Cracked/ Torn)

Duct

Test

Number

901-363

(Engine 2013)

ON SUMMARY FOR EACH TEST:	TIME LINE FOR INDICATIVE PARAMET	rval c/o Time
Incident and Damage Description (Comments, if applicable)	Rate of Change (pos/sec, rpm/sec, Time of Indicative psi/sec, <u>Change Parameter or deg/sec</u>)	Excursion Duration Interval Interval
<u>Incident</u> : At the conclusion of this program duration test (250 seconds) fourteen (14) cracks were found in the HPFTP (Hight Pressure Fuel	85.0HPFP CL LNR PR +2.0 - MCC HG IN PR 85.0HPFT DS T1 A +1.25	15.0 165.0 20.0 165.0
Turbopump) turn around duct sheet metal. The location of the turn around (T/A) duct is presented in Table IIB-18's schematic. (Test conducted on	135.5HPOT Delta-P +17.1	1.4 114.5
30 March 1982; a week later Test 901-364 was	135.5HPFP SPEED +110.0	1.0 114.5
conducted).	136.2FPOV ACT POS77	1.1 113.8
<u>Damage</u> : Engine damage was confined to the area cited above.	136.4HPFT DS T1 B -4.92	7.1 113.6
Reference: Rocketdyne data room records.	136.7HPOT DS T1 +11.4	.7 113.3
	137.3HPFT Delta-P -16.0	1.0 112.7
	137.4HPOT DS T2 +11.7	.9 112.6

Table IIB-19: Failure Investigation Summary for Each Test (Test 901-363)

.

ORIGINAL PAGE IS OF POOR QUALITY

Type of Incident

HPFTP Failure (Turn Around Duct Cracked/ Torn)

902-118

(Engine

0101)

Test Incident and Damage Description (Comments, if applicable) Number

> Incident: During stable operation at 92% of rated power level the following series of events occurred within the High Pressure Fuel Turbopump (HPFTP): (1) the coolant liner buckles at approximately t= +5.5 seconds from start and (2) the T/A (Turn Around) duct sheet metal partially collapses at t= +6.6 seconds. The location of the T/A duct may be seen in Table IIB-18. At t= +6.84 seconds the test was shutdown due to a High Pressure Fuel Turbine (HPFT) discharge temperature redline. (Test conducted on 21 July 1978).

Damage: HPFTP T/A duct damages included five (5) major bulges in both the inner and outer diameter sheet metal and an approximate 1.5 inch tear in the inner diameter sheet metal. MCC damages included twenty-six (26) heat shield retainers either missing or partially failed.

References: -Rocketdyne data room records.

TIME LINE FOR INDICATIVE PARAMETERS					
7	Dur:	ation Inte	rval	Time	
7		Rate of	•		
		Change (pos/sec,			
		rpm/sec,			
Time of Indica	-		Excursion	Duration	
<u>Change</u> <u>Parame</u>	<u>eter</u> or	deg/sec)	<u>Interval</u>	<u>Interval</u>	
5.0HPFT 0	DS T1 A	+130.4	1.84	1.84	
5.0HPFT D	OS T1 B	+108.7	1.84	1.84	
5.5HPFT D	elta-P .	+108.3	1.20	1.34	
5.5HPOT D	elta-P	+58.3	1.20	1.34	
5.5HPOT D	S T1	-22.4	1.34	1.34	
5.5HPOT D	S T2	-22.4	1.34	1.34	
5.5HPFP C	L LNR CC HG IN	+54.5	1.10	1.34	
6.12FPOV A		+4.4	.50	.72	
6.65HPFP S	PEED	-2000.0	. 15	. 19	

Failure Investigation Summary for Each Test Table IIB-20: (Test 902-118)

Type of

Incident

HPFTP

Failure

Liner

(Coolant

Buckle)

Test

Number

901-436

(Engine

0108)

JN SUMMART FUR EACH (ES):		
	TIME LINE FOR INDICATIVE PARAMET	ERS
	Excursion	
•	Interval	
	Change	- 1
ORIGINAL PAGE IS	Duration Inte	rval - c/o Time
OF POOR QUALITY	4	
OF TOOR QUALITY	Rate of	
	Change	
	(pos/sec,	
Incident and Damage	rpm/sec, Time of Indicative psi/sec,	Excursion Duration
Description (Comments, if applicable)	<u>Change Parameter or deg/sec</u>)	Interval Interval
		The val
Incident: During stable operation at 109% of rated	598.5HPFP CL LNR PR +55.5	4.50 12.56
power level the following series of events occurred	- MCC HG IN PR	
within the High Pressure Fuel Turbopump (HPFTP):	610.44HPFT Delta-P +467.7	.62 .62
(1) pieces from the interstage seal pass through		
the 2nd stage platform gap, decreasing the 2nd disc	610.44HPOT Delta-P +161.3	.62 .62
cavity pressure and increasing the seal stack		
leakage into the coolant liner at approximately	610.55HPFT DS T1 A +686.3	.51 .51
t= +598.5 seconds from start, (2) an interstage seal piece lodges in the 2nd stage shank increasing	610.55HPFT DS T1 B +764.7	
the 2nd platform seal gap and exciting 12 stiffener	610.55HPFT DS T1 B +764.7	.51 .51
vanes per revolution at t= +607 seconds,	610.55FPOV ACT POS +19.0	.51 .51
(3) the coolant liner begins to buckle at $t = +610.36$.51 .51
seconds, and (4) the T/A (turn around) sheet metal	610.59HPFP SPEED -4255.3	.47 .47
begins movement, reducing the flow area at $t = +610.44$		
seconds. The location of some of the above	610.90HPOT DS T1 +237.5	.16 .16
components are presented in Table IIB-18's schematic.		
At t= +611.06 seconds the test was shutdown due to	610.95HPOT DS T2 +200.0	.11 .11
a High Pressure Fuel Turbine (HPFT) discharge		
temperature redline. (Test conducted on 14 February	1984).	

Damage: The HPFTP was massively damaged. The engine was totally gutted due to a oxidizer rich shutdown; the high pressure fuel pump inlet duct failed (due to over pressure caused by turbine erosion and the HPFTP seizure). The engine was retired.

References: -Rocketdyne data room records.

-Rocketdyne Internal Letter #525-107, SSME-84-0787, Engine 0108 Failure Investigation-Engine Systems Contribution to Final Report, 5 June 1984.

Table IIB-21: Failure Investigation Summary for Each Test (Test 901-436)

Type of

Incident

HPETP

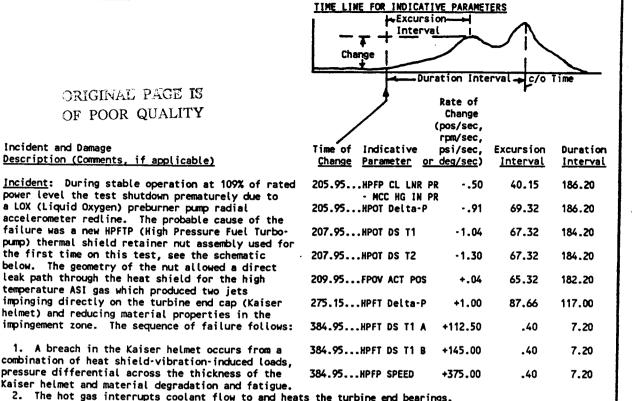
Failure

(Hotgas

Intrusion

to Rotor

Cooling)

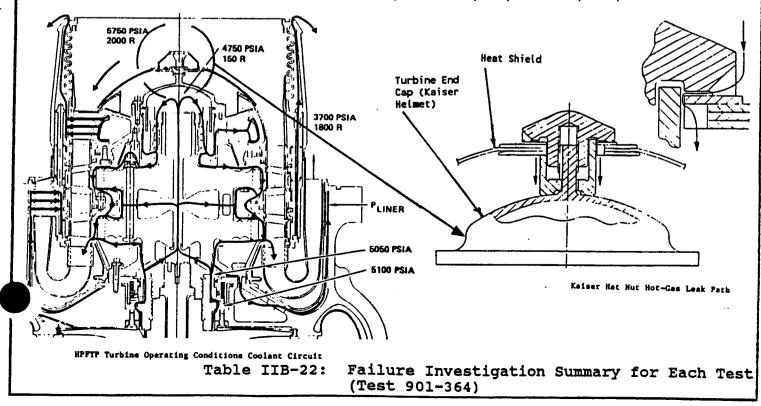

Test

Number

901-364

(Engine

2013)



 The hot gas interrupts coolant flow to and heats the turbine end bearings.
 Heating produces an increase in bearing stiffness which causes increasing synchronous vibrations. 4. Synchronous vibration continues to build up until bearing failure occurs followed by large rotor displacement, severe blade rubbing and eventual blade breakage, turbine seizing, fuel flow stoppage, rupture of the pump inlet volute, and finally a severe fire caused by the resulting LOX-rich shutdown.

(Test conducted on 7 April 1982, c/o time- 392.15 seconds)

Damage: During the failure most of the engine separated from the test stand and broke apart; the major engine parts came to rest on the concrete spillway; the engine was retired. Damage to the facility was light to moderate.

References: -Rocketdyne SSME Accident/Incident Report, RSS-8595-28, NSTL Test 901-364, 7 April 1982, Engine 2013, High Pressure Fuel Turbopump Kaiser Helmet Failure, dated 14 July 1982. -NASA Marshall Investigation Board Report, Certification Engine Failure, 7 April 1982, SSME S/N 2013, Test Stand A-1, Test 901-364, NSTL, Part I & II, 1 July 1982.

FAILURE INVESTIGATION

.

٦

Failure (Engine duration test (823 seconds) the nut of the turbine	FAILURE IN	VESTIGATI	ON SUMMARY FOR EACH TEST:	
Type of IncidentTest NumberIncident and Damage Description (Comments, if applicable)Time of Indicative parameterTime of Indicative psi/sec, Excursion Change Parameter Or deg/sec)Duration IntervalWPFTP Failure (Engine duration test (823 seconds) the nut of the turbine end dome and lock tab was found missing in the HPFT Intrusion to Rotor Cooling)Incident: At the conclusion of this program end dome and lock tab was found missing in the HPFT Intrusion (High Pressure Fuel Turbine) and minor inner to Rotor cooling)file tip erosion discovered in the fuel preburner injector. (Test conducted on 16 November 1980).619.9HPFT DS T1 A 620.0HPFT DS T1 A eros T1 A 4.78 4.7324.732 3.0 203.0203.0 203.0Damage: Engine damage was confined to the areas cited above.Damage: Reference: Rocketdyne data room.620.0HPFT DS T1 A eros T1 A 4.78 4.7324.732 3.0 202.0202.0 203.0Reference: MCC HG IN PR HPFT Delta-P(Sensor does not exist) (Sensor does not exist)HPOT Delta-P (Sensor does not exist)				Change Duration Interval c/o Time Rate of Change (pos/sec,
Failure (Hotgas 2008)duration test (823 seconds) the nut of the turbine end dome and lock tab was found missing in the HPFT (High Pressure Fuel Turbine) and minor inner baffle tip erosion discovered in the fuel preburner injector. (Test conducted on 16 November 1980).619.9HPOT DS T1 420.0HPFT DS T1 A+.78 4.7825.0 203.0203.1Damage:Engine damage was confined to the areas cited above.620.0HPFT DS T2 47.32+7.323.0 203.0203.0Damage:Engine damage was confined to the areas 			•	Time of Indicative psi/sec, Excursion Duration
(Hotgas Intrusion to Rotor Cooling)end dome and lock tab was found missing in the HPFT (High Pressure Fuel Turbine) and minor inner baffle tip erosion discovered in the fuel preburner injector. (Test conducted on 16 November 1980).619.9HPOT DS T1+9.333.0203.10620.0HPFT DS T1 A+.7825.0203.00016 November 1980).620.0HPFT DS T1 A+.7825.0203.000202.0620.0HPOT DS T2+7.323.0202.000 <td< td=""><td>HPFTP Failure</td><td></td><td><u>Incident</u>: At the conclusion of this program duration test (823 seconds) the nut of the turbine</td><td>619.9HPFP SPEED097 1.6 203.1</td></td<>	HPFTP Failure		<u>Incident</u> : At the conclusion of this program duration test (823 seconds) the nut of the turbine	619.9HPFP SPEED097 1.6 203.1
to Rotor Cooling)baffle tip erosion discovered in the fuel preburner injector. (Test conducted on 16 November 1980). Damage: Engine damage was confined to the areas cited above.620.0HPFT DS T1 A+.7825.0203.0Damage: Engine damage was confined to the areas cited above.620.0HPFT DS T2+7.323.0203.0Reference: Rocketdyne data room.621.0FPOV ACT POS+.093.0202.0MCC HG IN PR HPFT Delta-P(Sensor does not exist)HPFT Delta-P(Sensor does not exist)HPOT Delta-P(Sensor does not exist)	(Hotgas		end dome and lock tab was found missing in the HPFT	619.9HPOT DS T1 +9.33 3.0 203.1
Damage:Engine damage was confined to the areas cited above.620.0HPOT DS T2+7.323.0203.0621.0FPOV ACT POS+.093.0202.0Reference:Rocketdyne data roomHPFP CL LNR PR- MCC HG IN PR HPFT Delta-P(Sensor does not exist)MCC HG IN PR HPFT Delta-P(Sensor does not exist)HPFT Delta-P(Sensor does not exist)			baffle tip erosion discovered in the fuel preburner	620.0HPFT DS T1 A +.78 25.0 203.0
Reference: Rocketdyne data room. HPFP CL LNR PR- (Sensor does not exist) MCC HG IN PR HPFT Delta-P (Sensor does not eixst) HPFT Delta-P (Sensor does not exist)				620.0HPOT DS T2 +7.32 3.0 203.0
MCC HG IN PR HPFT Delta-P (Sensor does not eixst) HPOT Delta-P (Sensor does not exist)			cited above.	621.0FPOV ACT POS +.09 3.0 202.0
HPFT Delta-P (Sensor does not eixst) HPOT Delta-P (Sensor does not exist)			<u>Reference</u> : Rocketdyne data room.	
HPFT DS T1 B (Sensor malfunction)				HPOT Delta-P (Sensor does not exist)
				HPFT DS T1 B (Sensor malfunction)

Table IIB-23: Failure Investigation Summary for Each Test (Test 902-209)

Type of Incident

> 902-249 (Engine

> > 0204)

HPFTP

Failure

(Power

Transfer

Failure,

Turbine

Blades)

ORIGINAL PAGE IS OF POOR QUALITY

Test Incident and Damage Number Description (Comments, if applicable)

<u>Incident</u>: During stable operation at 109% of rated power level the test shutdown prematurely due to a HPFTP accelerometer redline and associated massive failure of the HPFT (High Pressure Fuel Turbine) first stage turbine blade. The sequence of events leading to the blade failure follows:

1. Initial turbine damage at t= +3.0 seconds. The FPB (Fuel Preburner) injector's nonuniform flow condition experienced in at least two previous tests may have persisted (despite rework) and worsened.

2. Engine fuel inlet temperature increases and the high pressure fuel pump begins to cavitate at t= 108.0 seconds. The temperature increase was brought about by propellant transfer. The increase lowers the fuel density causing an increase in HPFP volumetric flowrate, speed, and power necessary to hold thrust constant. As the flow and speed

TIME LINE FOR			RS	
۱	Excursion			
		\sim		
Change			il	
F	- Durat	ion Inter	rval - c/o	Time
7		ate of Change	·	
		os/sec, pm/sec,		
		si/sec,	Excursion <u>Interval</u>	Duration <u>Interval</u>
320.0HPFT	DS T1 A	+2.22	130.6	130.6
320.0HPFT	DS T1 B	+1.00	90.0	130.6
320.0HPFP	SPEED	+8.37	130.6	130.6
349.6FPOV	ACT POS	+.07	92.0	101.0
375.0HPOT	DS T1	+1.75	40.0	75.58
375.0HPOT	DS T2	+1.50	40.0	75.58
•••••	CL LNR PR- G IN PR	(Sensor	r does not (exist)
	Delta-P	(Sensor	r does not (exist)
HPOT	Delta-P	(Sensor	does not	exist)

increase, the MPFP approaches the conditions at which the sunction capability of the hardware is exceeded and cavitation starts. Once cavitation is initiated the efficiency of the pump degrades, causing speed to increase to maintain pump output to hold thrust constant, causing worsening cavitation conditions and causing an increase in MPFT inlet temperature.

3. Kel-F rub ring flexes and melts at t = +374 seconds. The released Kel-F particles plug nozzle tubes causing them to rupture, contributing to the HPFT inlet temperature increase.

4. The first stage turbine blade failures at t= +450.52 seconds.

(Test conducted on 21 September 1981, c/o time- 450.58 seconds)

<u>Damage</u>: Post firing inspection of the facility and engine revealed severe damage to the main combustion chamber including the injector and side-walls, extensive burn through damage to the nozzle, substantial damage to the HPFTP first and second stage turbines, and an approximately 12 inch long section of the HPFP inlet volute missing. This "blown out" portion of the inlet volute caused a loss of fuel to the engine precipitating an oxygen rich engine shutdown condition. There was no significant damage to the facility.

Refereces: . Rocketdyne data room records.

-NASA Marshall Investigation Board Report SSME S/N 0204, Test Stand A-2 NSTL, Part I and II, 14 December 1981.

Incident and Damage

51.09 seconds)

Type of

Incident

HPFTP

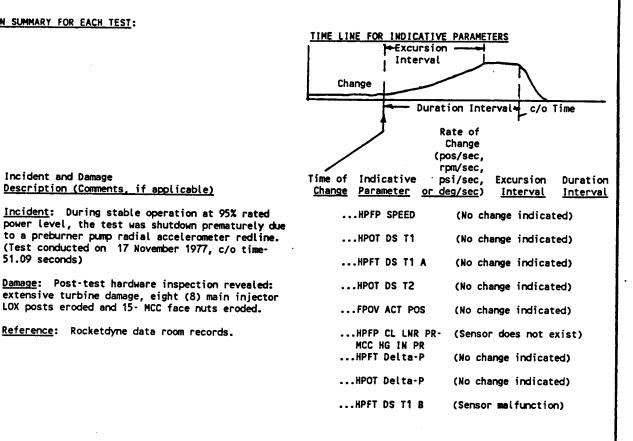
Failure

Transfer

Failure,

Turbine Blades)

(Power


Test

Number

902-095

(Engine

0002)

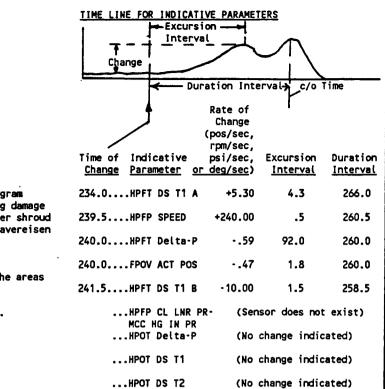
Failure Investigation Summary for Each Test Table IIB-25: (Test 902-095)

TIME LINE FOR INDICATIV Excursio Interval Change			
	Rate of Change pos/sec, rpm/sec,	ervale c/o 1	ſime
Time of Indicative p <u>Change Parameter or c</u>	osi/sec, leg/sec)	Excursion <u>Interval</u>	Duration Interval
	-23.00	222.	400.
LNR PR- MCC HG 100HPFP SPEED	IN PR +.50	400.	400.
300HPOT DS T1	+.42	190.	200.
300HPOT DS T2	+.18	190.	200.
375HPFT DS T1 A	82	45.	125.
375HPFT DS T1 B	-1.33	45.	125.
380FPOV ACT POS	11	30.	120.
HPFT Delta-P	(No c	change indica	ated)
HPOT Delta-P	(No c	hange indica	ated)

Type of <u>Incident</u>	Test <u>Number</u>	Incident and Damage Description (Comments, if applicable)
HPFTP Failure (Localized: Turbine Blades)	901-346 (Engine 0107)	<u>Incident</u> : At the conclusion of this program duration test (500 seconds), damage was found in the HPFT (High Pressure Fuel Turbine) and MCC liner. (Test conducted on 19 November 1981)
		Damage: Engine damage was confined to the areas cited above, to be specific: HPFT- fishmouth seal dropped 1/16 inch, 180 deg

eas deg around, the first stage turbine blade had shanks under cut approximately .02 inches; MCC liner had a new crack at element 85.

Reference: Rocketdyne data room records.


Table IIB-26: Failure Investigation Summary for Each Test (Test 901-346)

Type of

Transfer

Failure)

Test

Incident	Number	Description (Comments, if applicable)
HPFTP	901-362	<u>Incident</u> : At the conclusion of this prog
Failure	(Engine	duration test (500 seconds) the following
(Power	2013)	was noted: HPOT- first stage blade, oute

Incident and Damage

was noted: HPOT- first stage blade, outer shroud leading edge was broken off, HPFT- the savereisen was gone out of the bull nose nut. (Test conducted on 27 March 1982)

<u>Damage</u>: Engine damage was confined to the areas cited above.

Reference: Rocketdyne data room records.

Table IIB-27: Failure Investigation Summary for Each Test (Test 901-362)

Incident and Damage

F (F	tion Inte Rate of Change pos/sec,	ERS	Time
-	pm/sec, si/sec	Excursion	Duration
<u>Change</u> Parameter or c		Interval	Interval
100.0HPFT DS T1 A	+.17	200.	495.
100.0HPFT Delta-P	•.53	200.	495.
110.0HPFP SPEED	+.47	340.	485.0
110.0HPOT DS T1	17	140.	485.0
110.0HPOT DS T2	•.22	140.	485.0
250.0FPOV ACT POS	+.003	200.	345.0
250.0HPOT DS T2	+.08	210.	345.0
505.0HPFP CL LR PR- MCC HG IN PR	+4.6	27.	90.0

....HPOT Delta-P

(No change indicated)

Failure Investigation Summary for Each Test Table IIB-28: (Test 901-410)

Incident HPFTP Failure (Power Transfer Failure)

Type of

Description (Comments, if applicable) 901-410 Incident: At the conclusion of this program (Engine duration test (595 seconds) one damper was found missing from the 2nd stage turbine, impact damage was evident to the 1st stage blades/tip seals, and the HPFP (High Pressure Fuel Pump) disc scroll had a .75 sq. inch area missing, 12 inches from F4. (Test conducted 20 May 1983)

> Damage: Engine damage was confined to the areas cited above.

Reference: Rocketdyne data room records.

Test

Number

2014)

Type of Test Incident and Damage Incident Number Description (Comments, if applicable)

Incident Occurring During A Transient:

Duct, 901-222 Manifold, (Engine or Heat 0007) Exchanger Failure (Heat Exchanger, Weld)

<u>Incident</u>: At the close of engine start the test was terminated (4.34 seconds) by the heat exchanger outlet pressure minimum redline. It was concluded from the test data that the (Data entries for this anomaly should be determined in another study)

incident was caused by a leak in the heat exchanger coil. The leak occurred prior to or during the early part of the start, as evidenced by the excessive coil pressure drop. The high pressure drop indicates increased mass flow. The coil failure was located near the heat exchanger inlet and and discharge area, as shown by the hardware damage. Oxygen from the leak became entrained in the fuel-rich preburner combustion gas. The mixed gases were ignited when the turbine discharge gas reached a high enough temperature during the thrust build-up ramp. The radial accelerometer spike at 3.54 seconds indicates that ignition occurred as a detonation, and was near the heat exchanger inlet/outlet area. The resulting continued combustion of the hydrogen-rich preburner combustion products and leaking oxygen caused burning of the coil; the change in nozzle flame pattern at 3.58 seconds shows evidence of metal burning. The heat exchanger coil pressure decayed to below the hot-gas manifold pressure at 3.71 seconds, indicating that the heat exchanger coils were completely severed, with extensive communication occurring between the coil and hot-gas. Hot-gas flowing into the discharge end of the severed coil combusted in the discharge line, with oxygen from the bypass system. The discharge line burned through (4.185 seconds in the motion pictures) causing a rapid decay in discharge pressure at 4.212 seconds.

Possible causes:

- Undetected internal mechanical damage to the heat exchanger inlet tube may have occurred during reaming of the inlet for removal of weld drop-through. The damage may have been aggravated by a later readjustment of the inlet tube position.
- Damage to the heat exchanger may have occurred during an arc-welding rework operation on a coil support bracket.

(Test conducted on 6 December 1978)

<u>Damage</u>: Extensive damage occurred to the heat exchanger coil, oxidizer turbine discharge area of the hot-gas manifold, main injector and heat exchanger discharge line.

<u>References</u>: -Rocketdyne accident/incident report, Test 901-222 Engine 0007, Heat Exchanger Fire, RSS-8595-17, October 1979. -NASA Investigation Board Report, Part II.

Table IIB-29: Failure Investigation Summary for Each Test (Test 901-222)

Type of Test Incident and Damage Description (Comments, if applicable) Incident Number

Incident Occurring During A Transient:

Control	902-132	Incident: During the start transient the HPFP (Data entries for this anomaly should
Failure	(Engine	(High Pressure Fuel Pump) and LPFP (Low Pressure be determined in another study)
(MOV	0006)	Fuel Pump) boiled out, resulting in a LOX (Liquid
Mis-		Oxygen) rich cutoff. The LPFP and HPFP boil out
Indexed)		was attributed to the late HPFTP break away (.07 seconds)
-		and an early main LOX dome prime (approximately 1.5 seconds). The early prime was caused by a
		mis-clocking of the MOV (Main Oxidizer Valve) resulting in the MOV being 3.5% more open than
		indicated. Cutoff was initiated at 2.36 seconds from start time by low main combustion chamber

(Test conducted on 3 October 1978).

Damage: High pressure oxidizer and fuel turbine erosion; 136 main injector elements eroded between faceplates; and the hot-gas manifold liner eroded on the fuel preburner side.

pressure at ignition confirm and high pressure fuel turbine discharge temperature redline.

Reference: Rocketdyne data room records.

Table IIB-30: Failure Investigation Summary for Each Test (Test 902-132)

.

Type of Test Incident and Damage Incident Number Description (Comments, if applicable)

Incident Occurring During A Transient:

Injector Failure (Fuel Blockage)	750-160 (Engine 0110F)	Incident: The test was prematurely terminated (Data entries for this anomaly should at 3.16 seconds (from start time) by a HPFT be determined in another study) (High Pressure Fuel Turbine) discharge temperature redline. Data analysis, hardware condition and supporting laboratory tests identified the cause of the incident as EDM (Electrical Discharge Machining) water contamination of the fuel system upstream of the fuel preburner. The formation of ice during engine start resulted in fuel flow restriction in some fuel preburner elements.
		This restriction produced one or more abnormal high temperature combustion gas zones which caused turbine blade erosion and/or failure. The resulting decay in fuel flow to the engine produced excessive combustion gas mixture ratio and subsequent erosion damage. (Test conducted on 12 February 1982.)
		Damage: Post-test hardware inspection revealed severe erosion damage to the high pressure fuel and oxidizer turbines, main injector, main combustion chamber, nozzle, and hot-gas manifold.
		<u>References</u> : -Rocketdyne SSME Accident/Incident Report, Engine 0110F, Fuel Preburner Ice Incident, Test 750-160, RSS-8595-27, 17 May 1982. -NASA Investigation Report, SSME S/N 0110F, Part I, 23 July 1982.

.

• .

.

Type of Test Incident and Damage Incident Number Description (Comments, if applicable)

Incident Occurring During A Transient:

NPFTP	901-147	<u>Incident:</u> During throttle up from 70% rated	(Data entries for this anomaly should
Failure	(Engine	power level (RPL) to 95% RPL, the HPFTP seized,	be determined in another study)
(Power	0103)	causing speed and discharge pressure drops,	
Transfer	•••••	and high pressure fuel and oxidizer turbine	
Failure)		temperature rises. Cutoff was initiated due to a preburne	er boost pump accelerometer redline,
i di cai ey		at 31.36 seconds from start time.	

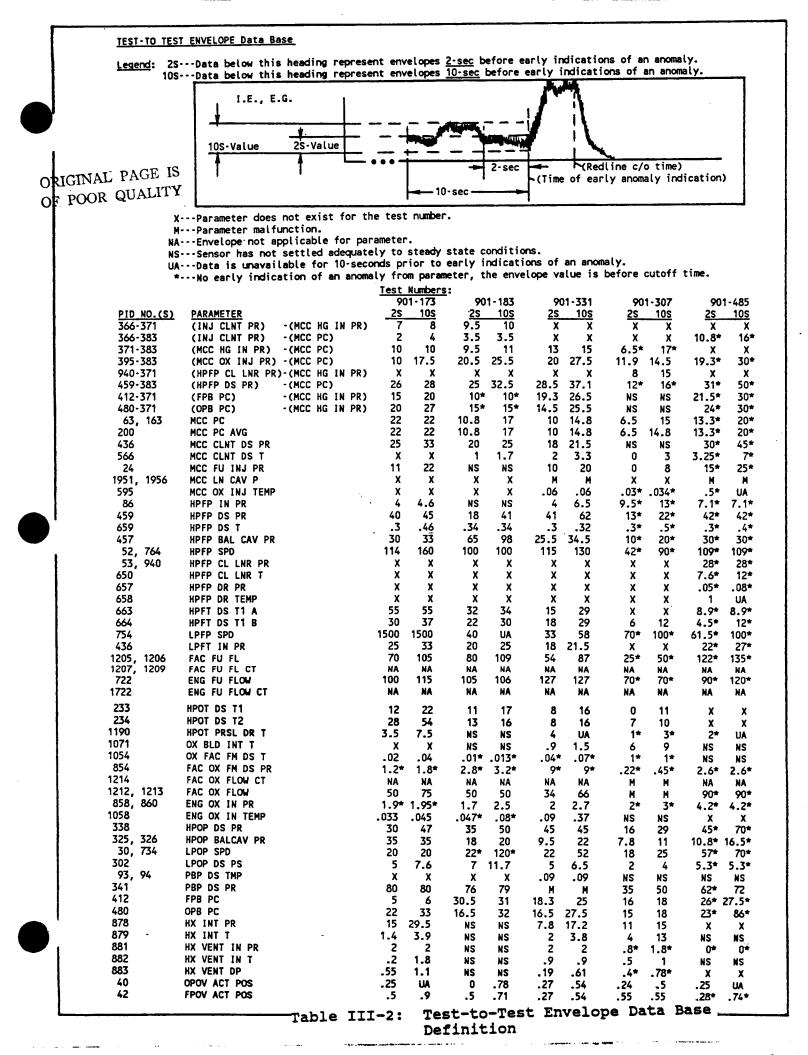
(Test conducted on 1 December 1977).

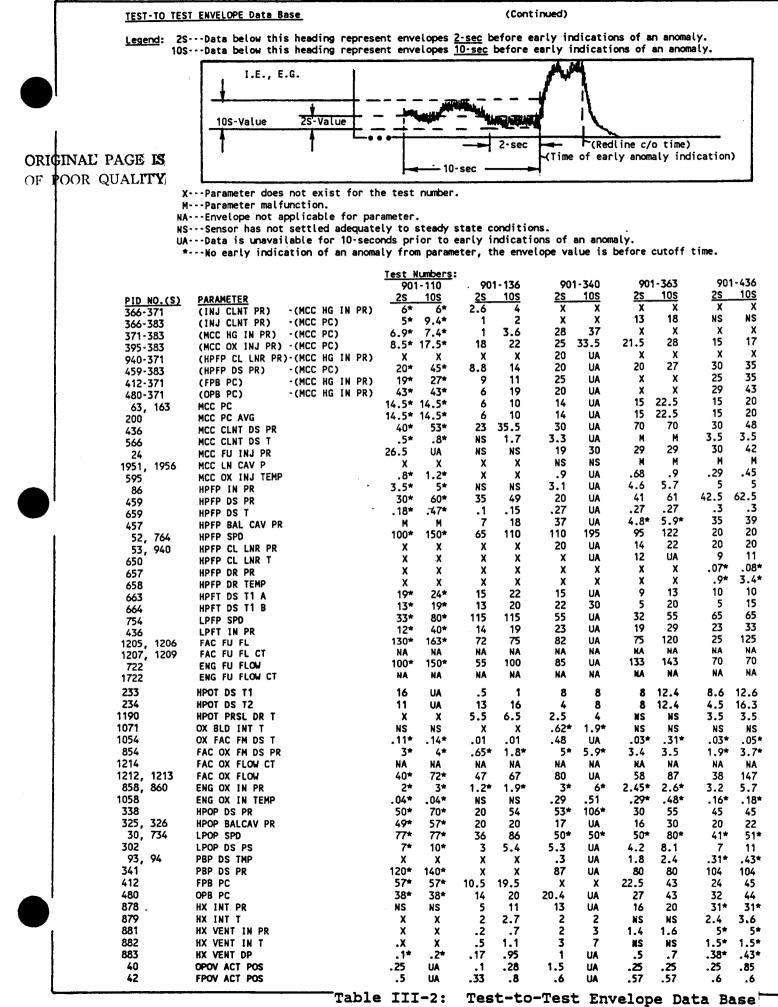
<u>Damage</u>: Extensive engine damage due to LOX rich shutdown; the main combustion chamber, main injector, and nozzle were eroded.

Reference: Rocketdyne data room records.

Table IIB-32: Failure Investigation Summary for Each Test (Test 901-147)

Summary of Sensor Standard Deviations:


LEGEND:


STD1-----Standard Deviation of envelopes (test-to-test) measured 2-sec before the anomaly (See Table III-2 for envelopes) STD2-----Standard Deviation of envelopes (test-to-test) measured 10-sec before the anomaly (see Table III-2 for envelopes) STD3-----Standard Deviation of data from average steady state value (see Table III-3).

ID-----Insufficient data for complete derivation. *-----Value could be larger if more test data is added to the appropriate data base.

PID NO.(S)	PARAMETER				STD1	<u>std2</u>	<u>std3</u>	
366-371		- (MCC	HG IN	PR)	2.48	2.24	1.08	
366-383	(INJ CLNT PR)	- (MCC	PC)		4.48	6.25	.632	
371-383	(MCC HG IN PR)	- (MCC	PC)		7.86	10.10	1.08	
395-383	(MCC OX INJ PR)	- (MCC	PC)		5.13	6.16	3.28	
940-371	(HPFP CL LNR PR)	- CMCC	HG IN	PR)	6.00	(10)	.640	
459-383	(HPFP DS PR)	- (MCC			7.06	11.29	7.75	
412-371	(FPB PC)		HG IN	PR)	5.78	8.81	4.73	
480-371			HG IN		10.37	10.04	3.2	
63, 163	NCC PC				4.43	3.89	3.25	
200	MCC PC AVG				4.43	3.91	2.13	
436	MCC CLNT DS PR				14.87	14.91	7.72	
566	MCC CLNT DS T				1.35	1.75		
24	MCC FU INJ PR				9.89	9.66		
1951, 1956	MCC LN CAV P				(ID)	(ID)	(ID)	
	MCC OX INJ TEMP				.324	.460	.072	
595	HPFP IN PR				2.02	2.70		
86 (50	HPFP DS PR				10.72	12.79		
459	HPFP DS T				.068	.106	.082	
659	HPFP BAL CAV PR				17.67	25.92		
457	HPPP BAL LAV PR				31.51	44.42		
52, 764	HPFP SPD				4.97	3.40	5.59	
53, 940	HPFP CL LNR PR				1.84	.5	2.48	
650	HPFP CL LNR T				.01	 0.	.012	
657	HPFP DR PR			s.	05	(1D)	.157	
658	HPFP DR TEMP				14.10	14.29		
663	HPFT DS T1 A				- 8.47	-8.16	3.74	
664	HPFT DS T1 B				433.8	469.45	17.35	
754	LPFP SPD					6.39		
436	LPFT IN PR				4.09	31.78		
1205, 1206	FAC FU FL				32.80			
1207, 1209	FAC FU FL CT						Not Applic 23.84	aDle)
722	ENG FU FLOW				23.60	26.68		- bla
1722	ENG FU FLOW CT				(Senso	r irace	Not Applic	able)
233	HPOT DS T1				4.83	5.89	0.	
234	HPOT DS T2				6.84	13.71	1.44	
1190	HPOT PRSL DR T				1.36	1.77	2.72	
1071	OX BLD INT T				2.47	3.45	.224	
1054	OX FAC FM DS T				.319	.315	.029	
854	FAC OX FM DS PR				2.41	2.28	.462	
1214	FAC OX FLOW CT						is not app	i i an bi a s
	FAC OX FLOW				18.02	27.31	16.94	(ICable)
858, 860	ENG OX IN PR				.83	1.39	.773	
1058	ENG OX IN TEMP				.11	.191	.046	•
338	HPOP DS PR				12.04		7.25	
325, 326	HPOP BALCAV PR					19.93		
30, 734	LPOP SPD				12.00 18.45	12.81	4.06	
302	LPOP DS PR					28.35	4.21	
93, 94	PBP DS TMP				1.60	2.55	3.49	
341	PBP DS PR				.684	1.02	.268	
412	FPB PC				23.95 14.04	26.33	16.1	
480	OPB PC					14.85	7.64	
878	WED FU				7.46	19.03	8.02	
					7 70		/ ~~	
870	HX INT PR				7.78	7.33	4.29	
879 881	HX INT PR HX INT T				.81	3.71	1.68	
881	HX INT PR HX INT T HX VENT IN PR				.81 1 <i>.</i> 47	3.71 1.41	1.68 .31	
881 882	HX INT PR HX INT T HX VENT IN PR HX VENT IN T				.81 1.47 .943	3.71 1.41 2.16	1.68 .31 .083	
881 882 883	HX INT PR HX INT T HX VENT IN PR HX VENT IN T HX VENT DP				.81 1.47 .943 .269	3.71 1.41 2.16 .282	1.68 .31 .083 .305	
881 882 883 40	HX INT PR HX INT T HX VENT IN PR HX VENT IN T HX VENT DP OPOV ACT POS				.81 1.47 .943 .269 .397	3.71 1.41 2.16 .282 .226	1.68 .31 .083 .305 .112	
881 882 883	HX INT PR HX INT T HX VENT IN PR HX VENT IN T HX VENT DP				.81 1.47 .943 .269	3.71 1.41 2.16 .282	1.68 .31 .083 .305	

Table III-1: Summary of Sensor Standard Deviations

(cont.)

Definition

TEST TO TEST ENVELOPE Data Base

(Continued)

etn1

CULS

Legend: AVG1---Data below this heading represent average envelope values 2-sec before early indications of an anomaly. AVG2---Data below this heading represent average envelope values <u>10-sec</u> before early indications of an anomaly. STD1---Data below this heading represent the standard deviation derived from the respective average envelope

AVC1

value AVG1 and the test-to-test envelopes of Table III-2. The STD1 data list are used in Table III-1. STD2---Data below this heading represent the standard deviation derived from the respective average envelope

AVC2

value AVG2 and the test-to-test envelopes of Table III-2. The STD2 data list are used in Table III-1.

ID-----Insufficient data for derivations.

PID NO.(S)	PARAMETER	AVG1	AVG2	<u>STD1</u>	<u>std2</u>	
366-371	(INJ CLNT PR) - (MCC HG IN PR)	6.28	7.	2.48	2.24	
366-383	(INJ CLNT PR) - (MCC PC)	5.88	8.82	4.48	6.25	
371-383	(MCC HG IN PR) -(MCC PC)	10.70	14.43	7.86	10.10	
395-383	(MCC OX INJ PR) - (MCC PC)	16.97	23.3	5.13	6.16	
940-371	(HPFP CL LNR PR)-(MCC HG IN PR)	14.	(ID)	6.00	(ID)	
459-383	(HPFP DS PR) - (MCC PC)	22.13	31.62	7.06	11.29	0 - - - -
412-371	(FPB PC) - (MCC HG IN PR)	17.98	22.79	5.78	8.81	ORIGINAL PAGE IS
480-371	(OPB PC) - (MCC HG IN PR)	21.44	28.93	10.37	10.04	OF DOOR OF
63, 163	MCC PC	12.71	17.31	4.43	3.89	OF POOR QUALITY
200	MCC PC AVG	12.71	17.29	4.43	3.91	-
436	MCC CLNT DS PR	31.78	41.38	14.87	14.91	
566	MCC CLNT DS T	1.94	3.04	1.35	1.75	
24	MCC FU INJ PR	17.56	25.14	9.89	9.66	
1951, 1956	MCC LN CAV P	(ID)	(1D)	(ID)	(ID)	
595	MCC OX INJ TEMP	.466	.529	.324	.460	
86	HPFP IN PR	5.1	6.7	2.02	2.70	
459	HPFP DS PR	32.25	49.39	10.72	12.79	
659	HPFP DS T	.266	.357	.068	.106	
457	HPFP BAL CAV PR	27.14	34.8	17.67	25.92	
52, 764	HPFP SPD	87.	118.60	31.51	44.42	
53, 940	HPFP CL LNR PR	20.5	23.33	4.97	3.40	
650	HPFP CL LNR T	9.53	11.5	1.84	.5	
657	HPFP DR PR	.06	.08	.01	0.	
	HPFP DR TEMP	.95	(1D)	.05	(1D)	
658	HPFT DS T1 A	19.88	24.49	14.10	14.29	
663	HPFT DS T1 B	13.85	22.4	8.47	8.16	
664	LPFP SPD	200.5	259.13	433.8	469.45	
754		19.56	28.44	4.09	6.39	
436 1205, 1206	LPFT IN PR FAC FU FL	73.50	107.67	32.80	31.78	
1/10 1/00	FAL FU FL	13.30	101.01	J2.00	21.70	
				at applicabl	-	
1207, 1209	FAC FU FL CT	(Senso	or trace r	ot applicabl		
1207, 1209 722	FAC FU FL CT Eng fu flow	(Senso 93.50	or trace r 111.22	23.60	26.68	
1207, 1209	FAC FU FL CT	(Senso 93.50 (Senso	or trace r 111.22 or trace r	23.60 not applicabl	26.68 e)	
1207, 1209 722	FAC FU FL CT Eng fu flow	(Senso 93.50 (Senso 8.01	or trace r 111.22 or trace r 12.5	23.60 not applicabl 4.83	26.68 e) 5.89	
1207, 1209 722 1722	FAC FU FL CT Eng fu flow Eng fu flow CT	(Senso 93.50 (Senso 8.01 10.72	or trace r 111.22 or trace r 12.5 18.59	23.60 not applicabl 4.83 6.84	26.68 e) 5.89 13.71	
1207, 1209 722 1722 233	FAC FU FL CT ENG FU FLOW ENG FU FLOW CT HPOT DS T1	(Senso 93.50 (Senso 8.01 10.72 3.14	or trace r 111.22 or trace r 12.5 18.59 4.9	23.60 not applicabl 4.83 6.84 1.36	26.68 e) 5.89 13.71 1.77	
1207, 1209 722 1722 233 234 1190 1071	FAC FU FL CT ENG FU FLOW ENG FU FLOW CT HPOT DS T1 HPOT DS T2 HPOT PRSL DR T OX BLD INT T	(Senso 93.50 (Senso 8.01 10.72 3.14 2.51	or trace r 111.22 or trace r 12.5 18.59 4.9 4.13	23.60 not applicabl 4.83 6.84 1.36 2.47	26.68 e) 5.89 13.71 1.77 3.45	
1207, 1209 722 1722 233 234 1190	FAC FU FL CT ENG FU FLOW ENG FU FLOW CT HPOT DS T1 HPOT DS T2 HPOT PRSL DR T	(Senso 93.50 (Senso 8.01 10.72 3.14 2.51 .192	or trace r 111.22 or trace r 12.5 18.59 4.9 4.13 .204	23.60 not applicabl 4.83 6.84 1.36 2.47 .319	26.68 e) 5.89 13.71 1.77 3.45 .315	
1207, 1209 722 1722 233 234 1190 1071	FAC FU FL CT ENG FU FLOW ENG FU FLOW CT HPOT DS T1 HPOT DS T2 HPOT PRSL DR T OX BLD INT T	(Senso 93.50 (Senso 8.01 10.72 3.14 2.51 .192 2.98	or trace r 111.22 or trace r 12.5 18.59 4.9 4.13 .204 3.60	23.60 not applicabl 4.83 6.84 1.36 2.47 .319 2.41	26.68 e) 5.89 13.71 1.77 3.45 .315 2.28	
1207, 1209 722 1722 233 234 1190 1071 1054	FAC FU FL CT ENG FU FLOW ENG FU FLOW CT HPOT DS T1 HPOT DS T2 HPOT PRSL DR T OX BLD INT T OX FAC FM DS T	(Senso 93.50 (Senso 8.01 10.72 3.14 2.51 .192 2.98 (Senso	or trace r 111.22 or trace r 12.5 18.59 4.9 4.13 .204 3.60 or trace	23.60 not applicabl 4.83 6.84 1.36 2.47 .319 2.41 is not applic	26.68 e) 5.89 13.71 1.77 3.45 .315 2.28 cable)	
1207, 1209 722 1722 233 234 1190 1071 1054 854	FAC FU FL CT ENG FU FLOW ENG FU FLOW CT HPOT DS T1 HPOT DS T2 HPOT PRSL DR T OX BLD INT T OX FAC FM DS T FAC OX FM DS PR	(Senso 93.50 (Senso 8.01 10.72 3.14 2.51 .192 2.98 (Senso 54.11	or trace r 111.22 or trace r 12.5 18.59 4.9 4.13 .204 3.60 or trace 81.75	23.60 not applicabl 4.83 6.84 1.36 2.47 .319 2.41 is not applic 18.02	26.68 e) 5.89 13.71 1.77 3.45 .315 2.28 :able) 27.31	
1207, 1209 722 1722 233 234 1190 1071 1054 854 1214	FAC FU FL CT ENG FU FLOW ENG FU FLOW CT HPOT DS T1 HPOT DS T2 HPOT PRSL DR T OX BLD INT T OX FAC FM DS T FAC OX FM DS PR FAC OX FLOW CT	(Senso 93.50 (Senso 8.01 10.72 3.14 2.51 .192 2.98 (Senso 54.11 2.37	br trace r 111.22 br trace r 12.5 18.59 4.9 4.13 .204 3.60 br trace 81.75 3.36	23.60 not applicabl 4.83 6.84 1.36 2.47 .319 2.41 is not applic 18.02 .83	26.68 e) 5.89 13.71 1.77 3.45 .315 2.28 :able) 27.31 1.39	
1207, 1209 722 1722 233 234 1190 1071 1054 854 1214 1212, 1213 858, 860 1058	FAC FU FL CT ENG FU FLOW ENG FU FLOW CT HPOT DS T1 HPOT DS T2 HPOT PRSL DR T OX FAC FM DS T FAC OX FM DS PR FAC OX FLOW CT FAC OX FLOW	(Senso 93.50 (Senso 3.14 2.51 .192 2.98 (Senso 54.11 2.37 .136	br trace r 111.22 br trace r 12.5 18.59 4.9 4.13 .204 9 4.13 .204 5 81.75 3.36 .244	23.60 not applicabl 4.83 6.84 1.36 2.47 .319 2.41 is not applic 18.02 .83 .11	26.68 e) 5.89 13.71 1.77 3.45 .315 2.28 :able) 27.31 1.39 .191	
1207, 1209 722 1722 233 234 1190 1071 1054 854 1214 1212, 1213 858, 860 1058 338	FAC FU FL CT ENG FU FLOW ENG FU FLOW CT HPOT DS T1 HPOT DS T2 HPOT PRSL DR T OX BLD INT T OX FAC FM DS T FAC OX FLOW CT FAC OX FLOW ENG OX IN PR	(Senso 93.50 (Senso 3.14 2.51 .192 2.98 (Senso 54.11 2.37 .136 36.9	br trace r 111.22 br trace r 12.5 18.59 4.9 4.13 .204 5.60 trace r 3.60 br trace r 3.36 .244 57.1	23.60 not applicabl 4.83 6.84 1.36 2.47 .319 2.41 is not applic 18.02 .83 .11 12.04	26.68 e) 5.89 13.71 1.77 3.45 .315 2.28 :able) 27.31 1.39 .191 19.93	
1207, 1209 722 1722 233 234 1190 1071 1054 854 1214 1212, 1213 858, 860 1058	FAC FU FL CT ENG FU FLOW ENG FU FLOW CT HPOT DS T1 HPOT DS T2 HPOT PRSL DR T OX BLD INT T OX FAC FM DS T FAC OX FLOW CT FAC OX FLOW ENG OX IN PR . ENG OX IN TEMP	(Senso 93.50 (Senso 3.14 2.51 .192 2.98 (Senso 54.11 2.37 .136 36.9 20.3	br trace r 111.22 br trace r 12.5 18.59 4.9 4.13 .204 3.60 br trace 81.75 3.36 .244 57.1 25.94	23.60 not applicabl 4.83 6.84 1.36 2.47 .319 2.41 is not applic 18.02 .83 .11 12.04 12.00	26.68 e) 5.89 13.71 1.77 3.45 .315 2.28 :able) 27.31 1.39 .191 19.93 12.81	
1207, 1209 722 1722 233 234 1190 1071 1054 854 1214 1212, 1213 858, 860 1058 338	FAC FU FL CT ENG FU FLOW ENG FU FLOW CT HPOT DS T1 HPOT DS T2 HPOT PRSL DR T OX BLD INT T OX FAC FM DS T FAC OX FM DS PR FAC OX FLOW CT FAC OX FLOW ENG OX IN PR - ENG OX IN TEMP HPOP DS PR	(Senso 93.50 (Senso 8.01 10.72 3.14 2.51 .192 2.98 (Senso 54.11 2.37 .136 36.9 20.3 39.3	br trace r 111.22 br trace r 12.5 18.59 4.9 4.13 .204 3.60 br trace 81.75 3.36 .244 57.1 25.94 63.1	23.60 not applicabl 4.83 6.84 1.36 2.47 .319 2.41 18.02 .83 .11 12.04 12.00 18.45	26.68 e) 5.89 13.71 1.77 3.45 .315 2.28 :able) 27.31 1.39 .191 19.93 12.81 28.35	
1207, 1209 722 1722 233 234 1190 1071 1054 854 1214 1212, 1213 858, 860 1058 338 325, 326 30, 734 302	FAC FU FL CT ENG FU FLOW CT HPOT DS T1 HPOT DS T2 HPOT PRSL DR T OX BLD INT T OX FAC FM DS T FAC OX FM DS PR FAC OX FLOW CT FAC OX FLOW ENG OX IN PR ENG OX IN TEMP HPOP DS PR HPOP BALCAV PR	(Senso 93.50 (Senso 8.01 10.72 3.14 2.51 .192 2.98 (Senso 54.11 2.37 .136 36.9 20.3 39.3 5.08	br trace r 111.22 br trace r 12.5 18.59 4.9 4.13 .204 3.60 br trace r 81.75 3.36 .244 57.1 25.94 63.1 7.73	23.60 not applicabl 4.83 6.84 1.36 2.47 .319 2.41 is not applic 18.02 .83 .11 12.04 12.00 18.45 1.60	26.68 e) 5.89 13.71 1.77 3.45 .315 2.28 table) 27.31 1.39 .191 19.93 12.81 28.35 2.55	
1207, 1209 722 1722 233 234 1190 1071 1054 854 1214 1212, 1213 858, 860 1058 338 325, 326 30, 734	FAC FU FL CT ENG FU FLOW CT HPOT DS T1 HPOT DS T2 HPOT PRSL DR T OX BLD INT T OX FAC FM DS T FAC OX FM DS PR FAC OX FLOW CT FAC OX FLOW ENG OX IN TEMP HPOP DS PR HPOP BALCAV PR LPOP SPD	(Senso 93.50 (Senso 8.01 10.72 3.14 2.51 .192 2.98 (Senso 54.11 2.37 .136 36.9 20.3 39.3 5.08 .625	br trace r 111.22 br trace r 12.5 18.59 4.9 4.13 .204 3.60 br trace 81.75 3.36 .244 57.1 25.94 63.1 7.73 .973	23.60 not applicabl 4.83 6.84 1.36 2.47 .319 2.41 is not applic 18.02 .83 .11 12.04 12.00 18.45 1.60 .684	26.68 e) 5.89 13.71 1.77 3.45 .315 2.28 cable) 27.31 1.39 .191 19.93 12.81 28.35 2.55 1.02	
1207, 1209 722 1722 233 234 1190 1071 1054 854 1214 1212, 1213 858, 860 1058 338 325, 326 30, 734 302	FAC FU FL CT ENG FU FLOW CT HPOT DS T1 HPOT DS T2 HPOT PRSL DR T OX BLD INT T OX FAC FM DS T FAC OX FM DS PR FAC OX FLOW CT FAC OX FLOW CT FAC OX FLOW ENG OX IN PR ENG OX IN TEMP HPOP DS PR HPOP BALCAV PR LPOP SPD LPOP DS PR	(Senso 93.50 (Senso 8.01 10.72 3.14 2.51 .192 2.98 (Senso 54.11 2.37 .136 36.9 20.3 39.3 5.08 .625 80.5	br trace r 111.22 br trace r 12.5 18.59 4.9 4.13 .204 3.60 br trace 81.75 3.36 .244 57.1 25.94 63.1 7.73 .973 86.43	23.60 not applicabl 4.83 6.84 1.36 2.47 .319 2.41 is not applic 18.02 .83 .11 12.04 12.00 18.45 1.60 .684 23.95	26.68 e) 5.89 13.71 1.77 3.45 .315 2.28 cable) 27.31 1.39 .191 19.93 12.81 19.93 12.81 28.35 2.55 1.02 26.33	
1207, 1209 722 1722 233 234 1190 1071 1054 854 1214 1212, 1213 858, 860 1058 338 325, 326 30, 734 302 93, 94 341 412	FAC FU FL CT ENG FU FLOW ENG FU FLOW CT HPOT DS T1 HPOT DS T2 HPOT PRSL DR T OX BLD INT T OX FAC FM DS T FAC OX FLOW CT FAC OX FLOW ENG OX IN PR ENG OX IN PR ENG OX IN TEMP HPOP DS PR HPOP DS PR HPOP DS TMP PBP DS TMP PBP DS PR FPB PC	(Senso 93.50 (Senso 8.01 10.72 3.14 2.51 .192 2.98 (Senso 54.11 2.37 .136 36.9 20.3 39.3 5.08 .625 80.5 23.31	br trace r 111.22 br trace r 12.5 18.59 4.9 4.13 .204 3.60 br trace r 81.75 3.36 .244 57.1 25.94 63.1 7.73 .973 86.43 30.22	23.60 not applicabl 4.83 6.84 1.36 2.47 .319 2.41 is not applic 18.02 .83 .11 12.04 12.00 18.45 1.60 .684 23.95 14.04	26.68 e) 5.89 13.71 1.77 3.45 .315 2.28 27.31 1.39 .191 19.93 12.81 28.35 2.55 1.02 26.33 14.85	
1207, 1209 722 1722 233 234 1190 1071 1054 854 1214 1212, 1213 858, 860 1058 338 325, 326 30, 734 302 93, 94 341 412 480	FAC FU FL CT ENG FU FLOW ENG FU FLOW CT HPOT DS T1 HPOT DS T2 HPOT PRSL DR T OX BLD INT T OX FAC FM DS T FAC OX FLOW CT FAC OX FLOW ENG OX IN PR ENG OX IN PR ENG OX IN TEMP HPOP DS PR HPOP BALCAV PR LPOP SPD LPOP DS PR PBP DS TMP PBP DS PR FPB PC OPB PC	(Senso 93.50 (Senso 8.01 10.72 3.14 2.51 .192 2.98 (Senso 54.11 2.37 .136 36.9 20.3 39.3 5.08 .625 80.5 23.31 22.44	br trace r 111.22 br trace r 12.5 18.59 4.9 4.13 .204 3.60 br trace r 81.75 3.36 .244 57.1 25.94 63.1 7.73 .973 86.43 30.22 37.94	23.60 not applicabl 4.83 6.84 1.36 2.47 .319 2.41 is not applic 18.02 .83 .11 12.04 12.00 18.45 1.60 .684 23.95 14.04 7.46	26.68 e) 5.89 13.71 1.77 3.45 2.28 2.28 27.31 1.39 .191 19.93 12.81 28.35 2.55 1.02 26.33 14.85 19.03	
1207, 1209 722 1722 233 234 1190 1071 1054 854 1214 1212, 1213 858, 860 1058 338 325, 326 30, 734 302 93, 94 341 412 480 878	FAC FU FL CT ENG FU FLOW ENG FU FLOW CT HPOT DS T1 HPOT DS T2 HPOT PRSL DR T OX BLD INT T OX FAC FM DS T FAC OX FM DS PR FAC OX FLOW CT FAC OX FLOW ENG OX IN PR ENG OX IN TEMP HPOP DS PR HPOP BALCAV PR LPOP SPD LPOP DS PR PBP DS TMP PBP DS PR FPB PC OPB PC HX INT PR	(Senso 93.50 (Senso 3.14 2.51 .192 2.98 (Senso 54.11 2.37 .136 36.9 20.3 39.3 5.08 .625 80.5 23.31 22.44 14.11	br trace r 111.22 br trace r 12.5 18.59 4.13 .204 4.13 .204 57.1 25.94 63.1 7.73 86.43 30.22 37.94 20.62	23.60 not applicabl 4.83 6.84 1.36 2.47 .319 2.41 is not applic 18.02 .83 .11 12.04 12.00 18.45 1.60 .684 23.95 14.04 7.46 7.78	26.68 e) 13.71 1.77 3.45 .315 2.28 :able) 27.31 19.93 12.81 28.35 2.55 1.02 26.33 14.85 19.03 7.33	
1207, 1209 722 1722 233 234 1190 1071 1054 854 1214 1212, 1213 858, 860 1058 338 325, 326 30, 734 302 93, 94 341 412 480 878 879	FAC FU FL CT ENG FU FLOW ENG FU FLOW CT HPOT DS T1 HPOT DS T2 HPOT PRSL DR T OX BLD INT T OX FAC FM DS T FAC OX FM DS PR FAC OX FLOW CT FAC OX FLOW ENG OX IN PR ENG OX IN TEMP HPOP DS PR HPOP BALCAV PR LPOP SPD LPOP DS PR PBP DS TMP PBP DS TMP PBP DS PR FPB PC OPB PC HX INT PR HX INT T	(Senso 93.50 (Senso 8.01 10.72 3.14 2.51 .192 2.98 (Senso 54.11 2.37 .136 36.9 20.3 39.3 5.08 .625 80.5 23.31 22.44 14.11 2.30	br trace r 111.22 or trace r 12.5 18.59 4.9 4.13 .204 3.06 or trace 81.75 3.36 .244 57.1 25.94 63.1 7.73 .973 86.43 30.22 37.94 20.62 4.83	23.60 not applicabl 4.83 6.84 1.36 2.47 .319 2.41 is not applic 18.02 .83 .11 12.04 12.00 18.45 1.60 .684 23.95 14.04 7.46 7.78 .81	26.68 e) 13.71 1.77 3.45 .315 2.28 27.31 1.39 .191 19.93 12.81 28.35 2.55 1.02 26.33 14.85 19.03 7.33 3.71	
1207, 1209 722 1722 233 234 1190 1071 1054 854 1214 1212, 1213 858, 860 1058 338 325, 326 30, 734 302 93, 94 341 412 480 878 879 881	FAC FU FL CT ENG FU FLOW ENG FU FLOW CT HPOT DS T1 HPOT DS T2 HPOT PRSL DR T OX FAC FM DS T FAC OX FM DS PR FAC OX FM DS PR FAC OX FLOW ENG OX IN PR HPOP DS PR HPOP BALCAV PR LPOP SPD LPOP DS PR PBP DS TMP PBP DS PR FPB PC OPB PC HX INT PR HX INT T HX VENT IN PR	(Senso 93.50 (Senso 8.01 10.72 3.14 2.51 .192 2.98 (Senso 54.11 2.37 .136 36.9 20.3 39.3 5.08 .625 80.5 23.31 22.44 14.11 2.30 1.68	br trace r 111.22 or trace r 12.5 18.59 4.9 4.13 .204 3.06 or trace 81.75 3.36 .244 57.1 25.94 63.1 7.73 .973 86.43 30.22 37.94 20.62 4.83 2.01	23.60 not applicabl 4.83 6.84 1.36 2.47 .319 2.41 is not applic 18.02 .83 .11 12.04 12.00 18.45 1.60 .684 23.95 14.04 7.46 7.78 .81 1.47	26.68 e) 5.89 13.71 1.77 3.45 .315 2.28 table) 27.31 1.39 .191 19.93 12.81 28.35 2.55 1.02 26.33 14.85 19.03 7.33 3.71 1.41	
1207, 1209 722 1722 233 234 1190 1071 1054 854 1214 1212, 1213 858, 860 1058 338 325, 326 30, 734 302 93, 94 341 412 480 878 879 881 882	FAC FU FL CT ENG FU FLOW ENG FU FLOW CT HPOT DS T1 HPOT DS T2 HPOT PRSL DR T OX FAC FM DS T FAC OX FM DS PR FAC OX FLOW CT FAC OX FLOW ENG OX IN PR ENG OX IN TEMP HPOP DS PR HPOP DS PR HPOP DS PR PBP DS TMP PBP DS PR FPB PC OPB PC HX INT PR HX VENT IN PR HX VENT IN PR HX VENT IN T	(Senso 93.50 (Senso 8.01 10.72 3.14 2.51 .192 2.98 (Senso 54.11 2.37 .136 36.9 20.3 39.3 5.08 .625 80.5 23.31 22.44 14.11 2.30 1.68 1.1	br trace r 111.22 br trace r 12.5 18.59 4.9 4.13 .204 3.60 br trace 81.75 3.36 .244 57.1 25.94 63.1 7.73 .973 86.43 30.22 37.94 20.62 4.83 2.01 2.22	23.60 not applicabl 4.83 6.84 1.36 2.47 .319 2.41 is not applic 18.02 .83 .11 12.04 12.00 18.45 1.60 .684 23.95 14.04 7.46 7.78 .81 1.47 .943	26.68 e) 5.89 13.71 1.77 3.45 .315 2.28 cable) 27.31 1.39 .191 19.93 12.81 28.35 2.55 1.02 26.33 14.85 19.03 7.33 3.71 1.41 2.16	
1207, 1209 722 1722 233 234 1190 1071 1054 854 1214 1212, 1213 858, 860 1058 338 325, 326 30, 734 302 93, 94 341 412 480 878 879 881 882 883	FAC FU FL CT ENG FU FLOW ENG FU FLOW CT HPOT DS T1 HPOT DS T2 HPOT PRSL DR T OX FAC FM DS T FAC OX FM DS PR FAC OX FLOW CT FAC OX FLOW ENG OX IN PR ENG OX IN TEMP HPOP DS PR HPOP DS PR HPOP DS PR PBP DS TMP PBP DS TMP PBP DS PR FPB PC OPB PC HX INT T HX VENT IN PR HX VENT IN T HX VENT IN T	(Senso 93.50 (Senso 8.01 10.72 3.14 2.51 .192 2.98 (Senso 54.11 2.37 .136 36.9 20.3 39.3 5.08 .625 80.5 23.31 22.44 14.11 2.30 1.68 1.1 .411	br trace r 111.22 br trace r 12.5 18.59 4.9 4.13 .204 3.60 br trace 81.75 3.36 .244 57.1 25.94 63.1 7.73 .973 86.43 30.22 37.94 20.62 4.83 2.01 2.22 .681	23.60 not applicabl 4.83 6.84 1.36 2.47 .319 2.41 is not applic 18.02 .83 .11 12.04 12.00 18.45 1.60 .684 23.95 14.04 7.46 7.78 .81 1.47 .943 .269	26.68 e) 5.89 13.71 1.77 3.45 .315 2.28 cable) 27.31 1.39 .191 19.93 12.81 28.35 2.55 1.02 26.33 14.85 19.03 7.33 3.71 1.41 2.16 .282	
1207, 1209 722 1722 233 234 1190 1071 1054 854 1214 1212, 1213 858, 860 1058 338 325, 326 30, 734 302 93, 94 341 412 480 878 879 881 882 883 40	FAC FU FL CT ENG FU FLOW ENG FU FLOW CT HPOT DS T1 HPOT DS T2 HPOT PRSL DR T OX BLD INT T OX FAC FM DS T FAC OX FLOW CT FAC OX FLOW CT FAC OX FLOW ENG OX IN PR ENG OX IN TEMP HPOP DS PR HPOP DS PR HPOP DS PR PBP DS TMP PBP DS TMP PBP DS PR FPB PC OPB PC HX INT T HX VENT IN PR HX VENT IN T HX VENT DP OPOV ACT POS	(Senso 93.50 (Senso 8.01 10.72 3.14 2.51 .192 2.98 (Senso 54.11 2.37 .136 36.9 20.3 3.9.3 5.08 .625 80.5 23.31 22.44 14.11 2.30 1.68 1.1 .411 .336	br trace r 111.22 r trace r 12.5 18.59 4.9 4.13 .204 3.60 or trace 81.75 3.36 .244 57.1 25.94 63.1 7.73 .973 86.43 30.22 37.94 20.62 4.83 2.01 2.22 .681 .533	23.60 not applicabl 4.83 6.84 1.36 2.47 .319 2.41 is not applic 18.02 .83 .11 12.04 12.00 18.45 1.60 .684 23.95 14.04 7.46 7.78 .81 1.47 .943 .269 .397	26.68 e) 5.89 13.71 1.77 3.45 .315 2.28 27.31 1.39 .191 19.93 12.81 28.35 2.55 1.02 26.33 14.85 19.03 7.33 3.71 1.41 2.16 .282 .226	
1207, 1209 722 1722 233 234 1190 1071 1054 854 1214 1212, 1213 858, 860 1058 338 325, 326 30, 734 302 93, 94 341 412 480 878 879 881 882 883	FAC FU FL CT ENG FU FLOW ENG FU FLOW CT HPOT DS T1 HPOT DS T2 HPOT PRSL DR T OX FAC FM DS T FAC OX FM DS PR FAC OX FLOW CT FAC OX FLOW ENG OX IN PR ENG OX IN TEMP HPOP DS PR HPOP DS PR HPOP DS PR PBP DS TMP PBP DS TMP PBP DS PR FPB PC OPB PC HX INT T HX VENT IN PR HX VENT IN T HX VENT IN T	(Senso 93.50 (Senso 8.01 10.72 3.14 2.51 .192 2.98 (Senso 54.11 2.37 .136 36.9 20.3 39.3 5.08 .625 80.5 23.31 22.44 14.11 2.30 1.68 1.1 .411	br trace r 111.22 br trace r 12.5 18.59 4.9 4.13 .204 3.60 br trace 81.75 3.36 .244 57.1 25.94 63.1 7.73 .973 86.43 30.22 37.94 20.62 4.83 2.01 2.22 .681	23.60 not applicabl 4.83 6.84 1.36 2.47 .319 2.41 is not applic 18.02 .83 .11 12.04 12.00 18.45 1.60 .684 23.95 14.04 7.46 7.78 .81 1.47 .943 .269	26.68 e) 5.89 13.71 1.77 3.45 .315 2.28 cable) 27.31 1.39 .191 19.93 12.81 28.35 2.55 1.02 26.33 14.85 19.03 7.33 3.71 1.41 2.16 .282	

(cont.)

Table III-2: Test-to-Test Envelope Data Base Definition

Data base for time sliced value deviations from the average steady-state sensor value

I.E. E.G.

ORIGINAL PROF 13 OF POOR QUALITY

.

Legend: DEV1---Data below this heading represent the standard deviation for values taken every 20 msec over a 5-sec interval. These data were taken from Test 901-484 and derived from NTI (New Technology Inc.) of Huntsville Alabama.

DEV2---Data below this heading represent the standard deviation for values taken every 100 msec over a 1-sec interval. These data were taken from Test 901-436, 901-307, and 901-173. STD3---Data below this heading represent the data summarized in Table III-1 STD3= DEV1, If DEV1 is unavailable, STD3= DEV2.

UNAV---Data is unavailable.

PID NO.(S)	PARAMETER	<u>DEV2</u>	DEV1	<u>std3</u>
366-371	(INJ CLNT PR) - (MCC HG IN PR)	1.08	UNAV	1.08
366-383	(INJ CLNT PR) - (MCC PC)	.632	UNAV	.632
	(MCC HG IN PR) - (MCC PC)	1.08	UNAV	1.08
371-383	• • • • •	3.28	UNAV	3.28
395-383	(MCC OX INJ PR) - (MCC PC)			.640
940-371	(HPFP CL LNR PR)-(MCC HG IN PR)	.640	UNAV	
459-383	(HPFP DS PR) - (MCC PC)	7.75	UNAV	7.75
412-371	(FPB PC) - (MCC HG IN PR)	4.73	UNAV	4.73
480-371	(OPB PC) - (MCC HG IN PR)	3.2	UNAV	3.2
63, 163	MCC PC	3.25	UNAV	3.25
	MCC PC AVG	3.13	UNAV	2.13
200		7.72	UNAV	7.72
436	MCC CLNT DS PR			1.05
566	MCC CLNT DS T	1.05	UNAV	
24	MCC FU INJ PR	8.20	UNAV	8.20
1951, 1956	MCC LN CAV P	UNAV	UNAV	UNAV
595	MCC OX INJ TEMP	.06	.072	.072
86	HPFP IN PR	1.01	1.01	1.01
459	HPFP DS PR	10.25	10.50	10.50
	HPFP DS T	.081	.082	.082
659		8.43	10.15	10.15
457	HPFP BAL CAV PR			
52,764	HPFP SPD	5.64	30.70	30.70
53, 940	HPFP CL LNR PR	5.59	UNAV	5.59
650	HPFP CL LNR T	1.97	2.48	2.48
657	HPFP DR PR	.012	.012	.012
658	HPFP DR TEMP	. 157	UNAV	. 157
663	HPFT DS T1 A	3.56	UNAV	3.56
		3.74	UNAV	- 3.74
664	HPFT DS T1 B	12.71	17.35	17.35
754	LPFP SPD			(= (
436	LPFT IN PR	4.24	6.56	6.56
436		4.24 2.11	6.56 2.10	2.10
436 1205, 1206	LPFT IN PR	4.24 2.11	6.56	2.10 applicable)
436 1205, 1206 1207, 1209	LPFT IN PR Fac fu fl Fac fu fl ct	4.24 2.11	6.56 2.10	2.10
436 1205, 1206 1207, 1209 722	LPFT IN PR FAC FU FL FAC FU FL CT ENG FU FLOW	4.24 2.11 (Sensor 21.96	6.56 2.10 trace is not	2.10 applicable) 23.84
436 1205, 1206 1207, 1209 722 1722	LPFT IN PR FAC FU FL FAC FU FL CT ENG FU FLOW ENG FU FLOW CT	4.24 2.11 (Sensor 21.96 (Sensor	6.56 2.10 trace is not 23.84 trace is not	2.10 applicable) 23.84 applicable)
436 1205, 1206 1207, 1209 722 1722 233	LPFT IN PR FAC FU FL FAC FU FL CT ENG FU FLOW	4.24 2.11 (Sensor 21.96 (Sensor 0.	6.56 2.10 trace is not 23.84 trace is not UNAV	2.10 applicable) 23.84 applicable) 0.
436 1205, 1206 1207, 1209 722 1722	LPFT IN PR FAC FU FL FAC FU FL CT ENG FU FLOW ENG FU FLOW CT	4.24 2.11 (Sensor 21.96 (Sensor 0. 1.44	6.56 2.10 trace is not 23.84 trace is not UNAV UNAV	2.10 applicable) 23.84 applicable) 0. 1.44
436 1205, 1206 1207, 1209 722 1722 233 234	LPFT IN PR FAC FU FL FAC FU FL CT ENG FU FLOW ENG FU FLOW CT HPOT DS T1	4.24 2.11 (Sensor 21.96 (Sensor 0. 1.44 .855	6.56 2.10 trace is not 23.84 trace is not UNAV UNAV 2.72	2.10 applicable) 23.84 applicable) 0. 1.44 2.72
436 1205, 1206 1207, 1209 722 1722 233 234 1190	LPFT IN PR FAC FU FL FAC FU FL CT ENG FU FLOW ENG FU FLOW CT HPOT DS T1 HPOT DS T2 HPOT PRSL DR T	4.24 2.11 (Sensor 21.96 (Sensor 0. 1.44 .855 .224	6.56 2.10 trace is not 23.84 trace is not UNAV UNAV 2.72 UNAV	2.10 applicable) 23.84 applicable) 0. 1.44 2.72 .224
436 1205, 1206 1207, 1209 722 1722 233 234 1190 1071	LPFT IN PR FAC FU FL FAC FU FL CT ENG FU FLOW ENG FU FLOW CT HPOT DS T1 HPOT DS T2 HPOT PRSL DR T OX BLD INT T	4.24 2.11 (Sensor 21.96 (Sensor 0. 1.44 .855	6.56 2.10 trace is not 23.84 trace is not UNAV UNAV 2.72	2.10 applicable) 23.84 applicable) 0. 1.44 2.72 .224 .029
436 1205, 1206 1207, 1209 722 1722 233 234 1190 1071 1054	LPFT IN PR FAC FU FL FAC FU FL CT ENG FU FLOW ENG FU FLOW CT HPOT DS T1 HPOT DS T2 HPOT PRSL DR T OX BLD INT T OX FAC FM DS T	4.24 2.11 (Sensor 21.96 (Sensor 0. 1.44 .855 .224 .0064	6.56 2.10 trace is not 23.84 trace is not UNAV UNAV 2.72 UNAV	2.10 applicable) 23.84 applicable) 0. 1.44 2.72 .224
436 1205, 1206 1207, 1209 722 1722 233 234 1190 1071 1054 854	LPFT IN PR FAC FU FL FAC FU FL CT ENG FU FLOW ENG FU FLOW CT HPOT DS T1 HPOT DS T2 HPOT PRSL DR T OX BLD INT T OX FAC FM DS T FAC OX FM DS PR	4.24 2.11 (Sensor 21.96 (Sensor 0. 1.44 .855 .224 .0064 .293	6.56 2.10 trace is not 23.84 trace is not UNAV UNAV 2.72 UNAV .029 .462	2.10 applicable) 23.84 applicable) 0. 1.44 2.72 .224 .029 .462
436 1205, 1206 1207, 1209 722 1722 233 234 1190 1071 1054 854 1214	LPFT IN PR FAC FU FL FAC FU FL CT ENG FU FLOW ENG FU FLOW CT NPOT DS T1 HPOT DS T2 HPOT PRSL DR T OX FAC FM DS T FAC OX FM DS PR FAC OX FLOW CT	4.24 2.11 (Sensor 21.96 (Sensor 0. 1.44 .855 .224 .0064 .293 (Sensor	6.56 2.10 trace is not 23.84 trace is not UNAV UNAV 2.72 UNAV .029 .462 trace is not	2.10 applicable) 23.84 applicable) 0. 1.44 2.72 .224 .029 .462
436 1205, 1206 1207, 1209 722 1722 233 234 1190 1071 1054 854 1214 1212, 1213	LPFT IN PR FAC FU FL FAC FU FL CT ENG FU FLOW ENG FU FLOW CT HPOT DS T1 HPOT DS T2 HPOT PRSL DR T OX FAC FM DS T FAC OX FM DS PR FAC OX FLOW CT FAC OX FLOW	4.24 2.11 (Sensor 21.96 (Sensor 0. 1.44 .855 .224 .0064 .293 (Sensor 6.78	6.56 2.10 trace is not 23.84 trace is not UNAV UNAV 2.72 UNAV .029 .462 trace is not 16.94	2.10 applicable) 23.84 applicable) 0. 1.44 2.72 .224 .029 .462 applicable) 16.94
436 1205, 1206 1207, 1209 722 1722 233 234 1190 1071 1054 854 1214	LPFT IN PR FAC FU FL FAC FU FL CT ENG FU FLOW ENG FU FLOW CT NPOT DS T1 HPOT DS T2 HPOT PRSL DR T OX FAC FM DS T FAC OX FM DS PR FAC OX FLOW CT	4.24 2.11 (Sensor 21.96 (Sensor 0. 1.44 .855 .224 .0064 .293 (Sensor 6.78 .590	6.56 2.10 trace is not 23.84 trace is not UNAV UNAV 2.72 UNAV .029 .462 trace is not 16.94 .773	2.10 applicable) 23.84 applicable) 0. 1.44 2.72 .224 .029 .462 applicable) 16.94 .773
436 1205, 1206 1207, 1209 722 1722 233 234 1190 1071 1054 854 1214 1212, 1213	LPFT IN PR FAC FU FL FAC FU FL CT ENG FU FLOW ENG FU FLOW CT HPOT DS T1 HPOT DS T2 HPOT PRSL DR T OX FAC FM DS T FAC OX FM DS PR FAC OX FLOW CT FAC OX FLOW	4.24 2.11 (Sensor 21.96 (Sensor 0. 1.44 .855 .224 .0064 .293 (Sensor 6.78 .590 .0329	6.56 2.10 trace is not 23.84 trace is not UNAV 2.72 UNAV .029 .462 trace is not 16.94 .773 .046	2.10 applicable) 23.84 applicable) 0. 1.44 2.72 .224 .029 .462 applicable) 16.94 .773 .046
436 1205, 1206 1207, 1209 722 1722 233 234 1190 1071 1054 854 1214 1212, 1213 858, 860	LPFT IN PR FAC FU FL FAC FU FL CT ENG FU FLOW ENG FU FLOW CT HPOT DS T1 HPOT DS T2 HPOT PRSL DR T OX FAC FM DS T FAC OX FM DS PR FAC OX FLOW CT FAC OX FLOW ENG OX IN PR	4.24 2.11 (Sensor 21.96 (Sensor 0. 1.44 .855 .224 .0064 .293 (Sensor 6.78 .590 .0329 7.25	6.56 2.10 trace is not 23.84 trace is not UNAV UNAV 2.72 UNAV .029 .462 trace is not 16.94 .773 .046 UNAV	2.10 applicable) 23.84 applicable) 0. 1.44 2.72 .224 .029 .462 applicable) 16.94 .773 .046 7.25
436 1205, 1206 1207, 1209 722 1722 233 234 1190 1071 1054 854 1214 1212, 1213 858, 860 1058 338	LPFT IN PR FAC FU FL FAC FU FL CT ENG FU FLOW ENG FU FLOW CT HPOT DS T1 HPOT DS T2 HPOT PRSL DR T OX BLD INT T OX FAC FM DS T FAC OX FM DS PR FAC OX FLOW ENG OX IN PR ENG OX IN TEMP HPOP DS PR	4.24 2.11 (Sensor 21.96 (Sensor 0. 1.44 .855 .224 .0064 .293 (Sensor 6.78 .590 .0329	6.56 2.10 trace is not 23.84 trace is not UNAV UNAV 2.72 UNAV .029 .462 trace is not 16.94 .773 .046 UNAV 4.06	2.10 applicable) 23.84 applicable) 0. 1.44 2.72 .224 .029 .462 applicable) 16.94 .773 .046 7.25 4.06
436 1205, 1206 1207, 1209 722 1722 233 234 1190 1071 1054 854 1214 1212, 1213 858, 860 1058 338 325, 326	LPFT IN PR FAC FU FL FAC FU FL CT ENG FU FLOW ENG FU FLOW CT HPOT DS T1 HPOT DS T2 HPOT PRSL DR T OX BLD INT T OX FAC FM DS T FAC OX FLOW CT FAC OX FLOW CT FAC OX FLOW ENG OX IN TEMP HPOP DS PR HPOP BALCAV PR	4.24 2.11 (Sensor 21.96 (Sensor 0. 1.44 .855 .224 .0064 .293 (Sensor 6.78 .590 .0329 7.25	6.56 2.10 trace is not 23.84 trace is not UNAV UNAV 2.72 UNAV .029 .462 trace is not 16.94 .773 .046 UNAV	2.10 applicable) 23.84 applicable) 0. 1.44 2.72 .224 .029 .462 applicable) 16.94 .773 .046 7.25 4.06 4.21
436 1205, 1206 1207, 1209 722 1722 233 234 1190 1071 1054 854 1214 1212, 1213 858, 860 1058 338 325, 326 30, 734	LPFT IN PR FAC FU FL FAC FU FL CT ENG FU FLOW ENG FU FLOW CT HPOT DS T1 HPOT DS T2 HPOT PRSL DR T OX BLD INT T OX FAC FM DS T FAC OX FLOW CT FAC OX FLOW CT FAC OX FLOW ENG OX IN PR ENG OX IN PR ENG OX IN TEMP HPOP DS PR HPOP BALCAV PR LPOP SPD	4.24 2.11 (Sensor 21.96 (Sensor 0. 1.44 .855 .224 .0064 .293 (Sensor 6.78 .590 .0329 7.25 2.68 6.43	6.56 2.10 trace is not 23.84 trace is not UNAV UNAV 2.72 UNAV .029 .462 trace is not 16.94 .773 .046 UNAV 4.06	2.10 applicable) 23.84 applicable) 0. 1.44 2.72 .224 .029 .462 applicable) 16.94 .773 .046 7.25 4.06
436 1205, 1206 1207, 1209 722 1722 233 234 1190 1071 1054 854 1214 1212, 1213 858, 860 1058 338 338 325, 326 30, 734 302	LPFT IN PR FAC FU FL FAC FU FL CT ENG FU FLOW CT HPOT DS T1 HPOT DS T2 HPOT PRSL DR T OX FAC FM DS T FAC OX FM DS PR FAC OX FLOW CT FAC OX FLOW ENG OX IN PR ENG OX IN TEMP HPOP DS PR HPOP BALCAV PR LPOP SPD LPOP DS PR	4.24 2.11 (Sensor 21.96 (Sensor 0. 1.44 .855 .224 .0064 .293 (Sensor 6.78 .590 .0329 7.25 2.68 6.43 3.49	6.56 2.10 trace is not 23.84 trace is not UNAV 0.27 2.72 UNAV .029 .462 trace is not 16.94 .773 .046 UNAV 4.06 4.21	2.10 applicable) 23.84 applicable) 0. 1.44 2.72 .224 .029 .462 applicable) 16.94 .773 .046 7.25 4.06 4.21
436 1205, 1206 1207, 1209 722 1722 233 234 1190 1071 1054 854 1214 1212, 1213 858, 860 1058 338 325, 326 30, 734 302 93, 94	LPFT IN PR FAC FU FL FAC FU FL CT ENG FU FLOW CT NPOT DS T1 HPOT DS T2 HPOT PRSL DR T OX FAC FM DS T FAC OX FM DS PR FAC OX FLOW CT FAC OX FLOW ENG OX IN PR ENG OX IN PR ENG OX IN TEMP HPOP DS PR HPOP SPD LPOP SP PBP DS TMP	4.24 2.11 (Sensor 21.96 (Sensor 0. 1.44 .855 .224 .0064 .293 (Sensor 6.78 .590 .0329 7.25 2.68 6.43 3.49 .268	6.56 2.10 trace is not 23.84 trace is not UNAV UNAV 2.72 UNAV .029 .462 trace is not 16.94 .773 .046 UNAV 4.06 4.21 UNAV	2.10 applicable) 23.84 applicable) 0. 1.44 2.72 .224 .029 .462 applicable) 16.94 .773 .046 7.25 4.06 4.21 3.49
436 1205, 1206 1207, 1209 722 1722 233 234 1190 1071 1054 854 1214 1212, 1213 858, 860 1058 338 325, 326 30, 734 302 93, 94 341	LPFT IN PR FAC FU FL FAC FU FL CT ENG FU FLOW ENG FU FLOW CT HPOT DS T1 HPOT DS T2 HPOT PRSL DR T OX BLD INT T OX FAC FM DS T FAC OX FM DS PR FAC OX FLOW CT FAC OX FLOW ENG OX IN PR ENG OX IN PR ENG OX IN TEMP HPOP DS PR HPOP DS PR PBP DS TMP PBP DS PR	4.24 2.11 (Sensor 21.96 (Sensor 0. 1.44 .855 .224 .0064 .293 (Sensor 6.78 .590 .0329 7.25 2.68 6.43 3.49 .268 19.65	6.56 2.10 trace is not 23.84 trace is not UNAV UNAV 2.72 UNAV .029 .462 trace is not 16.94 .773 .046 UNAV 4.06 4.21 UNAV 4.06 4.21 UNAV 4.06	2.10 applicable) 23.84 applicable) 0. 1.44 2.72 .224 .029 .462 applicable) 16.94 .773 .046 7.25 4.06 4.21 3.49 .268 16.1
436 1205, 1206 1207, 1209 722 1722 233 234 1190 1071 1054 854 1214 1212, 1213 858, 860 1058 338 325, 326 30, 734 302 93, 94 341 412	LPFT IN PR FAC FU FL FAC FU FL CT ENG FU FLOW ENG FU FLOW CT HPOT DS T1 HPOT DS T2 HPOT PRSL DR T OX BLD INT T OX FAC FM DS T FAC OX FM DS PR FAC OX FLOW CT FAC OX FLOW ENG OX IN PR ENG OX IN TEMP HPOP DS PR HPOP DS PR HPOP DS PR PBP DS TMP PBP DS PR FPB PC	4.24 2.11 (Sensor 21.96 (Sensor 0. 1.44 .855 .224 .0064 .293 (Sensor 6.78 .590 .0329 7.25 2.68 6.43 3.49 .268 19.65 6.43	6.56 2.10 trace is not 23.84 trace is not UNAV UNAV 2.72 UNAV .029 .462 trace is not 16.94 .773 .046 UNAV 4.06 4.21 UNAV UNAV 4.06 4.21 UNAV 4.06	2.10 applicable) 23.84 applicable) 0. 1.44 2.72 .224 .029 .462 applicable) 16.94 .773 .046 7.25 4.06 4.21 3.49 .268 16.1 7.64
436 1205, 1206 1207, 1209 722 1722 233 234 1190 1071 1054 854 1214 1212, 1213 858, 860 1058 338 325, 326 30, 734 302 93, 94 341 412 480	LPFT IN PR FAC FU FL FAC FU FL CT ENG FU FLOW ENG FU FLOW CT HPOT DS T1 HPOT DS T2 HPOT PRSL DR T OX BLD INT T OX FAC FM DS T FAC OX FLOW CT FAC OX FLOW CT FAC OX FLOW ENG OX IN TEMP HPOP DS PR HPOP BALCAV PR LPOP SPD LPOP DS PR PBP DS TMP PBP DS TMP PBP DS PR FPB PC OPB PC	4.24 2.11 (Sensor 21.96 (Sensor 0. 1.44 .855 .224 .0064 .293 (Sensor 6.78 .590 .0329 7.25 2.68 6.43 3.49 .268 19.65 6.43 5.70	6.56 2.10 trace is not 23.84 trace is not UNAV UNAV 2.72 UNAV .029 .462 trace is not 16.94 .773 .046 UNAV 4.06 4.21 UNAV UNAV 4.06 4.21 UNAV 4.06 4.21 UNAV 4.06 4.21 UNAV 4.06 4.21 UNAV 4.06 4.21 UNAV 4.06 4.21 UNAV 4.06 4.21 UNAV 4.06 4.21 UNAV 4.06 4.21 UNAV 4.06 4.21 UNAV 0.29 .462 trace is not 16.94 4.04 0.21 0.21 0.22 0.22 0.22 0.22 0.22 0.22	2.10 applicable) 23.84 applicable) 0. 1.44 2.72 .224 .029 .462 applicable) 16.94 .773 .046 7.25 4.06 4.21 3.49 .268 16.1 7.64 8.02
436 1205, 1206 1207, 1209 722 1722 233 234 1190 1071 1054 854 1214 1212, 1213 858, 860 1058 338 325, 326 30, 734 302 93, 94 341 412	LPFT IN PR FAC FU FL FAC FU FL CT ENG FU FLOW ENG FU FLOW CT HPOT DS T1 HPOT DS T2 HPOT PRSL DR T OX BLD INT T OX FAC FM DS T FAC OX FM DS PR FAC OX FLOW CT FAC OX FLOW ENG OX IN PR ENG OX IN TEMP HPOP DS PR HPOP DS PR HPOP DS PR PBP DS TMP PBP DS PR FPB PC	4.24 2.11 (Sensor 21.96 (Sensor 0. 1.44 .855 .224 .0064 .293 (Sensor 6.78 .590 .0329 7.25 2.68 6.43 3.49 .268 19.65 6.43 5.70 4.68	6.56 2.10 trace is not 23.84 trace is not UNAV UNAV 2.72 UNAV .029 .462 trace is not 16.94 .773 .046 UNAV 4.06 4.21 UNAV UNAV 4.06 4.21 UNAV 4.06 4.21 UNAV 4.06 4.21	2.10 applicable) 23.84 applicable) 0. 1.44 2.72 .224 .029 .462 applicable) 16.94 .773 .046 7.25 4.06 4.21 3.49 .268 16.1 7.64 8.02 4.29
436 1205, 1206 1207, 1209 722 1722 233 234 1190 1071 1054 854 1214 1212, 1213 858, 860 1058 338 325, 326 30, 734 302 93, 94 341 412 480 878	LPFT IN PR FAC FU FL FAC FU FL CT ENG FU FLOW ENG FU FLOW CT HPOT DS T1 HPOT DS T2 HPOT PRSL DR T OX BLD INT T OX FAC FM DS T FAC OX FLOW CT FAC OX FLOW CT FAC OX FLOW ENG OX IN TEMP HPOP DS PR HPOP BALCAV PR LPOP SPD LPOP DS PR PBP DS TMP PBP DS TMP PBP DS PR FPB PC OPB PC	4.24 2.11 (Sensor 21.96 (Sensor 0. 1.44 .855 .224 .0064 .293 (Sensor 6.78 .590 .0329 7.25 2.68 6.43 3.49 .268 19.65 6.43 5.70 4.68 5.99	6.56 2.10 trace is not 23.84 trace is not UNAV 0.27 UNAV 0.27 UNAV 0.27 16.94 .773 .046 UNAV 4.06 4.21 UNAV UNAV 4.06 4.21 UNAV 16.1 7.64 8.02 4.29 1.68	2.10 applicable) 23.84 applicable) 0. 1.44 2.72 .224 .029 .462 applicable) 16.94 .773 .046 7.25 4.06 4.21 3.49 .268 16.1 7.64 8.02 4.29 1.68
436 1205, 1206 1207, 1209 722 1722 233 234 1190 1071 1054 854 1214 1212, 1213 858, 860 1058 338 325, 326 30, 734 302 93, 94 341 412 480 878 879	LPFT IN PR FAC FU FL FAC FU FL CT ENG FU FLOW ENG FU FLOW CT HPOT DS T1 HPOT DS T2 HPOT PRSL DR T OX FAC FM DS T FAC OX FLOW CT FAC OX FLOW CT FAC OX FLOW ENG OX IN PR ENG OX IN PR ENG OX IN TEMP HPOP BALCAV PR LPOP DS PR HPOP DS PR PBP DS TMP PBP DS TMP PBP DC OPB PC HX INT PR HX INT T	4.24 2.11 (Sensor 21.96 (Sensor 0. 1.44 .855 .224 .0064 .293 (Sensor 6.78 .590 .0329 7.25 2.68 6.43 3.49 .268 19.65 6.43 5.70 4.68	6.56 2.10 trace is not 23.84 trace is not UNAV 0.27 UNAV 0.27 UNAV 0.27 UNAV 0.29 .462 trace is not 16.94 .773 .046 UNAV 4.06 4.21 UNAV UNAV 4.06 4.21 UNAV UNAV 4.06 4.21 UNAV 0.29 .462 trace is not 16.94 .773 .046 UNAV 4.06 4.21 UNAV 0.29 .462 trace is not 16.94 .773 .046 UNAV 0.029 .462 trace is not 0.046 UNAV 0.029 .462 trace is not 0.046 UNAV 0.029 .462 trace is not 0.046 UNAV 0.029 .462 trace is not 0.046 UNAV 0.029 .462 trace is not 0.046 UNAV 0.029 .462 UNAV 0.046 .421 UNAV 0.047 .774 .046 .047 .774 .046 .047 .774 .046 .047 .774 .046 .047 .774 .046 .047 .774 .046 .047 .774 .046 .047 .774 .046 .047 .774 .046 .047 .774 .046 .047 .774 .046 .047 .774 .046 .047 .774 .046 .047 .774 .046 .047 .047 .046 .047 .047 .047 .046 .047 .047 .047 .046 .047 .047 .047 .047 .047 .047 .047 .047	2.10 applicable) 23.84 applicable) 0. 1.44 2.72 .224 .029 .462 applicable) 16.94 .773 .046 7.25 4.06 4.21 3.49 .268 16.1 7.64 8.02 4.29 1.68 .31
436 1205, 1206 1207, 1209 722 1722 233 234 1190 1071 1054 854 1214 1212, 1213 858, 860 1058 338 338 325, 326 30, 734 302 93, 94 341 412 480 878 879 - 881	LPFT IN PR FAC FU FL FAC FU FL CT ENG FU FLOW CT HPOT DS T1 HPOT DS T2 HPOT PRSL DR T OX FAC FM DS T FAC OX FM DS PR FAC OX FLOW CT FAC OX FLOW CT FAC OX FLOW CT FAC OX FLOW ENG OX IN PR ENG OX IN TEMP HPOP DS PR HPOP DS PR PBP DS TMP PBP DS PR FPB PC OPB PC HX INT PR HX INT T HX VENT IN PR	4.24 2.11 (Sensor 21.96 (Sensor 0. 1.44 .855 .224 .0064 .293 (Sensor 6.78 .590 .0329 7.25 2.68 6.43 3.49 .268 19.65 6.43 5.70 4.68 5.99	6.56 2.10 trace is not 23.84 trace is not UNAV 0.29 .462 trace is not 16.94 .773 .046 UNAV 4.06 4.21 UNAV 4.06 4.21 UNAV 16.1 7.64 8.02 4.29 1.68 UNAV	2.10 applicable) 23.84 applicable) 0. 1.44 2.72 .224 .029 .462 applicable) 16.94 .773 .046 7.25 4.06 4.21 3.49 .268 16.1 7.64 8.02 4.29 1.68 .31 .083
436 1205, 1206 1207, 1209 722 1722 233 234 1190 1071 1054 854 1214 1212, 1213 858, 860 1058 338 325, 326 30, 734 302 93, 94 341 412 480 878 879 - 881 882	LPFT IN PR FAC FU FL FAC FU FL CT ENG FU FLOW CT HPOT DS T1 HPOT DS T2 HPOT PRSL DR T OX FAC FM DS T FAC OX FM DS PR FAC OX FLOW CT FAC OX FLOW CT FAC OX FLOW ENG OX IN PR ENG OX IN PR ENG OX IN TEMP HPOP DS PR HPOP DS PR HPOP DS PR PBP DS TMP PBP DS PR FPB PC OPB PC HX INT T HX VENT IN PR HX VENT IN PR HX VENT IN T	4.24 2.11 (Sensor 21.96 (Sensor 0. 1.44 .855 .224 .0064 .293 (Sensor 6.78 .590 .0329 7.25 2.68 6.43 3.49 .268 19.65 6.43 5.70 4.68 5.99 .31 .083	6.56 2.10 trace is not 23.84 trace is not UNAV 0.27 UNAV 0.27 UNAV 0.27 UNAV 0.29 .462 trace is not 16.94 .773 .046 UNAV 4.06 4.21 UNAV UNAV 4.06 4.21 UNAV UNAV 4.06 4.21 UNAV 0.29 .462 trace is not 16.94 .773 .046 UNAV 4.06 4.21 UNAV 0.29 .462 trace is not 16.94 .773 .046 UNAV 0.029 .462 trace is not 0.046 UNAV 0.029 .462 trace is not 0.046 UNAV 0.029 .462 trace is not 0.046 UNAV 0.029 .462 trace is not 0.046 UNAV 0.029 .462 trace is not 0.046 UNAV 0.029 .462 UNAV 0.046 .421 UNAV 0.047 .774 .046 .047 .774 .046 .047 .774 .046 .047 .774 .046 .047 .774 .046 .047 .774 .046 .047 .774 .046 .047 .774 .046 .047 .774 .046 .047 .774 .046 .047 .774 .046 .047 .774 .046 .047 .774 .046 .047 .774 .046 .047 .047 .046 .047 .047 .047 .046 .047 .047 .047 .046 .047 .047 .047 .047 .047 .047 .047 .047	2.10 applicable) 23.84 applicable) 0. 1.44 2.72 .224 .029 .462 applicable) 16.94 .773 .046 7.25 4.06 4.21 3.49 .268 16.1 7.64 8.02 4.29 1.68 .31
436 1205, 1206 1207, 1209 722 1722 233 234 1190 1071 1054 854 1214 1212, 1213 858, 860 1058 338 325, 326 30, 734 302 93, 94 341 412 480 878 879 - 881 882 883	LPFT IN PR FAC FU FL FAC FU FL CT ENG FU FLOW CT NPOT DS T1 HPOT DS T2 HPOT PRSL DR T OX FAC FM DS T FAC OX FM DS PR FAC OX FLOW CT FAC OX FLOW CT FAC OX FLOW ENG OX IN PR ENG OX IN PR ENG OX IN TEMP HPOP DS PR HPOP DS PR HPOP DS PR PBP DS TMP PBP DS PR FPB PC OPB PC HX INT T HX VENT IN PR HX VENT IN T HX VENT DP	4.24 2.11 (Sensor 21.96 (Sensor 0. 1.44 .855 .224 .0064 .293 (Sensor 6.78 .590 .0329 7.25 2.68 6.43 3.49 .268 19.65 6.43 5.70 4.68 5.99 .31 .083 .305	6.56 2.10 trace is not 23.84 trace is not UNAV 029 .462 trace is not 16.94 .773 .046 UNAV 4.06 4.21 UNAV UNAV 16.1 7.64 8.02 4.29 1.68 UNAV	2.10 applicable) 23.84 applicable) 0. 1.44 2.72 .224 .029 .462 applicable) 16.94 .773 .046 7.25 4.06 4.21 3.49 .268 16.1 7.64 8.02 4.29 1.68 .31 .083
436 1205, 1206 1207, 1209 722 1722 233 234 1190 1071 1054 854 1214 1212, 1213 858, 860 1058 338 325, 326 30, 734 302 93, 94 341 412 480 878 879 - 881 882	LPFT IN PR FAC FU FL FAC FU FL CT ENG FU FLOW CT HPOT DS T1 HPOT DS T2 HPOT PRSL DR T OX FAC FM DS T FAC OX FM DS PR FAC OX FLOW CT FAC OX FLOW CT FAC OX FLOW ENG OX IN PR ENG OX IN PR ENG OX IN TEMP HPOP DS PR HPOP DS PR HPOP DS PR PBP DS TMP PBP DS PR FPB PC OPB PC HX INT T HX VENT IN PR HX VENT IN PR HX VENT IN T	4.24 2.11 (Sensor 21.96 (Sensor 0. 1.44 .855 .224 .0064 .293 (Sensor 6.78 .590 .0329 7.25 2.68 6.43 3.49 .268 19.65 6.43 5.70 4.68 5.99 .31 .083	6.56 2.10 trace is not 23.84 trace is not UNAV 0.29 .462 trace is not 16.94 .773 .046 UNAV 4.06 4.21 UNAV 4.06 4.21 UNAV 16.1 7.64 8.02 4.29 1.68 UNAV	2.10 applicable) 23.84 applicable) 0. 1.44 2.72 .224 .029 .462 applicable) 16.94 .773 .046 7.25 4.06 4.21 3.49 .268 16.1 7.64 8.02 4.29 1.68 .31 .083 .305

Table III-3: Data Base for Time Sliced Value Deviations from the Average Steady State Sensor Measurement

Data Base	for Early Paramete 1-173 (LOX Post Fi	er Indicators of 1	Test Class	ification	<u>n:</u> Injec	tor Failure			
- <u>1651_90</u>	Cutoff Ti	ime= 201.16 sec du	Je to a HP	FT discha					
	Early inc	lications occur ne	ear 92% PL						
	···Damage:	Main injector (bu one acoustic cavi	irnouts of	secondar liacent tr	ry <u>and</u> pr	imary facep	late, 18-L0	X posts), ⊭ vozzle (46 t	ICC (burnout at
		<u>Unavailable.</u>							ube ruptures).
CRITERIA L	EGEND: •Operati	ng Level Anomaly	Criteria	(LC)					
	LC eRate Cr	= (Absolute Chang iteria (RC) = LC/	je in Stea //Excursio	dy State wo time in	Value/St sterval i	eady State	Value) x 10	0.	Excursion time
	•Duratio	<u>n Criteria</u> (<u>DC</u>)	(Excuisio		iter vat i	11 30001037			
	DC	= Duration from t	the point	of first	failure	indications	to c/o tim	e Chang	
	EVEL VALUE ASSIGNM	IENT LEGEND.						·	DC c/o
LEVEL -A:		LEVEL -B:		LEVEL	·C:				
Value of			-Value		of DC	C-Value			
>3%. >2%·3%.	1.0 7	>10%/sec >5 -10%/sec			5sec 5sec				
1%-2%.		1 - 5%/sec	.3		1sec				
<1%.		<1%/sec		<,	<u>5sec</u>	0.			
	()Numbers W *Parameter	ithin the parenth s prefixed with a	esis indi n esteris	cate an e k indicat	arlier a	nd more grad	dual "LC" c	hange for t	he parameter.
	r ar ane cer		11 aatei 1a	K IIMICAL		ge continue:	LEVEL	orr time.	
PID NO.(S)	PARAMETER		<u>LC</u>	LEVEL • A	<u>RC</u>	LEVEL-B	<u>A + B</u>	DC LE	<u>VEL-C</u>
366-372	*(INJ CLNT PR)	-(MCC HG IN PR)	124.4	1.	259.1	1.	2 0	/0	•
366-383	*(INJ CLNT PR)	-(MCC PC)		1.(.3)) 1.(.1)	2.0 2.0(.4)	.48 .48(28.5)	0. 0.(1.)
372-383	(MCC HG IN PR)		4.1(1.)	1.(.3)	26.(.1) 1.(.1)	2.0(.4)	.48(28.5)	0.(1.)
395-383 940-372	*(MCC OX INJ PR)	-(MCC PC))-(MCC HG IN PR)	5.6 (Sensor	1. does not	56.	1.	2.0	.1	0.
459-383	*(HPFP DS PR)	-(MCC PC)	-	1.(.1)) 1.(.1)	2.0(.2)	.36(23.)	0.(1.)
412.372	*(FPB PC)	-(MCC HG IN PR)		1.(.1)	14.(.1)) 1.(.1)	2.0(.2)	.37(21.)	0.(1.)
480-372 63, 163	*(OPB PC) *MCC PC	-(MCC HG IN PR)	3.9 4.4	1. 1.	5.9 7.85	.5 .5	1.5 1.5	.66 .48	.3
200	*MCC PC AVG		4.4	1.	7.85	.5	1.5	.40	.3 .3
436	*MCC CLNT DS PR		5.6	1.	12.1	1.	2.0	.46	0.
18 24	*MCC CLNT DS T *MCC FU INJ PR		-	does not 1.(.3)		.5(.1)	1.5(.4)	.46(22.5)	0 (1)
1951, 1956	*MCC LN CAV P			does not		,	1.2(.4)	.40(22.3)	0.(1.)
595	*MCC OX INJ TEMP		-	does not	•	-			
86 459	*HPFP IN PR *HPFP DS PR		2.76 4.63	.7 1.	8.92 12.2	.5 1.	1.2 2.0	.32 .38	0. 0.
659	*HPFP DS T		2.6	.7 -	10.03	1.	1.7	.26	0.
457	*HPFP BAL CAV PR	,	4.87	1.	15.7	1_	2.0	.31	0.
52, 764 53, 940	*HPFP SPD HPFP CL LNR PR		1.5 (Sensors	.3 do note	4.17 (xist)	.5	.8	.36	0.
650	HPFP CL LNR T			does not	-				
657	HPFP DR PR		-	does not					
658 663	HPFP DR TEMP *HPFT DS T1 A		(Sensor 7.45	does not	exist) 20.7	1.	2.0	.36	0.
664	*HPFT DS T1 B		7.45	1.	20.7	1.	2.0	.36	0.
754	LPFP SPD		12.2	1.	3.1	.3	1.3	29.1	1.
436 205, 1206	*LPFT IN PR Fac fu fl		5.6 1.8	1. .3	12.1 6.	1. .5	2.0 .8	.46 .3	0. 0.
207, 1209	FAC FU FL CT				ikingly	indicated)			••
722	*ENG FU FLOW		2.74	.7	7.62	.5	1.2	.36	0.
722 233	ENG FU FLOW CT *HPOT DS T1		(No chan 4.87	ge is str 1.	13.53	indicated)	2.0	.36	0.
519	*HPOT DS T2	P 23	2.96	.7	8.23	.5	1.2	.36	0.
190	HPOT PRSL DR T	KLITVAR	.63	.1	.69	.1	.2	3.86	.7
071 054	OX BLD INT T OX FAC FM DS T	a de la companya de l	.009	does not	.007	.1	.2	3.16	.7
854	FAC OX FM DS PR		(No chan	ge is str	ikingly	indicated)		••••	
214	FAC OX FLOW CT					indicated)	,		7
212, 1213 858	FAC OX FLOW ENG OX IN PR	100 ¹	.8 (No chan	.1 ge is str	1.6 ikinaly	.3 indicated)	.4	.66	.3
058	ENG OX IN TEMP	ୁି ପୁ	.006	.1	.0063	.1	.2	.96	.3
338	*HPOP DS PR	Ers .	5.91 3.39	1.	16.4	1.	2.0	.36	0.
325, 326 734	*HPOP BALCAV PR *LPOP SPD	ું પુ	3.39 2.7	1. .7	9.4 7.5	.5 .5	1.5 1.2	.36 .36	0. 0.
302	LPOP DS PR		3.4	1.	9.6	.5	1.5	.36	0.
93, 94 50 150	*PBP DS TMP			does not		5	1 5	36	0
59, 159 412	*PBP DS PR *FPB PC		3.2 1.1(.4)	1.	8.88 7.(.02)	.5 .5(.1)	1.5 .8(.2)	.36 .16(22.8)	0. 0.(1.)
480	*OPB PC		3.8(.3)	1.(.1)	11.(.1)	1.(.1)	2.0(.2)	.36(23.)	0.(1.)
878 870	*HX INT PR		.94	.1	1.57	.3	.4	.26	0.
879 881	*HX INT T *HX VENT IN PR		.36 1.43	.1 .3	.33 3.98	.1 .3	.2 .6	2.76 .36	.7
882	*HX VENT IN T		.06(.3)	.1(.1)	.2(.02)	.1(.1)	.2(.2)	.26(21.)	0.(1.)
883	*HX VENT DP		1.12	.3	4.35	.3	.6	.26	0.
40	*OPOV ACT POS *FPOV ACT POS		4.2(3.7) 1.83	1.(1.)	9.1(1.) 5.08	.5(.5)	1.5(1.5) .8	.46(28.5) .36	0.(1.) 0.
42	-PPUV ACT PTN								

م رابعید ها

···•

		- Indiantana of T		aidioation		otos Failus			
-Test 901	<u>or Early Paramete</u> - <u>331</u> (LOX Post Fr	r Indicators of T actures, Erosion-	MCC) cor	nducted 15	July 19	81 for Engi	e ne 2108.		
<u></u>	Cutoff Ti	ime= 233.14 sec. d	ue to a	HPOT disch					
		lications occur ne				eeeendam	faceniate	40 LOV	
	Danage:	Main injector (bu erosion in acoust	ic cavit	ty), and no	zzle (6	0 tubes dam	aged).	OF LON POST	
		\$4.1M, Delay Time			· · · ·				
		and the second sec							i
CRITERIA LE		ing Level Anomaly = (Absolute Chang			Value/S	teady State	Value) x 10	io.	Excursion time
	eRate Cr	iteria (RC) = LC/	(Excursi	ion time in	terval	in seconds)			
		n Criteria (DC)	· · ·			• • • • • •		Change	
	DC	= Duration from t	he point	OT TIFST	tailure	indication	s to c/o tim	ю <u>г </u>	DC c/o
WEIGHTED LEV	VEL VALUE ASSIGNM	ENT LEGEND:							
LEVEL -A:		LEVEL-B:		LEVEL		- ·· ·			
Value of I	LC A-Value 1.0	Value of RC B >10%/sec	-Value			C-Value			
>2%-3%		>5 -10%/sec							
1%-2%		1 · 5%/sec	.3						
<1%		<1%/sec	.1			<u></u> 0.	adval NICH a		he management
		s prefixed with a							ne parameter.
	r ur onne e er					ige concing	LEVELS		
<u>PID_NO.(S)</u>	PARAMETER		<u>LC</u>	LEVEL - A	RC	LEVEL-B	<u>A + B</u>	<u>DC LE</u>	VEL-C
835-371	(INJ CLNT PR)	-(MCC HG IN PR)	125.	1.	1042.	1.	2.0	.95	.3
835-383	(INJ CLNT PR)	-(MCC PC)	7.2	1.	48.1	1.	2.0	.93	.3
371-383	(MCC HG IN PR)		17.6	1.	147.1	1.	2.0	.94	.3
395-383	(MCC OX INJ PR)	-(MCC PC) ()-(MCC HG IN PR)	25.5	1. or does not	36.4	1.	2.0	.84	.3
940-371 459-383	(HPFP DS PR)	-(MCC PC)	1.59	.3	15.9	1.	1.3	.89	.3
412-371	(FPB PC)	-(MCC HG IN PR)	3.22	1.	32.2	1.	2.0	.85	.3
480-371	(OPB PC)	-(MCC HG IN PR)	5.55	1.	55.5	1.	2.0	.89	.3
63, 163 200	MCC PC MCC PC AVG			<pre>b) 1.(.1) b) 1.(.1)</pre>	•	.) 1.(.5) .) 1.(.5)	2.0(.6) 2.0(.6)	.82(.94) .82(.94)	.3(.3) .3(.3)
17	MCC CLNT DS PR		4.78	1.	22.4	1.	2.0	.88	.3
18	*MCC CLNT DS T		10.2	1.	18.2	1.	2.0	.86	.3
24 1951, 1956	MCC FU INJ PR MCC LN CAV P		5.32	1. r malfunct	44.3	1.	2.0	.82	.3
595	MCC OX INJ TEMP		.5	.1	.98	.1	.2	.69	.3
86	HPFP IN PR		5.	1.	6.	.5	1.5	.94	.3
459	HPFP DS PR		2.79 -	.7 -	14.7 5.78	1. .5	1.7	.86	.3 .3
659 457	HPFP DS T HPFP BAL CAV PR		2.69	.7	14.93	1.	.6 1.7	.84 .84	.3
52, 764	HPFP SPD		1.2	.3	8.58	.5	.8	.88	.3
53, 940	HPFP CL LNR PR		-	rs do not (•				
650 657	HPFP CL LNR T HPFP DR PR		-	r does not r does not	-				
658	HPFP DR TEMP		•	r does not					•
663	HPFT DS T1 A		10.12	1.	33.73	1.	2.0	.84	.3
664 754	HPFT DS T1 B LPFP SPD		10.74 5.21	1. 1.	35.79 11.08	1. 1.	2.0 2.0	.84 .76	.3 .3
436	LPFT IN PR		4.13	1.	27.52	1.	2.0	.79	.3
1205, 1207	FAC FU FL		9.2	1.	15.4	1.	2.0	.79	.3 .3
1207, 1209 722	FAC FU FL CT ENG FU FLOW		(Senso 11.4	r malfuncti 1.	10n) 27.14	1.	2.0	.79	7
1722	ENG FU FLOW CT					(indicated)		./7	.3
233	*HPOT DS T1		41.	1.	55.5	1.	2.0	.74	.3
234 1190	*HPOT DS T2 HPOT PRSL DR T		40. 3.04	1. 1.	53.1 4.89	1. .3	2.0 1.3	.75 .36	.3
1071	OX BLD INT T		.93	.1	4.43	.3	.4	.30	0. 0.
1054, 1056	OX FAC FM DS T		(No cha	ange is str	rikingly	<pre>indicated)</pre>	I		
854 1210	FAC OX FM DS PR FAC OX FLOW CT					(indicated)			
1212	FAC OX FLOW CI		9.64	1.	18.5	<pre>indicated) 1.</pre>	2.0	.64	.3
858, 860	ENG OX IN PR) 1.(1.)	97.(17	5 1.(1.)	2.0(2.)	.82(.94)	.3(.3)
1058	ENG OX IN TEMP		.14	, 1	2.26	.3	1.3	-4	0.
90 325, 326	HPOP DS PR HPOP BALCAV PR		4.06 2.74	1. .7	8.83 5.96	.5 .5	1.5 1.2	.76 .69	.3
30, 734	LPOP SPD		2.06	.7	7.11	.5	1.2	.07	.3 .3
209, 210	LPOP DS PR		5.76	1.	57.6	1.	2.0	.89	.3
93, 94 59, 159	PBP DS TMP PBP DS PR			ange is str malfuncti		indicated)			
412	FPB PC		2.54	.7	21.2	1.	1.7	.77	.3
480	OPB PC		2.46	.7	12.3	1.	1.7	.86	.3
	THX INT PR		4.71 7.16	1. 1.	10.02 10.23	1.	2.0 2.0	.64 .44	.3
	*HX INT T *HX VENT IN PR		4.26	1.	8.69	1. .5	2.0 1.5	.44 .57	0.
882	HX VENT IN T		.42	.1	.698	.1	.2	.34	0.
883	HX VENT DP		4.31	1.	8.3	.5	1.5	.61	.3
	*OPOV ACT POS *FPOV ACT POS		7.17 6.55	1.	9.96 9.5	.5 .5	1.5 1.5	.86 .77	.3 .3
		-					• 901-	_	

Table III-5: 901-331 Data Base

ر بدیوه مربق دار او مهمه می الدید ده ۲۰

· •••

.

and the second second

			-MCC) con to a NPOT	ducted 2 discharg	Septembe	r 1981 for E	Engine 0110	•	
	···Damage:	Nain injector (b in one acoustic (\$7.0M, Delay Tim	urn thru cavity),	of primer nozzle (1	ry <u>and</u> se 150 tubes	condary face ruptured).	plate, 149	LOX posts;), MCC (erosion
CRITERIA L	EGEND: •Operat	ing Level Anomaly	Criteria	(LC)					
	LC ePate Ci	= (Absolute Chan riteria (<u>RC</u>) = LC,	ge in Ste /(Excursi	ady State	e Value/S interval	teady State	Value) x 1	00.	Excursion time
		on Criteria (DC)	(EXCUPS)		Intervat	in seconds)			
		= Duration from	the point	of first	t failure	indications	to c/o ti	me Char	ge
			•						
	EVEL VALUE ASSIGNM			1.51.65					
LEVEL-A: Value of	LC A-Value	<u>LEVEL-B</u> : Value of RC f	3-Value		<u>EL-C</u> : Je of DC	C-Value			
	1.0	>10%/sec			>5sec				
>2%-3%.	7	>5 -10%/sec			-5sec				
		1 - 5%/sec			-1sec			•	
<1%.		<1%/sec within the parenth	<u>.1</u>	<u> </u>	.5sec	<u> 0.</u>	+		
	+Parameter	's prefixed with a	nesis ind In acteri	icate an skindica	te a cher	nd more gra	Gual "LC" (subtil cui	change for	the parameter.
						ige continue	LEVEL	corr crime.	
PID NO.(S)	PARAMETER		LC	LEVEL - A	<u>RC</u> ·	LEVEL-B	<u>A + B</u>	DC L	EVEL-C
/77 //7		(1100 He 111	70	•		_			
437-463 437-63	(INJ CLNT PR) (INJ CLNT PR)	-(MCC HG IN PR) -(MCC PC)	30. 50.7	1.	167. 181.	1.	2.0	.55	.3
463-63	(INJ CLNI PR) (MCC HG IN PR)	• •	10.6	1.	132.4	1. 1.	2.0 2.0	.55 .58	.3 .3
395-383	(MCC OX INJ PR)		9.9	1.	12.3	1.	2.0	.5	.3
940-372	(HPFP CL LNR PR)-(MCC HG IN PR)	•	r does no	t exist)				
459-383	(HPFP DS PR)	- (MCC PC)	9.	1.	45.	1.	2.0	.6	.3
411-463 480-463	(FPB PC) (OPB PC)	-(MCC HG IN PR) -(MCC HG IN PR)	4.2 4.2	1.	42. 28.	1.	2.0	.6	.3
400-403 63, 163	MCC PC	(HOU HU IN PK)	4.2 6.43	1.	20. 13.4	1.	2.0 2.0	.63 .48	.3 0.
200	MCC PC AVG		6.43	1.	13.4	1.	2.0	.40	0.
436	*MCC CLNT DS PR		13.6	1.	25.7	1.	2.0	.53	.3
18	*MCC CLNT DS T		10.6	1.	20.5	1.	2.0	.52	.3
24	MCC FU INJ PR		•	malfunct	•				
1951, 1956 595	MCC LN CAV P MCC OX INJ TEMP		(Sensor	malfunci	.58	.1	2	F 4	7
86	HPFP IN PR		4.2	1.	42.	1.	.2 2.0	.56 .58	.3
459	HPFP DS PR		7.2	1.	31.2	1.	2.0	.55	.3 .3
659	HPFP DS T		2.8	.7	- 9.3	.5	1.2	.56	.3 .3
457	*HPFP BAL CAV PR		15.9	1.	31.8	1_	2.0	.5	.3
52, 764 53, 940	HPFP SPD HPFP CL LNR PR		1.47	.3 sdonot	7.	.5	.8	.58	.3
650	HPFP CL LNR T		-	does not	-				
657	HPFP DR PR		-	does not					
658	HPFP DR TEMP			does not	•				
663	*HPFT DS T1 A		30.9	1.	61.8	1.	2.0	.5	.3
232 754	HPFT DS T1 B			malfunct		•			
436	LPFP SPD LPFT IN PR		.9 13.6	.1 1.	1.5 25.7	.3	.4	.48	0.
1205, 1206	FAC FU FL			does not		1.	2.0	.53	.3
207, 1209	FAC FU FL CT		(Sensor	does not					
722	ENG FU FLOW		2.17	.7	21.	1.	2.0	.55	.3
518	ENG FU FLOW CT *HPOT DS T1			does not			~ ~		
519	*HPOT DS T2		32.6 37.6	1. 1.	65.2 81.7	1. 1.	2.0 2.0	.46	0.
190	HPOT PRSL DR T					dequately t	o steady st	.46 tate condit	0. (ions)
071	*OX BLD INT T		.9	.1	2.23	.3	.4	.4	0.
054 854	OX FAC FM DS T					indicated)			
854 214	FAC OX FM DS PR FAC OX FLOW CT		4./(1.)	1.(.3)	15.(14)	1.(1.)	2.0(1.3)	.62(.72)	.3(.3)
212, 1213	FAC OX FLOW CT		3.38	nge is st 1.	7.68	indicated) .5	1.5	.64	7
858	ENG OX IN PR		8.6(2.)	1.(.7)	35.(14)	1.(1.)	2.0(1.7)	.64 .68(.83)	.3 .3(.3)
058	ENG OX IN TEMP		(Sensor	does not	exist)				
338 325, 326	HPOP DS PR		4.7	1.	20.5	1.	2.0	.54	.3
734	HPOP BALCAV PR LPOP SPD		5.5 2.31	1. .7	28.9	1.	2.0	.5	.3
302	LPOP DS PR		3.83	1.	9.2 38.3	.5 1.	1.2 2.0	.54 .6	.3
93, 94	PBP DS TMP		.8	.1	3.0	.3	.4	.54	.3 .3
59, 159	PBP DS PR		4.47	1.	13.5	1.	2.0	.65	.3
412 480	FPB PC		5.9	1.	24.7	1.	2.0	.56	.3
480 878	OPB PC HX INT PR		6.0 3.4	1.	26.2	1.	2.0	.56	.3
	*HX INT T		3.4 .7	1.	8.4 2.3	.5 .3	1.5 .4	.5	.3
881	*HX VENT IN PR		2.6	.7	5.8	.5	1.2	.3 .44	.3 ···
882	HX VENT IN T		(Sensor	has not a	settled a	dequately to	steady st	ate conditi	ions)
883	HX VENT DP		(Sensor	has not a	settled a	dequately to	steady st	ate conditi	ions)
	OPOV ACT POS		8.0(1.3)	1.(.3)	24.(1.)	1.(.3)	2.0(.6)		
40 42	FPOV ACT POS		2.2	.7	7.35	.5	1.2	.45(1.4) .6	0.(.7)

-

Table III-6: 750-148 Data Base

ويوجهون المحمور والمراجع المراجع المراجع المحمور والمحمور والمحمور والمحمور والمحمور والمحمور والمحمور والمحمو

• •

- <u>1621 201</u> -	Cutoff Ti Early ind Damage:	actures, Erosion- me= 51.1 sec. due lications occur ne Main injector (bu and nozzle (a fai Unavailable.	to an ei ar 92% Pi rn thru d	roneous H of primary	IPFP rad / facepl	ial acceler ate only, 1	ameter rec		minor scald	ing),
CRITERIA LEG	END: •Operati	ng Level Anomaly			<u> </u>		<u>.</u>	····		
	• <u>Rate Cr</u> • <u>Duratic</u>	= (Absolute Chang <u>viteria (RC</u>) = LC/ on Criteria (DC) = Duration from t	(Excursio	on time in	terval	in seconds)			thange	ursion time
WEIGHTED LEV LEVEL·A: Value of L	EL VALUE ASSIGNM C A-Value	LEVEL-B:	-Value	<u>LEVEL</u> Value	<u>-C</u> : of DC	C-Value				DC —— c/c
>3%	1.0	>10%/sec	_			1.0				
>2%-3% 1%-2%		>5 -10%/sec 1 - 5%/sec	.5 .3							
<1%		<1%/sec	1	<.	5sec	0.		- · · · · · · · · · · · · · · · · · · ·		
PID NO.(S)	PARAMETER		LC	LEVEL - A	<u>RC</u> .	LEVEL-B	LEVELS <u>A + B</u>	DC	LEVEL - C	
366-371		-(MCC HG IN PR)	157.1 9.74	1.	32.7 2.78	1. .3	2.0	27.1 26.8	1.	
366-383 371-383	(INJ CLNT PR) (MCC HG IN PR)	-(MCC PC) -(MCC PC)	2.44	1. .7	3.6	.3	1.3 1.3	26.5	1. 1.	
395-383	(MCC OX INJ PR)	-(MCC PC)	1.44	.3	.3	.1	.4	26.9	1.	
940-371 459-383	(HPFP CL LNR PR (HPFP DS PR))-(MCC HG IN PR) -(MCC PC)	(Sensor	does not	exist) 1.19	.3	.4	27.	1.	
412-371	(FPB PC)	-(MCC HG IN PR)	(No cha	inge is st	rikingly	indicated;)			
480-371 63, 163	(OPB PC) MCC PC	-(MCC HG IN PR)	(No cha .27	inge is st .1	rikingly 1.43	/ indicated) .3	.4	26.89	1.	
200	MCC PC AVG		.27	.1	1.43	.3	.4	26.89		
436	MCC CLNT DS PR		.52	.1	1.3 .32	.3	.4	26.85		
566 24	MCC CLNT DS T MCC FU INJ PR		1.04 (Sensor	.3 has not		.1 adequately	.4 to steady	26.6 state co	1. nditions)	
951, 1956	MCC LN CAV P		(Sensor	does not	exist)		····,			
595 86	MCC OX INJ TEMP HPFP IN PR			does not		adequately	to steady	state co	ditions)	
459	HPFP DS PR		.49	.1	1.35	.3	.4	26.88	1.	
659	HPFP DS T		.19		.16		.2	28.	1.	
457 52,764	HPFP BAL CAV PR HPFP SPD		3.39 (No cha	1. nge is st	.89 rikingly	.1 / indicated)	1.1	30.9	1.	
53, 940	HPFP CL LNR PR		•	s do not						
650 657	HPFP CL LNR T HPFP DR PR		-	does not does not						
658	HPFP DR TEMP		(Sensor	does not	exist)					
663	HPFT DS T1 A			.3			1.3	26.6	1.	
664 754	HPFT DS T1 B LPFP SPD		1.38 .69	.3 .1	9.2 .06	.5 .1	.8 .2	26.6 38.	1.	
436	LPFT IN PR		.52	.1	1.3	.3	.4	26.85	1.	
205, 1206 207, 1209	FAC FU FL FAC FU FL CT		.69 (No cha	.1 nge is st	1.69 rikinaly	.3 (indicated)	.4	26.5	1.	
722	ENG FU FLOW		.51	. 1	2.32	.3	.4	26.52	1.	
722 233	ENG FU FLOW CT		(Sensor .53	<pre>malfunct .1</pre>	ion) 2.11	.3	.4	26.6	1.	
233 234	HPOT DS T1 HPOT DS T2		.28	.1	1.19	.3	.4	26.6	1.	
190	HPOT PRSL DR T					adequately				
071 054	OX BLD INT T OX FAC FM DS T					adequately indicated)		state CO	WITIONS)	
854	FAC OX FM DS PR		(No cha	nge is st	rikingly	indicated)				
214 212, 1213	FAC OX FLOW CT		(Sensor .29	malfunct	10n) .37	.1	.2	26.7	1.	
858, 860	ENG OX IN PR		(No cha	nge is sti	rikingly	indicated)			- •	
058	ENG OX IN TEMP		(No cha .2	nge is stu .1	rikingly 1.13	indicated)	.4	26.88	1.	
338 325, 326	HPOP DS PR HPOP BALCAV PR		.11	.1	.51	.1	.4	26.61	1.	
30, 734	LPOP SPD		(No cha			indicated)				
209, 210 93, 94	LPOP DS PR PBP DS TMP			nge 18 Sti does not		indicated)				
341	PBP DS PR		.48	.1	2.4	.3	.4	26.7	1.	
412 480	FPB PC		.30 .31	.1	.41 1.54	.1 .3	.2 .4	27.4 26.9	1. 1.	
480 878	OPB PC HX INT PR		(Sensor	has not a	settled	adequately	to steady			
879	HX INT T		.234	.1	. 17	.1	.2	27.5	1.	
881 882	HX VENT IN PR HX VENT IN T					adequately adequately				
	HX VENT DP					indicated)				
883 40	OPOV ACT POS		1.1	.3	.734	.1	.4	26.75	1.	

•

		er Indicators of T								
• <u>Test 902</u>		ractures, Erosion-								
		ime= 8.5 sec. due			je temp	erature rec	iline.			
		dications occur ne								
	Damage:	Main injector (bu	irn thru	of primary	/ tacep	ate only,	56 LOX post	s), MCC	(minor	
		erosion in acoust						tubes r	uptured, 27 w/d	ents)
		\$1M (for repair/r			Delay	ime- 12 we	eks.			
CRITERIA LE		ing Level Anomaly								
		= (Absolute Chang						100.	Evene	ion time
		<u>riteria</u> (<u>RC</u>) = LC/	(Excurs	ion time in	nterval	in seconds	•)			TOTI LIME
		<u>on Criteria</u> (<u>DC</u>)						.		
	DC	= Duration from t	he poin	t of first	failure	indicatio	ns to c/o t	ime [_]	Change	
	VEL VALUE ASSIGN									c/o
LEVEL-A:		LEVEL-B:		LEVEL						
	LC A-Value		-Value			C-Value	•			
	1.0	>10%/sec				1.0				
	7	>5 -10%/sec				7		ORI	IGINAL PAG	EIS
	3	1 - 5%/sec				3		OF	DODD OUN	1/037
<1%		<1%/sec	.1	<.	<u>5sec</u>	0.		OF	POOR QUAI	LI Y
	*···Paramete	rs prefixed with a	n aster	isk indicat	e a cha	nge contin		utoff tim	ne.	
							LEVELS			
PID NO.(S)	PARAMETER		<u>LC</u>	LEVEL-A	RC	<u>LEVEL-B</u>	<u>A + B</u>	DC	LEVEL-C	
17-24	(INJ CLNT PR)	-(MCC HG IN PR)	4.17	1.	16.7	1.	2.0	3.	.7	•
17-163	(INJ CLNT PR)	-(MCC PC)	5.33	1.	17.7	1.	2.0	3.	.7	
		(1100 00)	34 77		**					

17-163 (IHU CLWI PR) - (MCC PC) 5.33 1. 17.7 1. 2.0 3. .7 395-333 (MCC MC NIN PR) - (MCC PC) (Sensor does not exist)	17-24	(INJ CLNT PR) - (MCC HG		4.17	1.	16.7	1.	2.0	3.	.7
395 State (MCC DX IM PR) - (MCC PC) (Sensor does not exist) 490-371 (MPP D IS PR) - (MCC PC) 1.91 3 9.55 .5 .8 3. .7 400-24 (OPB PC) - (MCC MG IN PR) 3.53 1. 6.7 .5 1.5 3. .7 400-24 (OPB PC) - (MCC MG IN PR) 3.53 1. 6.7 .5 .8 3. .7 200 MCC PC AVG 1.54 .3 6.98 .5 .8 3. .7 217 MCC CLUNT DS FR 1.26 .3 6.98 .5 .8 3.01 .7 24 MCC FU IN PR 1.76 .3 .798 .5 .8 3.01 .7 1951 MCC TU IN PR 1.63 .3 .77 .1 .4 2.66 .7 55 MCC TU IN PR 1.63 .3 .72 .5 .8 .00 .7 56 MPFP DS T .60 .3 .13 .3 .6 .3.01 .7 57 MHPP DS T .60 .5 <td< td=""><td>17-163</td><td></td><td></td><td>5.33</td><td>1.</td><td>17.7</td><td>1.</td><td>2.0</td><td>3.</td><td>.7</td></td<>	17-163			5.33	1.	17.7	1.	2.0	3.	.7
940.371 (IMPP DL LLR PR)-(MCC HG IN PR) (Sensor does not exist) 459:383 (IMPP DS PR) - (MCC HG IN PR) 3.35 1.6.7 5.5 .8 3.7 7 411:24 (PPP PC) - (MCC HG IN PR) 3.35 1.6.7 5.5 .8 3.7 7 430:24 (PPP PC) - (MCC HG IN PR) 3.6.35 1.5 4.7 5.5 .8 3.7 7 430:24 (PPP CL LLR PR) (AGC PC WC 1.54 .3 6.98 .5 .8 3.7 7 17 MCC CLUN DS PR 1.25 1.5 .34 .5 .1.5 2.84 .7 264 MCC DU INU PR 1.76 .3 .79 .5 .8 .3.0 .7 18 MCC DU INU PR 1.63 .3 .74 .1 .4 2.6 .7 .1 .4 2.6 .7 .1 .4 2.01 .7 55 MCC LL ALV P Sensor does not exist) .5 .8 .3.0 .7	24-163	(MCC HG IN PR) - (MCC PC)	21.77	1.	15.	1.	2.0	2.8	.7
459-383 (MPP DS PR) -(MCC PC) 1.91 .3 9.55 .5 .8 3. .7 440-24 (OPB PC) -(MCC HG IN PR) 3.55 1. 6.7 1.5 1.5 3. .7 430-24 (OPB PC) -(MCC HG IN PR) 1.54 .3 6.98 .5 .8 3. .7 200 MCC PC AVG 1.54 .3 6.98 .5 .8 3. .7 17 MCC CLUT DS PR 1.76 .3 .798 .5 .8 3.01 .7 18 *MCC CLUM DS PR 1.76 .3 .77 .1 .4 2.98 .7 1951 *MCC XUN RN TEHP 1.63 .3 .77 .1 .4 2.6 .7 1951 *MPC XUN RN TEHP 1.63 .3 .745 .8 .8 .0 .7 50 MPFP BS PR 1.63 .3 .7 .4 .3 .0 .7 51 MPFP BS PR 1.620 .3 .13 .3 .6 .8 <	395-383	(MCC OX INJ PR) - (MCC PC	;)	(Sensor	does no	t exist)				
459-383 (MPP DS PR) -(MCC PC) 1.91 .3 9.55 .5 .8 3. .7 440-24 (OPB PC) -(MCC HG IN PR) 3.55 1. 6.7 1.5 1.5 3. .7 430-24 (OPB PC) -(MCC HG IN PR) 1.54 .3 6.98 .5 .8 3. .7 200 MCC PC AVG 1.54 .3 6.98 .5 .8 3. .7 17 MCC CLUT DS PR 1.76 .3 .798 .5 .8 3.01 .7 18 *MCC CLUM DS PR 1.76 .3 .77 .1 .4 2.98 .7 1951 *MCC XUN RN TEHP 1.63 .3 .77 .1 .4 2.6 .7 1951 *MPC XUN RN TEHP 1.63 .3 .745 .8 .8 .0 .7 50 MPFP BS PR 1.63 .3 .7 .4 .3 .0 .7 51 MPFP BS PR 1.620 .3 .13 .3 .6 .8 <	940-371	(HPFP CL LNR PR)-(MCC HG	IN PR)	(Sensor	does no	t exist)				
411-24 (FPP PC) -(MCC HG IH PP) 5.35 1. 6.7 .5 1.5 2.7 480-24 (OPB PC) -(MCC HG IH PP) 6.63 1. 5.1 1.5 1.5 3. .7 63, 163 MCC PC VC 1.54 .3 6.98 .5 .8 3. .7 17 MCC CLAT DS PR 1.98 .3 10.98 1. .1.3 2.98 .7 24 MCC CLUT DS PR 1.25 1. 5.34 .5 .8 3.0 .7 24 MCC LUA VP (Sensor malfinction)	459-383			1.91	.3	9.55	.5	.8	3.	.7
480.24 (OPB PC) -(MCC HG IN PR) 6.43 1.54 .5 1.5 3. .7 200 MCC PC AVG 1.54 .3 6.98 .5 .8 3. .7 200 MCC CLAT DS PR 1.54 .3 6.98 .5 .8 3. .7 18 MCC CLAT DS PR 1.54 .3 6.98 .5 .8 3. .7 24 MCC CLAT DS PR 1.2.5 1. 5.34 .5 .8 3.01 .7 25 MCC FU LN PR 1.63 .3 .77 .1 .4 2.6 .7 7951 MCC OK LN TEMP 1.63 .3 .7.7 .1 .4 2.6 .7 650 MFPF DN PR 1.43 .3 .7.7 1.4 .4 2.6 .7 53 940 MFPP BS PR .69 .3 .13 .3 .6 .6 .6 .8 .0.7 547 MFPF DR PR R (Sensor does not exist) .7 .7 .7 .7 .7 <td>411-24</td> <td></td> <td></td> <td>3.35</td> <td>1.</td> <td>6.7</td> <td></td> <td></td> <td></td> <td></td>	411-24			3.35	1.	6.7				
63, 163 MCC PC 1.54 .3 6.98 .5 .8 3. .7 17 MCC CLAY DS PR 1.98 .3 10,98 1.3 2.98 .7 18 MCC CLAY DS FR 1.25 1.54 .3 10,98 1.3 2.98 .7 24 MCC CLAY DS FR 1.26 1.54 .3 1.78 .5 .8 3.01 .7 24 MCC CLAY P 1.76 .3 .798 .5 .8 3.01 .7 25 MCC LU CAY P (Sensor maif runkinction)										7
200 MCC C VC AG 1.54 .3 6.98 .5 .8 3. .7 17 MCC CLIN DS PR 1.98 .3 10.98 1.3 2.98 .7 18 MCC CLIN DS PR 1.2.5 1.5.34 .5 .8 3.01 .7 24 MCC FLINP PR 1.63 .3 .77 .1 .4 2.64 .7 1951 MCC KLIN TEMP 1.63 .3 .77 .1 .4 2.6 .7 86 HPFP IN PR 9.89 1. .7.27 .5 .8 3.01 .7 59 MPFP DS FR .69 .3 3.13 .3 .6 3.01 .7 53 940 MPFP DS T .69 .3 .13 .9 .6 .8 2.9 .7 53 9.00 MPFP DL LWR (Sensor does not exist) .8 .9 .7 .5 .8 .2 .9 .7 54										.,
17 HCC CLWT DS PR 1.98 .3 10.98 1. 1.3 2.98 .7 26 HCC CLU INJ PR 1.76 .3 7.98 .5 .8 .01 .7 26 HCC LU CAV P (Sensor mat function) .7 .4 2.6 .7 36 HPP DI NP 1.63 .3 .77 .1 .4 2.6 .7 459 HPP DI SP .633 .3 .745 .5 .8 .0 .7 57 HPP DI SP T .69 .3 .1.3 .6 .0.1 .7 .9.2 .7 52 764 MPP SP DI .449 .3 .9.6 .5 .8 .9 .7 53 940 MPP CL LWR PR (Sensor does not exist) .5 .8 .9 .7 547 MPPP DR PR CLWR PR (Sensor does not exist) .5 .8 .9 .7 557 MPPP DR TEMPR Sensor does not exist)										
18 **CC CLUT DS T 12.5 1.5 5.34 .5 1.5 2.64 .7 26 HCC PU UNJ PR 1.76 .3 7.98 .5 .8 3.01 .7 1951 1955 *KCC OC LN CAV P (Sensor mal function) .7 .4 2.6 .7 595 *KCC OC LN TERP 1.63 .3 7.45 .5 .8 3.01 .7 459 HPP DS R 1.63 .3 7.45 .5 .8 3.01 .7 459 HPP DS R 1.63 .1 3.02 .3 .4 .01 .7 2.92 .7 450 HPP DS T .69 .6 .5 .8 2.9 .7 52, 764 HPP DR PR CLNR T (Sensor does not exist) .8 .9 .6 .5 .8 2.9 .7 55 HPP DR PR CLNR T (Sensor does not exist) .2 .7 .3 .0 .7 251 HPF DS T18 5 .1 13.8 .1 .2.0 .0 .7										
24 HCC LV LAV P 1.76 .3 7.98 .5 .8 3.01 .7 1951, 1956 HCC LV RAV P (Sensor mail function)										
1951, 1956 MCC LU CAV P (Sensor malfunction) 2.6 .7 595 *MCC OX INN TEMP 9.89 1.727 5 1.5 3.1 .7 650 HPFP DS PR 1.63 3 .77 1 4.2.6 .7 457 HPFP DS PR 1.63 3 .74 5 .5 .5 .1 .7 457 HPFP DS PR 2.08 .7 10.4 1 1.7 2.92 .7 53, 940 MPFP CLLMR TR 1.449 .3 9.66 .5 .8 2.9 .7 650 MPFP CLLMR TR (Sensor does not exist)										
595 **MCC DX INJ TEMP 1.63 .3 .77 .1 .4 2.6 .7 86 MPFP IDS PR 1.63 .3 .74 .5 1.5 .3.1 .7 459 MPFP DS PR .69 .3 .13 .3 .6 .01 .7 557 MPFP DS T .69 .3 .13 .3 .6 .01 .7 51, 740 MPFP DS PD .43 .1 .9.2 .4 .1.17 2.92 .7 52, 764 MPFP DR LL LWR PR 1.449 .3 .9.2 .4 .01.1 .7 2.92 .7 650 MPFP CL LWR PR (Sensor does not exist)							.>	.0	3.01	•1
B6 HPFP IN PR 9.89 1. 7.27 5 1.5 3.1 7 459 HPFP DS PR 1.63 3 7.45 5 5 8 3.01 7 457 HPFP DS T 2.08 .7 10.4 1 1.7 2.92 .7 457 HPFP BAL CAV PR 2.08 .7 10.4 1 1.7 2.92 .7 457 HPFP DL LIN RR 1.449 .3 9.66 .5 .8 2.9 .7 53 MPFP CL LIN R (Sensor does not exist) .										_
459 HPFP DS PR 1.63 3 -7.45 5 .8 3.0 .7 659 HPFP DS T .69 .3 3.13 .3 .6 3.01 .7 52, 764 HPFP DR L LAR PR 2.08 .7 10.4 1. 1.7 2.92 .7 53, 940 HPFP CL LAR PR 1.449 .3 9.66 .5 .8 2.9 .7 650 HPFP CL LAR PR (Sensor does not exist)										
659 HPFP DS T .69 .3 3.13 .6 3.01 .7 457 HPFP BAL CAV PR 2.08 .7 10.4 1 1.7 2.92 .7 52, 764 HPFP DL LWR PR 1.449 .3 9.66 .5 .8 2.9 .7 650 HPFP CL LWR PR 1.449 .3 9.66 .5 .8 2.9 .7 657 HPFP DR PR (Sensor does not exist)										
457 MPFP BAL CAV PR 2.08 .7 10.4 1 1.7 2.92 .7 52,764 MPFP PRD .43 .1 3.92 .3 .4 3.01 .7 53,940 MPFP CL LNR PR 1.449 .3 9.66 .5 .8 2.9 .7 650 MPFP CL LNR PR (Sensor does not exist)								.8	3.0	.7
52, 764 HPFP SPD 4.3 1 3.92 .3 .4 3.01 .7 53, 940 HPFP CL LNR PR 1.449 .3 9.66 .5 .8 2.9 .7 650 MFPF CL LNR T (Sensor does not exist) (Sensor does not exist) .8 .7 657 HFPP DR PR (Sensor does not exist) .1 2.0 2.9 .7 231 HPFT DS TI A 84.1 1. 210. 1. 2.0 2.9 .7 232 HPFT DS TI B 5.5 1. 13.8 1. 2.0 2.9 .7 756 LPPF SPD 3.33 1. 4.44 .3 1.3 3.0 .7 7436 LPFT IN PR 2.19 .7 9.9 .5 1.2 2.85 .7 7205 FAC FU FL CT (No change is strikingly indicated) .7 .7 .7 .5 1.2 2.85 .7 722 ENG FU FLOW 2.64 .7 7.5 1.2 2.0 .0 .7 722	659	HPFP DS T				3.13	.3	.6	3.01	.7
53,940 HPFP CL LNR PR 1.449 .3 9.66 .5 .8 2.9 .7 650 HPFP DR PR (Sensor does not exist)	457	HPFP BAL CAV PR		2.08	.7	10.4	1.	1.7	2.92	.7
53,940 MPFP CL LNR PR 1.449 .3 9.66 .5 .8 2.9 .7 650 MPFP DR PR PR (Sensor does not exist)	52, 764	HPFP SPD		.43	.1	3.92	.3	.4	3.01	.7
650 HPFP CL LNR T (Sensor does not exist) 657 HPFP DR PR (Sensor does not exist) 231 HPFT DS T1 A 84.1 1. 210. 1. 2.0 2.9 .7 232 HPFT DS T1 B 5.5 1. 1.8 1.2 0.0 2.9 .7 234 LPFT DS T1 B 5.5 1. 1.8 1.2 3.0 .7 235 HPFT DS T1 PFT 2.19 .7 9.9 .5 1.2 3.0 .7 205 I206 FAC FU FL TSB 1.5 1.5 2.85 .7 1207, 1209 FAC FU FL CT (No change is strikingly indicated) .7 .7 .5 1.2 2.85 .7 1224 HNOT DS T1 30.11 1. 12.04 1. 2.0 3.0 .7 1054 *MOT DS T2 28.5 1. 1.1.39 1.2 3.0 .7 1054 *MOX FAC FH DS PR 3.66 1.<	53, 940	HPFP CL LNR PR		1.449		9.66	.5	.8		
657 HPPP DR PR (Sensor does not exist) 658 HPPP DR TEMP (Sensor does not exist) 231 HPFT DS T1 A 84.1 1. 210.1 2.0 2.9 .7 232 HPFT DS T1 B 5.5 1. 13.8 1.2 2.0 2.9 .7 754 LPFF SPD 3.33 1. 4.44 .3 1.3 3.0 .7 744 LPFF SPD 3.33 1. 4.44 .3 1.3 3.0 .7 7205 L206 FAC FU FL 3.58 1.5 5.5 1.2 3.0 .7 7207 PS FAC FU FL CT (No change is strikingly indicated) .7 .2.85 .7 722 ENG FU FLOW CT (No change is strikingly indicated) .2.0 3.0 .7 735 *HPOT DS T2 28.5 1. 1.1.96 1.2 2.0.3 .0 .7 1707 DX BLD INT T 2.99 1. 1.1.96 1.2 .3.0 .7 180 *HPOT DS TZ .0.5 .1 .0.2 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>• •</td></td<>										• •
658 HPFP DR fEMP (Sensor does not exist) 231 HPFT DS T1 A 84.1 1. 210. 1. 2.0 2.9 .7 232 HPFT DS T1 A 84.1 1. 210. 1. 2.0 2.9 .7 232 HPFT DS T1 A 5.5 1. 13.8 1.2 2.0 2.9 .7 754 LPFP SPD 3.33 1. 4.44 .3 1.3 3.0 .7 1205, 1206 FAC FU FL 3.58 1. 5.1 1.5 1.5 2.85 .7 1207, 1209 FAC FU FL CT (No change is strikingly indicated) .7 .5 1.2 2.85 .7 1722 ENG FU FLOW CT (No change is strikingly indicated) .0 .7 .7 .7 .0 .0 .7 233 *HPOT DS T2 28.5 1. 11.39 1. 2.0 .0 .7 109 *HPOT DS T2 .05 1 .02 .1 .2 .0 .7 109 *HPOT DS T2 .05 .1				-		-				
231 HPFT DS T1 A 84.1 1. 210. 1. 2.0 2.9 .7 232 HPFT DS T1 B 5.5 1. 13.8 1. 2.0 2.9 .7 754 LPFT SPD 3.33 1. 4.44 .3 1.3 3.0 .7 7454 LPFT TM PR 2.19 .7 9.9 .5 1.2 3.0 .7 7205, 1206 FAC FU FL CT (No change is strikingly indicated) .2 .85 .7 722 ENG FU FLOW 2.64 .7 .7.5 .2 2.85 .7 722 ENG FU FLOW CT (No change is strikingly indicated) .7 .30 .7 234 *HPOT DS T1 20.11 1. 12.04 1. 2.0 .7 1701 OX BLD INT T 29.9 1. .1.39 1. 2.0 .7 1054 *OX FAC FM DS T .05 .1 .02 .1 .2 .0 .7										
232 HPFT DS T1 B 5.5 1 13.8 1 2.0 2.7 754 LPFP SPD 3.33 1 4.44 .3 1.3 3.0 .7 436 LPFT IN PR 2.19 .7 9.9 .5 1.2 3.0 .7 1205, 1206 FAC FU FL 3.58 1. 5.1 .5 1.5 2.85 .7 1207, 1209 FAC FU FL CT (No change is strikingly indicated) .7 .5 1.2 2.85 .7 722 ENG FU FLOW CT (No change is strikingly indicated) .20 3.0 .7 1722 ENG FU FLOW CT (No change is strikingly indicated) .20 3.0 .7 1724 #NOT DS T2 28.5 1 11.39 1 2.0 3.0 .7 1071 OX BLD INT T 4.99 1 4.54 .3 1.3 3.0 .7 1054 *OX FAC FM DS T .05 .1 .02 .1 .2 3.0 .7 1210 FAC OX FLOW CT (No change is strikingly indicated) </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>						-				
232 MPFT DS 11 8 5.5 1. 13.8 1. 2.0 2.9 .7 754 LPFF SPD 3.33 1. 4.44 .3 1.3 3.0 .7 1205 1206 FAC FU FL 3.58 1. 5.1 .5 1.2 2.0 .7 1207, 1209 FAC FU FL 3.58 1. 5.1 .5 1.2 2.05 .7 1207, 1209 FAC FU FL No change is strikingly indicated) .7					1.	210.	1.	2.0	2.9	.7
754 LPFP SPD 3.33 1. 4.44 .3 1.3 3.0 .7 436 LPFT IN PR 2.19 .7 9.9 .5 1.2 3.0 .7 1205, 1206 FAC FU FL 3.58 1. 5.1 .5 1.5 2.85 .7 1207, 1209 FAC FU FL CT (No change is strikingly indicated) 2.85 .7 722 ENG FU FLOW CT (No change is strikingly indicated) 233 * HPOT DS T1 30.11 1. 12.04 1. 2.0 3.0 .7 234 * HPOT DS T2 28.5 1. 11.39 1. 2.0 3.0 .7 1071 OX BLD INT T 4.99 1. .02 .1 .2 3.0 .7 1054 *OX FAC FM DS PR .05 1 .02 .1 .2 3.0 .7 1210 FAC OX FLOW CT (No change is strikingly indicated) <		HPFT DS T1 B		5.5	1.	13.8	1.	2.0	2.9	.7
436 LPFT IN PR 2.19 .7 9.9 .5 1.2 3.0 .7 1205, 1206 FAC FU FL 3.58 1.5.1 .5 1.5 2.85 .7 1207, 1209 FAC FU FLOM 2.64 .7 7.57 .5 1.2 2.85 .7 722 ENG FU FLOM CT (No change is strikingly indicated) 2.0 3.0 .7 233 "HPOT DS T1 30.11 1. 12.04 1. 2.0 3.0 .7 234 "HPOT DS T2 28.5 1. 11.96 1. 2.0 3.0 .7 190 "HPOT DS T2 28.5 1. 11.96 1. 2.0 3.0 .7 1071 OX BLD INT T 4.99 1. 4.54 .3 1.3 3.0 .7 1054 "OX FAC FM DS PR 3.66 1.47 .3 1.3 3.0 .7 1210 FAC OX FLOM CT (No change is strikingly indicated) .7 .358 *FAC OX FLOM CT (No change is strikingly indicated) .7 1212, 1213	754	LPFP SPD		3.33	1.	4.44	.3	1.3	3.0	
1205, 1206 FAC FU FL CT 3.58 1. 5.1 .5 1.5 2.85 .7 1207, 1209 FAC FU FL CT (No change is strikingly indicated)		LPFT IN PR		2.19	.7	9.9				
1207, 1209 FAC FU FL CT (No change is strikingly indicated) 722 ENG FU FLOW CT 2.64 .7 7.57 .5 1.2 2.85 .7 1722 ENG FU FLOW CT (No change is strikingly indicated)	1205, 1206	FAC FU FL		3.58	1.	5.1	.5			
233 *HPOT DS T1 30.11 1. 12.04 1. 2.0 3.0 .7 234 *HPOT DS T2 28.5 1. 11.39 1. 2.0 3.0 .7 190 *HPOT PRSL DR T 29.9 1. 11.96 1. 2.0 3.0 .7 1071 0X BLD INT T 4.99 1. 4.54 .3 1.3 3.1 .7 1054 *OX FAC FM DS PR .05 .1 .02 .1 .2 3.0 .7 854 *FAC OX FM DS PR 3.66 1. .1.47 .3 .3 .0 .7 1210 FAC OX FLOM CT (No change is strikingly indicated) 1212, 1213 *FAC OX FLOM CT (No change is strikingly indicated) 1212, 1213 *FAC OX FLOM CT S.79 1. 2.32 1.3 1212, 1213 *FAC OX FLOM CT S.79 1. 2.32 1.3 <		FAC FU FL CT		(No char	nge is st	trikingly	indicated)			
233 *HPOT DS T1 30.11 1. 12.04 1. 2.0 3.0 .7 234 *HPOT DS T2 28.5 1. 11.39 1. 2.0 3.0 .7 190 *HPOT PRSL DR T 29.9 1. 11.96 1. 2.0 3.0 .7 1071 0X BLD INT T 4.99 1. 4.54 .3 1.3 3.1 .7 1054 *OX FAC FM DS PR .05 .1 .02 .1 .2 3.0 .7 854 *FAC OX FM DS PR 3.66 1. .1.47 .3 .3 .0 .7 1210 FAC OX FLOM CT (No change is strikingly indicated) 1212, 1213 *FAC OX FLOM CT (No change is strikingly indicated) 1212, 1213 *FAC OX FLOM CT S.79 1. 2.32 1.3 1212, 1213 *FAC OX FLOM CT S.79 1. 2.32 1.3 <	722			2.64				1.2	2.85	.7
233 *HPOT DS T1 30.11 1. 12.04 1. 2.0 3.0 .7 234 *HPOT DS T2 28.5 1. 11.39 1. 2.0 3.0 .7 190 *HPOT PRSL DR T 29.9 1. 11.96 1. 2.0 3.0 .7 1071 0X BLD INT T 4.99 1. 4.54 .3 1.3 3.1 .7 1054 *OX FAC FM DS PR .05 .1 .02 .1 .2 3.0 .7 854 *FAC OX FM DS PR 3.66 1. .1.47 .3 .3 .0 .7 1210 FAC OX FLOM CT (No change is strikingly indicated) 1212, 1213 *FAC OX FLOM CT (No change is strikingly indicated) 1212, 1213 *FAC OX FLOM CT S.79 1. 2.32 1.3 1212, 1213 *FAC OX FLOM CT S.79 1. 2.32 1.3 <	1722	ENG FU FLOW CT		(No char	nde is st					••
234 *HPOT DS T2 28.5 1. 11.39 1. 2.0 3.0 .7 1190 *HPOT PRSL DR T 29.9 1. 11.96 1. 2.0 3.0 .7 1071 OX BLD INT T 4.99 1. 4.54 .3 1.3 3.1 .7 1054 *OX FAC FM DS T .05 .1 .02 .1 .2 3.0 .7 854 *FAC OX FLOW DS TC .05 .1 .02 .1 .2 3.0 .7 1212 FAC OX FLOW CT .06 .1 .147 .3 1.3 3.0 .7 1212, 1213 *FAC OX FLOW S.79 1. 2.32 .3 1.3 3.0 .7 1212, 1213 *FAC OX FLOW S.79 1. 2.32 .3 1.3 3.0 .7 1212, 1213 *FAC OX FLOW S.74 1. 1.38 .3 .0 .7 1212, 1213 *FAG OX IN TEMP .76 .1 1.41 .3 .4 1.81 .7 1212, 123 <td></td> <td></td> <td></td> <td>30,11</td> <td></td> <td></td> <td></td> <td>20</td> <td>3.0</td> <td>7</td>				30,11				20	3.0	7
1190 **POT PKSL DR T 29.9 1. 11.96 1. 2.0 3.0 .7 1071 0X BLD INT T 4.99 1. 4.54 .3 1.3 3.1 .7 1054 *OX FAC FM DS T .05 .1 .02 .1 .2 3.0 .7 1054 *OX FAC FM DS T .05 .1 .02 .1 .2 3.0 .7 1054 *OX FAC FM DS PR .066 1. 1.47 .3 1.3 3.0 .7 1210 FAC OX FLOW CT (No change is strikingly indicated) .7 .3.0 .7 1212, 1213 *FAC OX FLOW 5.79 1. 2.32 .3 1.3 3.0 .7 1212, 1213 *FAC OX FLOW 5.79 1. 2.32 .3 1.3 3.0 .7 1358 ENG OX IN PR 3.44 1 1.38 .3 1.3 2.72 .7 325, 326 HPOP DS PR 4.64 1. 2.32 .3 1.3 3.0 .7 209,210 LPO										
1071 0X BLD INT T 4.99 1.4.54 .3 1.3 3.1 .7 1054 *0X FAC FM DS T .05 .1 .02 .1 .2 3.0 .7 854 *FAC OX FM DS PR 3.66 1. 1.47 .3 1.3 3.0 .7 1210 FAC OX FLOW CT (No change is strikingly indicated) 1.3 3.0 .7 1212, 1213 *FAC OX FLOW 5.79 1. 1.38 .3 1.3 3.0 .7 1212, 1213 *FAC OX FLOW 5.79 1. 1.38 .3 1.3 3.0 .7 1212, 1213 *FAC OX FLOW 5.79 1. 1.38 .3 1.3 3.0 .7 1212, 1213 *FAC OX FLOW 5.79 1. 1.41 .3 .4 1.81 .7 1212, 1213 *FAC OX FLOW 5.79 1. 2.45 .3 1.3 3.0 .7 1338 HPOP DS PR 4.21 1. 2.45 .3 1.3 3.0 .7 209,210 LPOP DS PR										
1054 *OX FAC FM DS T .05 .1 .02 .1 .2 3.0 .7 854 *FAC OX FM DS PR 3.66 1. 1.47 .3 1.3 3.0 .7 1210 FAC OX FLOW CT (No change is strikingly indicated) 1.3 3.0 .7 1212, 1213 *FAC OX FLOW 5.79 1. 2.32 .3 1.3 3.0 .7 1212, 1213 *FAC OX FLOW 5.79 1. 2.32 .3 1.3 3.0 .7 1212, 1213 *FAC OX FLOW S.79 1. 2.32 .3 1.3 3.0 .7 1212, 1213 *FAC OX FLOW S.79 1. 2.32 .3 1.3 3.0 .7 1212, 1213 *FAC OX IN PR 3.64 1. 1.38 .3 1.7 .7 1212, 1213 *FAC OX IN PR 3.64 1. 2.32 .3 1.3 .0 .7 1358 ENG OX IN TEMP .76 .1 1.41 .3 1.3 .0 .7 209, 210 LPO										
854 *FAC OX FM DS PR 3.66 1.147 3 1.3 3.0 .7 1210 FAC OX FLOW CT (No change is strikingly indicated)										
1210 FAC OX FLOW CT (No change is strikingly indicated) 1212, 1213 *FAC OX FLOW 5.79 1. 2.32 .3 1.3 3.0 .7 1212, 1213 *FAC OX FLOW 5.79 1. 2.32 .3 1.3 3.0 .7 1058 *ENG OX IN PR 3.44 1. 1.38 .3 1.3 3.0 .7 1058 ENG OX IN TEMP .76 .1 1.41 .3 .4 1.81 .7 1058 ENG OX IN TEMP .76 .1 1.41 .3 .4 1.81 .7 338 HPOP DS PR 4.21 .2.45 .3 1.3 3.0 .7 325, 326 HPOP BALCAV PR 4.64 1. 2.32 .3 1.3 3.0 .7 734 LPOP SPD 2.17 .7 1.21 .3 1.0 3.0 .7 209,210 LPOP DS PR 6.03 1. 3.55 .3 1.3 2.7 .7 412 FPB PC 1.17 .3 4.86 .3										
1212, 1213 *FAC OX FLOW 5.79 1. 2.32 .3 1.3 3.0 .7 858 *ENG OX IN PR 3.44 1. 1.38 .3 1.3 3.0 .7 1058 ENG OX IN TEMP .76 .1 1.41 .3 .4 1.81 .7 338 HPOP DS PR 4.21 1. 2.45 .3 1.3 3.0 .7 325, 326 HPOP BALCAV PR 4.64 1. 2.32 .3 1.3 3.0 .7 734 LPOP SPD 2.17 .7 1.21 .3 1.0 3.0 .7 209,210 LPOP DS PR 4.73 1. 18.95 1. 2.0 2.9 .7 93, 94 PBP DS TMP 2.05 .7 .93 .1 .8 2.7 .7 412 FPB PC 1.17 .3 4.86 .3 .6 3.0 .7 480 OPB PC 2.24 .7 1.32 .3 1.0 2.84 .7 878 HX INT PR								1.5	3.0	•
858 *ENG OX IN PR 3.44 1. 1.38 .3 1.3 3.0 .7 1058 ENG OX IN TEMP .76 .1 1.41 .3 .4 1.81 .7 338 HPOP DS PR 4.21 1. 2.45 .3 1.3 2.72 .7 325, 326 HPOP BALCAV PR 4.64 1. 2.32 .3 1.3 3.0 .7 734 LPOP SPD 2.17 .7 1.21 .3 1.0 3.0 .7 209,210 LPOP DS PR 4.73 1. 18.95 1. 2.0 2.9 .7 93,94 PBP DS TMP 2.05 .7 .93 .1 .8 2.7 .7 59,159 PBP DS TMP 2.05 .7 .93 .1 .8 2.77 .7 412 FPB PC 1.17 .3 4.86 .3 .6 3.0 .7 480 OPB PC 2.24 .7 1.32 .3 1.0 2.84 .7 878 HX INT T <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td></t<>										_
1058 ENG OX IN TEMP .76 .1 1.41 .3 .4 1.81 .7 338 HPOP DS PR 4.21 1. 2.45 .3 1.3 2.72 .7 325, 326 HPOP BALCAV PR 4.64 1. 2.32 .3 1.3 3.0 .7 734 LPOP SPD 2.17 .7 1.21 .3 1.0 3.0 .7 209,210 LPOP DS PR 4.73 1. 18.95 1. 2.0 2.9 .7 93, 94 PBP DS TMP 2.05 .7 .93 .1 .8 2.7 .7 59, 159 PBP DS PR 6.03 1. 3.55 .3 1.3 2.72 .7 412 FPB PC 1.17 .3 4.86 .3 .6 3.0 .7 480 OPB PC 2.24 .7 1.32 .3 1.0 2.84 .7 878 HX INT PR 4.51 1. 2.48 .3 1.3 2.7 .7 881 HX VENT IN PR										
338 HPOP DS PR 4.21 1. 2.45 .3 1.3 2.72 .7 325, 326 HPOP BALCAV PR 4.64 1. 2.32 .3 1.3 3.0 .7 734 LPOP SPD 2.17 .7 1.21 .3 1.0 3.0 .7 209,210 LPOP DS PR 4.73 1. 18.95 1. 2.0 2.9 .7 93, 94 PBP DS TMP 2.05 .7 .93 .1 .8 2.7 .7 93, 94 PBP DS TMP 2.05 .7 .93 .1 .8 2.7 .7 93, 94 PBP DS PR 6.03 1. 3.55 .3 1.3 2.72 .7 91, 159 PBP DS PR 6.03 1. 3.55 .3 1.3 2.72 .7 412 FPB PC 1.17 .3 4.86 .3 .6 3.0 .7 480 OPB PC 2.24 .7 1.32 .3 1.0 2.84 .7 879 *LINT T <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
325, 326 HPOP BALCAV PR 4.64 1. 2.32 3 1.3 3.0 .7 734 LPOP SPD 2.17 .7 1.21 .3 1.0 3.0 .7 209,210 LPOP DS PR 4.73 1. 18.95 1. 2.0 2.9 .7 93, 94 PBP DS TMP 2.05 .7 .93 .1 .8 2.7 .7 59, 159 PBP DS PR 6.03 1. 3.55 .3 1.3 2.72 .7 412 FPB PC 1.17 .3 4.86 .3 .6 3.0 .7 480 OPB PC 2.24 .7 1.32 .3 1.0 2.84 .7 878 HX INT PR 4.51 1. 2.48 .3 1.3 2.7 .7 879 *HX INT T 15.44 1. 7.72 5 1.5 2.5 .7 881 HX VENT IN PR 1.61 .3 1.08 .3 .6 2.88 .7 882 HX VENT IN T <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
734 LPOP SPD 2.17 .7 1.21 .3 1.0 3.0 .7 209,210 LPOP DS PR 4.73 1. 18.95 1. 2.0 2.9 .7 93,94 PBP DS TMP 2.05 .7 .93 .1 .8 2.7 .7 59,159 PBP DS PR 6.03 1. 3.55 .3 1.3 2.72 .7 412 FPB PC 1.17 .3 4.86 .3 .6 3.0 .7 480 OPB PC 2.24 .7 1.32 .3 1.0 2.84 .7 878 HX INT PR 4.51 1. 2.48 .3 1.3 2.7 .7 879 *HX INT T 15.44 1. 7.72 .5 1.5 2.5 .7 881 HX VENT IN PR 1.61 .3 1.08 .3 .6 2.88 .7 882 HX VENT IN T (No change is strikingly indicated) .6 2.88 .7 883 HX VENT DP 1.85 .3									2.72	
209,210 LPOP DS PR 4.73 1. 18.95 1. 2.0 2.9 7 93,94 PBP DS TMP 2.05 .7 .93 .1 .8 2.7 .7 59,159 PBP DS PR 6.03 1. 3.55 .3 1.3 2.72 .7 412 FPB PC 1.17 .3 4.86 .3 .6 3.0 .7 480 OPB PC 2.24 .7 1.32 .3 1.0 2.84 .7 878 HX INT PR 4.51 1. 2.48 .3 1.3 2.7 .7 879 *HX INT T 15.44 1. 7.72 .5 1.5 2.5 .7 881 HX VENT IN PR 1.61 .3 1.08 .3 .6 2.88 .7 882 HX VENT IN PR 1.61 .3 1.48 .3 .6 2.88 .7 883 HX VENT DP 1.85 .3 1.48 .3 .6 2.75 .7 40 OPOV ACT POS 5.00<								1.3	3.0	
93, 94 PBP DS TMP 2.05 .7 .93 .1 .8 2.7 .7 59, 159 PBP DS PR 6.03 1. 3.55 .3 1.3 2.72 .7 412 FPB PC 1.17 .3 4.86 .3 .6 3.0 .7 412 FPB PC 2.24 .7 1.32 .3 1.0 2.84 .7 480 OPB PC 2.24 .7 1.32 .3 1.0 2.84 .7 878 HX INT PR 4.51 1. 2.48 .3 1.3 2.7 .7 879 *HX INT T 15.44 1. 7.72 .5 1.5 2.5 .7 881 HX VENT IN PR 1.61 .3 1.08 .3 .6 2.88 .7 882 HX VENT IN T (No change is strikingly indicated) .6 2.75 .7 883 HX VENT DP 1.85 .3 1.48 .3 .6 2.75 .7 40 OPOV ACT POS 5.00 1. <t< td=""><td></td><td></td><td></td><td></td><td>.7</td><td>1.21</td><td>.3</td><td>1.0</td><td>3.0</td><td>.7</td></t<>					.7	1.21	.3	1.0	3.0	.7
93, 94 PBP DS TMP 2.05 .7 .93 .1 .8 2.7 .7 59, 159 PBP DS PR 6.03 1. 3.55 .3 1.3 2.72 .7 412 FPB PC 1.17 .3 4.86 .3 .6 3.0 .7 412 FPB PC 2.24 .7 1.32 .3 1.0 2.84 .7 480 OPB PC 2.24 .7 1.32 .3 1.0 2.84 .7 878 HX INT PR 4.51 1. 2.48 .3 1.3 2.7 .7 879 *HX INT T 15.44 1. 7.72 .5 1.5 2.5 .7 881 HX VENT IN PR 1.61 .3 1.08 .3 .6 2.88 .7 882 HX VENT IN T (No change is strikingly indicated) .6 2.75 .7 883 HX VENT DP 1.85 .3 1.48 .3 .6 2.75 .7 40 OPOV ACT POS 5.00 1. <t< td=""><td></td><td>LPOP DS PR</td><td></td><td></td><td>1.</td><td>18.95</td><td>1.</td><td>2.0</td><td>2.9</td><td>.7</td></t<>		LPOP DS PR			1.	18.95	1.	2.0	2.9	.7
59, 159 PBP DS PR 6.03 1. 3.55 .3 1.3 2.72 .7 412 FPB PC 1.17 .3 4.86 .3 .6 3.0 .7 480 OPB PC 2.24 .7 1.32 .3 1.0 2.84 .7 878 HX INT PR 4.51 1. 2.48 .3 1.3 2.7 .7 879 *HX INT T 15.44 1. 7.72 .5 1.5 2.5 .7 881 HX VENT IN PR 1.61 .3 1.08 .3 .6 2.88 .7 882 HX VENT IN T (No change is strikingly indicated) .85 .3 1.48 .3 .6 2.75 .7 883 HX VENT DP 1.85 .3 1.48 .3 .6 2.75 .7 40 OPOV ACT POS 5.00 1. 2.17 .3 1.3 3.0 .7	93, 94	PBP DS TMP		2.05	.7	.93	.1	.8	2.7	
412 FPB PC 1.17 .3 4.86 .3 .6 3.0 .7 480 OPB PC 2.24 .7 1.32 .3 1.0 2.84 .7 878 HX INT PR 4.51 1. 2.48 .3 1.3 2.7 .7 879 *HX INT T 15.44 1. 7.72 .5 1.5 2.5 .7 881 HX VENT IN PR 1.61 .3 1.08 .3 .6 2.88 .7 882 HX VENT IN T (No change is strikingly indicated) .6 2.75 .7 883 HX VENT DP 1.85 .3 1.48 .3 .6 2.75 .7 40 OPOV ACT POS 5.00 1. 2.17 .3 1.3 3.0 .7	59, 159	PBP DS PR		6.03	1.	3.55	.3	1.3	2.72	.7
480 OPB PC 2.24 .7 1.32 .3 1.0 2.84 .7 878 HX INT PR 4.51 1. 2.48 .3 1.3 2.7 .7 879 *HX INT T 15.44 1. 7.72 .5 1.5 2.5 .7 881 HX VENT IN PR 1.61 .3 1.08 .3 .6 2.88 .7 882 HX VENT IN T (No change is strikingly indicated) .883 .6 2.75 .7 883 HX VENT DP 1.85 .3 1.48 .3 .6 2.75 .7 40 OPOV ACT POS 5.00 1. 2.17 .3 1.3 3.0 .7	412	FPB PC								.7
878 HX INT PR 4.51 1. 2.48 .3 1.3 2.7 .7 879 *HX INT T 15.44 1. 7.72 .5 1.5 2.5 .7 881 HX VENT IN PR 1.61 .3 1.08 .3 .6 2.88 .7 882 HX VENT IN T (No change is strikingly indicated) .6 2.75 .7 883 HX VENT DP 1.85 .3 1.48 .3 .6 2.75 .7 40 OPOV ACT POS 5.00 1. 2.17 .3 1.3 3.0 .7	480									
879 *HX INT T 15.44 1. 7.72 .5 1.5 2.5 .7 881 HX VENT IN PR 1.61 .3 1.08 .3 .6 2.88 .7 882 HX VENT IN T (No change is strikingly indicated) .5 .6 2.75 .7 883 HX VENT DP 1.85 .3 1.48 .3 .6 2.75 .7 40 OPOV ACT POS 5.00 1. 2.17 .3 1.3 3.0 .7		-					.3			
881 HX VENT IN PR 1.61 .3 1.08 .3 .6 2.88 .7 882 HX VENT IN T (No change is strikingly indicated) .6 2.88 .7 883 HX VENT DP 1.85 .3 1.48 .3 .6 2.75 .7 40 OPOV ACT POS 5.00 1. 2.17 .3 1.3 3.0 .7										
882 HX VENT IN T (No change is strikingly indicated) 883 HX VENT DP 1.85 .3 1.48 .3 .6 2.75 .7 40 OPOV ACT POS 5.00 1. 2.17 .3 1.3 3.0 .7										
40 OPOV ACT POS 5.00 1. 2.17 .3 1.3 3.0 .7				(No chee	na je ct	rikinaly	indicatod	.0	£.00	•1
40 OPOV ACT POS 5.00 1. 2.17 .3 1.3 3.0 .7					પુર ાઢ કેંદ 7	1 / 0	T T	4	3 	-
				1.03		1.40				
•c [−] rruv ∧ui rus c.cy .1 .ys .1 .8 2.74 .7										
	46	TFUT ALL PUS		6.69	•1	.75	••	.0	2.14	.7

• • • • • • • •

	an Alexandra Interne Priling
Data Base for Early Parameter Indicators of T	<u>Intervention</u> : Injector Falture
	PB), conducted 28 January 1981 for Engine 0009.
	e to an Elevation-J pressure redline.
Early indications occur ner	
	ere face erosion, 4-LOX posts and fuel sleeves eroded back into fuel
	(most 1st-stage turbines with heavy spalling & appear with cracks at root)
Impact: Unavailable	
CRITERIA LEGEND: Operating Level Anomaly	Criteria (LC)
LC = (Absolute Change	e in Steady State Value/Steady State Value) x 100.
•Rate Criteria (RC) = LC/	(Excursion time interval in seconds)
•Duration Criteria (DC)	
	ne point of first failure indications to c/o time
WEIGHTED LEVEL VALUE ASSIGNMENT LEGEND:	
LEVEL-A: LEVEL-B:	LEVEL ·C:
	Value Value of DC C-Value
>3% 1.0 >10%/sec	
>2%-3%	.5 >1 ·5sec
1x-2x	.3 .5 ·1sec3
	.1 <.5sec 0.
	esis indicate an earlier and more gradual "LC" change for the parameter.
	asterisk indicate a change continues until cutoff time.
and an	
PID NO.(S) PARAMETER	<u>LC LEVEL-A RC LEVEL-B A + B DC LEVEL-C</u>
	(Canada data ant aviat)
366-371 (INJ CLNT PR) - (MCC HG IN PR)	(Sensor does not exist)
366-163 (INJ CLNT PR) - (MCC PC)	(Sensor does not exist)
371-163 (MCC HG IN PR) - (MCC PC)	(No change is strikingly indicated)
395-163 (MCC OX INJ PR) - (MCC PC)	8.01 129 .1 1.1 28. 1.
940-371 (HPFP CL LNR PR)-(MCC HG IN PR)	25.(21) 1.(1.) 50.(3.4) 1.(.3) 2.0(1.3) 20.3(53) 1.(1.)
459-383 (HPFP DS PR) - (MCC PC)	(No change is strikingly indicated)
410-371 (FPB PC) -(MCC HG IN PR)	(No change is strikingly indicated)
480-371 (OPB PC) -(MCC HG IN PR)	(No change is strikingly indicated)
63, 163 MCC PC	.38 .1 .11 .1 .2 38.5 1.
200 MCC PC AVG	.61 .1 .01 .1 .2 40.5 1.
17 MCC CLNT DS PR	(Sensor has not settled adequately to steady state conditions)
18 MCC CLNT DS T	(No change is strikingly indicated)
24 *MCC FU INJ PR	3.4 115 .1 1.1 23. 1.
1951 MCC LN CAV P	(Sensor does not exist)
21 MCC OX INJ TEMP	(No change is strikingly indicated)
86 HPFP IN PR	(No change is strikingly indicated)
	(No change is strikingly indicated)
52 HPFP DS PR	
659 HPFP DS T	(No change is strikingly indicated)
457 HPFP BAL CAV PR	(No change is strikingly indicated)
52, 764 HPFP SPD	(No change is strikingly indicated)
940 HPFP CL LNR PR	1.2(1.1) .3(.3) 2.48(.2) .3(.1) .6(.4) 26.(57) 1.(1.)
650 HPFP CL LNR T	(Sensor does not exist)
657 HPFP DR PR	(Sensor does not exist)
658 HPFP DR TEMP	(Sensor does not exist)
231 HPFT DS T1 A	4.(3.1) 1.(1.) 1.2(2.1) .3(.3) 1.3(1.3) 14.(54.5) 1.
232 *HPFT DS T1 B	4.6 11 .1 1.1 44. 1.
754 LPFP SPD	(No change is strikingly indicated)
436 LPFT IN PR	(Sensor does not exist)
1205, 1206 FAC FU FL	(No change is strikingly indicated)
1207, 1209 FAC FU FL CT	(No change is strikingly indicated)
722 ENG FU FLOW	(No change is strikingly indicated)
1722 ENG FU FLOW CT	(No change is strikingly indicated)
233 *HPOT DS T1	4.4 117 .1 1.1 26. 1.
234 *HPOT DS T2	4.5 116 .1 1.1 28. 1.
1190 HPOT PRSL DR T	(Sensor has not settled adequately to steady state conditions)
1071 OX BLD INT T	21.2 1. 4.25 .3 1.3 49. 1.
1054, 1056 OX FAC FM DS T	(No change is strikingly indicated)
	(No change is strikingly indicated)
854 FAC OX FM DS PR	(Sensor malfunction)
1210 FAC OX FLOW CT	(Sensor malfunction)
1212, 1213 FAC OX FLOW	
858, 860 ENG OX IN PR	(No change is strikingly indicated)
762 ENG OX IN TEMP	(Sensor has not settled adequately to steady state conditions)
90 *HPOP DS PR	1.26 .3 .04 .1 .4 28.5 1.
328 *HPOP BALCAV PR	1.14 .3 .04 .1 .4 27.5 1.
30, 734 LPOP SPD	.26 .1 .07 .1 .2 28.5 1.
209 *LPOP DS PR	9.2 13 .1 1.1 31.0 1.
93, 94 PBP DS TMP	(Sensor has not settled adequately to steady state conditions)
59, 159 PBP DS PR	1.69 .3 .11 .1 .4 27.5 1.
410 *FPB PC	1.01 .3 .04 .1 .4 28.0 1.
480 *OPB PC	.82 .1 .03 .1 .2 28.0 1.
878 *HX INT PR	1.5 .3 .05 .1 .4 28.0 1.
879 HX INT T	3.8 115 .1 1.1 24.5 1.
881 HX VENT IN PR	(No change is strikingly indicated)
882 *HX VENT IN T	.98 .1 .04 .1 .2 26.0 1.
883 HX VENT DP	(No change is strikingly indicated)
40 OPOV ACT POS	3.41 14 .1 1.1 37.0 1.
42 FPOV ACT POS	1.26 .3 1.1 .3 .6 29.5 1.

D	ata Base fo	<u>r Early Paramete</u> FPB Anomalies) c	<u>r Indicators of</u> onducted 12 Jul	<u>Test Class</u> v 1980 for	<u>Engine 00</u>	1: Inje 106.	ctor Failure	•			
	-3110-01 (Cutoff Ti	me= 106.6 sec d	lue to a fil	re detecti	on obse	rver.				
		Early ind	ications occur	near 102% I	PL Above Line			accent 2	u balas fo		
		Damage:	FPB injector (e HPFTP (all turb	ine blades	with mode	erate to	heavy spall	ling of Z	r coating)		•
1		Impact:	\$1.5M, Del <u>ay Ti</u>	me- 16 weel	(S.						
C	RITERIA LEG	END: •Operati	ng Level Anomal	y Criteria	(LC)					·	
		LC :	= (Absolute Cha iteria (<u>RC</u>) = L	nge in Stea	ady State	Value/S	teady State	Value) X	100.	, Excu	ursion time
			n Criteria (<u>RC</u>) = L			ILEI VAL	III SECONS/			7-+2	\
		DC	= Duration from	the point	of first	failure	indications	s to c/o	time C	nange	~
<u>N</u>		EL VALUE ASSIGNM	ENT LEGEND: LEVEL-B:		LEVEL	-0-					
	LEVEL-A: Value of L	C A-Value	Value of RC	B-Value		of DC	C-Value				
	>3%	1.0	>10%/sec	_			1.0				
		7	>5 ·10%/sec				···· .7 ···· .3				
	1%-2% <1%		1 - 5%/sec <1%/sec			5sec					
		*Parameter	s prefixed with	an asteris	sk indicat	e a cha	nge continue		cutoff time	•.	
0	10 10 (5)			LC	LEVEL - A	<u>RC</u>	LEVEL-B	LEVELS	DC	LEVEL	
<u>r</u>	<u>ID NO.(S)</u>	PARAMETER		_				<u> </u>		<u></u>	
-	66-371	(INJ CLNT PR)		• • •	does not			-			
	66-163 71-147	(INJ CLNT PR)	-(MCC PC)		r does not r does not						
-	71-163 95-163	(MCC HG IN PR) (MCC OX INJ PR)			does not						
_	40-371	(HPFP CL LNR PR)-(MCC HG IN PR) (Sensor	does not	exist)					
	59-383	(HPFP DS PR)	-(MCC PC)	(Sensor	r is unava	-					
	10-371 80-371	(FPB PC) (opb PC)	- (MCC HG IN PR - (MCC HG IN PR		r does not r does not						
	1P3023D	MCC PC		1.77	.3	17.7	1.	1.3	5.2	1.	
	1P3039D	MCC PC AVG		1.77	.3	17.7	1.	1.3	5.2	1.	
	1P30670	MCC CLNT DS PR		2.32 3.98	.7 1.	15.5 .184	1. .1	1.7 1.1	5.25 24.1	1. 1.	
	1T30700 24	MCC CLNT DS T MCC FU INJ PR			does not		• •		24.1	•	
19		MCC LN CAV P		(Sensor	does not	exist)					
	95	MCC OX INJ TEMP			does not						
	86 1P30290	HPFP IN PR HPFP DS PR		(Sensor 2.92	• is unava .7	29.2	1.	1.7	5.25	1.	
-	1P30290 59	HPFP DS PK			does not	-	* •				
4	57	HPFP BAL CAV PR		(Sensor	does not	exist)					
	52, 764	HPFP SPD			ange is st s do not		y indicated))			
	53, 940	HPFP CL LNR PR		••••••	-s do not - does not						
	50 57	HPFP CL LNR T HPFP DR PR			· does not						
65	58	HPFP DR TEMP		(Sensor	does not	exist)		- -	-		
	9T3010H	HPFT DS T1 A		6.3	1.	25.4	1.	2.0 2.0	5.15 5.15	1. 1.	
	9T3011H 1R3072D	HPFT DS T1 B LPFP SPD		5.3 .84	1. .1	35. .84	1.	.2	5.2	1.	
43	36	LPFT IN PR		(Sensor	does not	exist)					
	05, 1206	FAC FU FL		(Sensor	• does not	exist)					
	D7, 1209 1R1034D	FAC FU FL CT ENG FU FLOW		(Sensor 2.44	· does not .7	exist) 24.4	1.	1.7	5.25	1.	
172		ENG FU FLOW CT			does not						
A49	7T3012H 1	*HPOT DS T1		8.0	1.	2.5	.3	1.3	5.2	. 1.	
		*HPOT DS T2		9.0	1. does pot	2.8	.3	1.3	5.2	1.	
119		HPOT PRSL DR T OX BLD INT T			· does not · does not						
	54, 1056	OX FAC FM DS T		(Sensor	does not	exist)					
85		FAC OX FM DS PR			does not						
121	10 12, 1213	FAC OX FLOW CT			· does not · does not						
	58, 860	ENG OX IN PR			does not						
105	58	ENG OX IN TEMP		(Sensor	does not	exist)					
	20 25 7 7 4	HPOP DS PR					y indicated)				
	25, 326 30, 734	HPOP BALCAV PR			· does not · does not						
20	09	LPOP DS PR			does not	-					
	93, 94	PBP DS TMP		-	does not		4	4 7	E 7	4	
	1P3033D 1P3031D	PBP DS PR FPB PC		2.3 2.94	.7 .7	15.5 29.4	1. 1.	1.7 1.7	5.2 5.25	1. 1.	
	1P3032D	OPB PC		2.15	.7	21.5	1.	1.7	5.25	1.	
87	78	HX INT PR		(Sensor	does not	exist)					
87	79	HX INT T		-	does not	-					
	74			(Sensóř	· does not	exist)					
	81 82	HX VENT IN PR		•		exist)					
88 88	32	HX VENT IN PR HX VENT IN T HX VENT DP		(Sensor (Sensor	does not does not	exist)			_		
88 88 E41	32	HX VENT IN T		(Sensor	does not		.3 1.	1.3 1.7	5.2 5.25	1. 1.	

Table III-10: SF10-01 Data Base

•

L

	Engly ind				celeron	meter redlin	e		
		lications occur ne Extensive engine	ar 100%	PL					utting of
		end), POGO-system	i blown o'	ff with LP	OP disc	ch. duct, co	ntroller (severe fi	re damage)
CRITERIA LEC		\$9.2M, Delay Time ng Level Anomaly							
	LC	= (Absolute Chang	e in Ste	ady State			Value) x	100.	, Exçursi
		<u>·iteria</u> (<u>RC</u>) = LC/ on Criteria (DC)	(Excursion	on time in	terval	in seconds)			-1-+7
		= Duration from t	he point	of first	failure	indication	s to c/o t	ime L	hange
			•				·		DC
LEVEL-A:	EL VALUE ASSIGNM	LEVEL-B:		LEVEL	•C:		<i></i>		
Value of L		Value of RC B	-Value	Value	of DC	C-Value	ିନ	IGINAI	PAGE IS
>3% >2%-3%		>10%/sec >5 -10%/sec	1.0		5sec 5sec	1.0	\mathbf{OF}	FOOR	QUALITY
1%-2%		1 - 5%/sec			1sec				
<1%		<1%/sec		<.	<u>5sec</u>	0.			<u></u>
							LEVELS		
PID NO.(S)	PARAMETER		<u>LC</u>	LEVEL·A	RC	LEVEL-B	<u>A + B</u>	DC	LEVEL-C
566-371	(INT CINT DON	MCC NC IN DRY		- dooo	avicas				
566-371 566-163	(INJ CLNT PR) (INJ CLNT PR)	-(MCC HG IN PR) -(MCC PC)		· does not · does not					
571-163	(MCC HG IN PR)	-(MCC PC)	(Sensor	does not	exist)				
595-163	(MCC OX INJ PR)		270.8	1.	417.	1.	2.0	6.03	1.
240-371 59-383	(HPFP CL LNR PR (HPFP DS PR))-(MCC HG IN PR) -(MCC PC)	(Sensor 70.	does not	exist) 107.7		2.0	6.03	1.
10-371	(FPB PC)	-(MCC HG IN PR)	(Sensor	does not	exist)			0.05	••
80-371	(OPB PC)	-(MCC HG IN PR)		does not	•		~ ~		
63, 163 200	MCC PC MCC PC AVG		31. 31.	1. 1.	620.7 620.7	-	2.0 2.0	6.03 6.03	1. 1.
17	MCC CLNT DS PR		37.9	1.	114.9		2.0	5.96	1.
18	MCC CLNT DS T		79.8	1.	798.	1.	2.0	6.66	1.
24 21	MCC FU INJ PR MCC LN CAV P		43.2 (Sepsor	1. malfuncti	134.9	1.	2.0	5.96	1.
95	MCC OX INJ TEMP		5.38	1.	13.5	1.	2.0	5.48	1.
86	HPFP IN PR		20.5	1.	114.	1.	2.0	6.08	1.
52 · · · · · · · · · · · · · · · · · · ·	HPFP DS PR HPFP DS T		39.8 - 19.8	1 1.	120.7 58.2	1.	2.0 2.0	5.96 5.92	1. 1.
57	HPFP BAL CAV PR		16.7	1.	56.2 47.6	1.	2.0	5.92	1.
52, 764	HPFP SPD		19.4	1.	57.1	1.	2.0	5.96	1.
53, 940	HPFP CL LNR PR		-	s do not e					
50 57	HPFP CL LNR T HPFP DR PR		-	does not does not					
58	HPFP DR TEMP		-	does not	- • •				-
31	HPFT DS T1 A		25.1	1.	71.7	1.	2.0	6.01	1.
32 54	HPFT DS T1 B LPFP SPD		(Sensor 14.7	maifuncti	ion) 40.7	1.	2.0	5.93	1.
36	LPFF IN PR		(Sensor	does not				2.73	1.
05, 1206	FAC FU FL		20.97	1.	70.	1.	2.0	5.88	1.
07, 1209 22	FAC FU FL CT ENG FU FLOW		(Sensor 19.5	does not	exist) 52.6	1.	2.0	5.95	1.
22	ENG FU FLOW CT			nge is str	rikingly	y indicated)		3.73	
33 -	HPOT DS T1		69.7	Ī.	34.9	1.	2.0	5.88	1.
34 90	HPOT DS T2 HPOT PRSL DR T		(Sensor 26.7	malfuncti 1.	ion) 63.5	1.	2.0	6.03	1
71	OX BLD INT T			does not		••	2.0	0.03	1.
54, 1056	OX FAC FM DS T		.52	.1	.89	.1	.2	6.46	1.
54 10	FAC OX FM DS PR FAC OX FLOW CT		28. (No cha	1. nge is str	73.6 Vikinaly	1. / indicated)	2.0	5.96	1.
12, 1213	FAC OX FLOW		(NO CHa	nge is str 1.	212.1	1.	2.0	5.88	1.
58, 860	ENG OX IN PR		51.6	1.	214.9	1.	2.0	5.9	1.
8 0	ENG OX IN TEMP HPOP DS PR		.48 49.3	.1 1.	1.66 149.2	.3	.4	4.43 5.96	.7
5, 326	HPOP BALCAV PR		49.3 52.2	1.	163.2	1.	2.0 2.0	5.96	1. 1.
50, 734	LPOP SPD		29.3	1.	97.6	1.	2.0	5.88	1.
19 13, 94	LPOP DS PR PBP DS TMP		28.6 7.0	1. 1.	142.8 13.5	1.	2.0	5.76	1.
'S, 94 19, 159	PBP DS IMP PBP DS PR			ı. s malfunct		1.	2.0	5.92	1.
10	FPB PC		40.8	1.	110.3	1.	2.0	5.96	1.
30 78	OPB PC		47.5 53.5	1.	128.3	1.	2.0	5.96	1.
78 79	MX INT PR HX INT T		55.5 7.62	1. 1.	133.8 11.7	1. 1.	2.0 2.0	5.83 5.53	1. 1.
31	HX VENT IN PR		53.7	1.	59.	1.	2.0	5.79	1.
2	HX VENT IN T					indicated)	3 0		
3	HX VENT DP OPOV ACT POS		53.6 31.7	1.	59.5	1.	2.0 2.0	5.78	1.
0	UPUV ALI PUS		31.4	1.	113.4	1.	Z.U	6.03	1.

-Test 750)-259 (MCC Outlet	er Indicators of Te Manifold Neck Fail	ure) con	ducted 25	Harch 1	965 for Eng	r Neat Exch ine 2308.	hanger Faill	lle
163(120	Cutoff Ti	me= 101.5 sec due	to a HPF	P acceler	ameter r	edline.			
	Early ind	lications occur nee Engine sustained e	ar 109% P	Lintannal	and avt	anal damag		ut of the d	failure and
	-	subsequent impact	with the	flame de	flector	and spillway	e as a resu Y.	itt of the	
CRITERIA LE	Impact:	Unavailable. ng Level Anomaly (riteria	(LC)		· · · ·		······	
CRITCHIA CL	LC	= (Absolute Change	e in Stea	dy State '	Value/St	eady State \	Value) x 10	ю. Т	,Excursion ti
		iteria (<u>RC</u>) = LC/(Excursion	n time in	terval i	n seconds)			r-+
	• <u>Duratio</u>	<u>n Criteria</u> (<u>DC</u>) = Duration from th	a point	of first	failura	indications	to c/o tim	Char	ge //
								~ ±:	
WEIGHTED LE	VEL VALUE ASSIGNM				_				
LEVEL-A:		LEVEL-B: Value of RC B-	Value	LEVEL	<u>-C</u> : of DC	C-Value			
Value of	LC A-Value	>10%/sec			5sec				
>2%-3%.		>5 -10%/sec	.5		5sec				
1%-2%		1 - 5%/sec	.3		1sec 5sec				
<1%		<1%/sec	<u>.1</u>	cate an e	arlier a	nd more grad	dual "LC" c	hange for 1	the parameter.
	*Parameter	s prefixed with an	asteris	k indicat	e a chang	ge continue	s until cut	off time.	F
		•					LEVELS		
PID NO.(S)	PARAMETER			LEVEL-A	<u>RC</u> ' [LEVEL-B	<u>A + B</u>	<u>DC LE</u>	VEL-C
366-367	(INJ CLNT PR)	-(MCC HG IN PR)	(Sensor	does not	exist)				
366-163	(INJ CLNT PR)	-(MCC PC)	• • • • • • •	does not			• •		•
367-163	*(MCC HG IN PR) *(MCC OX INJ PR)	-(MCC PC)	100. 92.1	1. 1.	1667. 575.	1.	2.0 2.0	.16 .16	0. 0.
395-163 940-367)-(MCC HG IN PR)		is not a			2.0		~ •
459-383	(HPFP DS PR)	-(MCC PC)	(Sensor	is not a	vailable;)			•
410-367	(FPB PC)	-(MCC HG IN PR)	4.1	1. 1.	45.8 188.4	1.	2.0 2.0	.22	0. 0.
480-367 63, 163	(OPB PC) *MCC PC	-(MCC HG IN PR)	5.7 3.9	1.	20.6	1.	2.0	.10	0. 0.
200	MCC PC AVG		3.9	1.	20.6	1.	2.0	.19	0.
17	MCC CLNT DS PR		100.	1.	1667.	1.	2.0	.19	0.
18 24	MCC CLNT DS T *MCC FU INJ PR		275. 56.3	1. 1.	3930. 297.	1. 1.	2.0 2.0	.19 .19	0. 0.
24 1921	MCC LN CAV P			malfunct				• • •	
595	MCC OX INJ TEMP		.25	.1	2.5	.3	.4	.16	0.
86 50	HPFP IN PR		32.9	1. Janie stu	365.2	1. indicated)	2.0	. 19	0.
52 659	HPFP DS PR HPFP DS T			does not		manualeu)			
457	*HPFP BAL CAV PR		36.4	1.	228.	1.	2.0	.16	0.
52, 764	HPFP SPD		100.	1.	3333.	1.	2.0	.16	0.
53 650	*HPFP CL LNR PR		56.	1. doop not	295.	1.	2.0	.19	0.
657	HPFP CL LNR T HPFP DR PR		(Sensor 410.	does not	exist) 13667.	1.	2.0	.17	0.
658	HPFP DR TEMP		(Sensor	malfuncti	ion)				~ •
231	HPFT DS T1 A		24.9	1.	355.	1.	2.0	.19	0.
232 754	*HPFT DS T1 B LPFP SPD		14. 61.9	1.	116. 364.	1.	2.0 2.0	.12 .17	0. 0.
436	*LPFT IN PR		73.6	1.	1227.	1.	2.0	.17	0.
205, 1206	*FAC FU FL		8.8	1.	88.	1.	2.0	.1	0.
207, 1209 722	FAC FU FL CT *ENG FU FLOW		(No char 99.7	ige is str 1.	623.	indicated)	2.0	. 16	0.
722	ENG FU FLOW CT				ikingly	indicated)			~•
233	HPOT DS T1		24(1.9)			1.(.1)	2.0(.4)	.19(9.7)	0.
234 190	*HPOT DS T2 HPOT PRSL DR T		3.9(.6) 75.3	1.(.1)	39(3.2) 3765.	1.(.3) 1.	2.0(.4) 2.0	.1(10.5) .17	0. 0.
071	OX BLD INT T		(No chan	ge is str	ikingly	indicated)	2.0		U •
054, 1056	OX FAC FM DS T		(No chan	ge is str	ikingly	indicated)			
854 210	FAC OX FM DS PR FAC OX FLOW CT					indicated) indicated)			
212, 1213	FAC OX FLOW CI						o steady s	tate condit	ions)
858, 860	ENG OX IN PR		36.3	1.	908.3	1.	2.0	.15	0.
058 90	ENG OX IN TEMP					indicated)	2 ^	10	•
325, 326	*HPOP DS PR *HPOP BALCAV PR		52.9 12.32	1.	278.6 77.	1.	2.0 2.0	.19 .16	0. 0.
30, 734	*LPOP SPD		5.7	1.	57.	1.	2.0	.1	0.
209	*LPOP DS PR		55.9	1.	294.1	1.	2.0	.19	0.
93, 94 59, 159	*PBP DS TMP *PBP DS PR		6.2 4.1	1.	51.4 31.3	1. 1.	2.0 2.0	.19 .13	0. 0.
410	*FPB PC		13.9	1.	86.7	1.	2.0	.15	0.
480	*OPB PC		14.0	1.	87.5	1.	2.0	. 16	0.
378 3 7 9	*HX INT PR		.97	.1	8.07	.5	.6	.12	0.
579 381	*HX INT T HX VENT IN PR		6.1 (No chan	1. ge is str	202.7 ikingly	1. indicated)	2.0	.16	0.
	HX VENT IN T						osteady st	ate conditi	ions)
382									
182 183 40	HX VENT DP *OPOV ACT POS			does not a			.8(.2)	.2(10.5)	0.

•

Table III-12: 750-259 Data Base

.

		_
Data Base for Farly Paramete	er Indicators of Test Classification: Duct, Manifold, or Heat Exchanger Failure	
-Test 901-485 (Nozzle Tube	e Rupture), conducted 24 July 1985 for Engine 2105.	
	ime= 28.56 sec due to HPOT discharge temperature redline.	•
	dications occur near 109% PL	
	HPFP turbine (borescope inspection indicated a suspected crack), nozzle (hot wall eyelid	
Pundge:	tube rupture 1/8in. by 1/4in., 14.5 inches from junction G15)	
	Unavailable.	
CRITERIA LEGEND: Operati	ing Level Anomaly Criteria (LC)	
CRITERIA LEGEND: Operati	- (Abasluta Channa in Casada Chana Valua/Chanda Chata Valua) x 100	
	$\frac{1}{1} = (Absolute Linange in Steady state value/steady state value) \times 100.$ Excursion time interval in seconds)	e
		1
	on Criteria (DC)	
	= Duration from the point of first failure indications to c/o time	
		0
WEIGHTED LEVEL VALUE ASSIGNM	meni Legend:	
LEVEL-A:	LEVEL-B: LEVEL-C: Value of RC B-Value Value of DC C-Value	
Value of LC A-Value		
>2%-3%		
1%-2%		
<1%	<1%/sec	
*Dependent	rs prefixed with an asterisk indicate a change continues until cutoff time.	
Parameter	EVELS	
	•	
PID NO.(S) PARAMETER	<u>LC LEVEL-A RC LEVEL-B A + B DC LEVEL-C</u>	
366-371 (INJ CLNT PR)	(NCC NC IN DD) (Senses does not exist)	
366-371 (INJ CLNT PR) 366-163 (INJ CLNT PR)	-(MCC HG IN PR) (Sensor does not exist) -(MCC PC) (No change is strikingly indicated)	
371-163 (MCC HG IN PR)		
395-163 (MCC OX INJ PR)		
	P)-(MCC HG IN PR) (Sensor does not exist)	
459-383 (HPFP CL LNR PR	R)-(MCC HG IN PR) (Sensor does not exist) -(MCC PC) (No change is strikingly indicated) ORICENTATE	
410-371 (FPB PC)	-(MCC HG IN PR) (No change is strikingly indicated)	
480-371 (OPB PC)	-(MCC PC) (No change is strikingly indicated) -(MCC HG IN PR) (No change is strikingly indicated) -(MCC HG IN PR) (No change is strikingly indicated) -(MCC HG IN PR) (No change is strikingly indicated)	
63, 163 MCC PC	-(MCC HG IN PR) (No change is strikingly indicated) -(MCC HG IN PR) (No change is strikingly indicated) (No change is strikingly indicated) (No change is strikingly indicated)	
200 MCC PC AVG	(No change is strikingly indicated)	
17 MCC CLNT DS PR	(No change is strikingly indicated)	
18 MCC CLNT DS T	(No change is strikingly indicated)	
24 MCC FU INJ PR	(No change is strikingly indicated)	
1921 MCC LN CAV P	(Sensor malfunction)	
595 MCC OX INJ TEMP		
86 HPEP IN PR	(No change is strikingly indicated)	
52 HPFP DS PR	(No change is strikingly indicated)	
659 HPFP DS T	(No change is strikingly indicated)	
457 HPFP BAL CAV PR		
52, 764 HPFP SPD	(No change is strikingly indicated)	
53, 940 HPFP CL LNR PR	(No change is strikingly indicated)	
650 HPFP CL LNR T	(No change is strikingly indicated)	
657 HPFP DR PR	(No change is strikingly indicated)	
658 HPFP DR TEMP	2.23 .7 .4 .1 .8 7.76 1.	
231 HPFT DS T1 A	(No change is strikingly indicated)	
232 HPFT DS T1 B	(No change is strikingly indicated)	
754 LPFP SPD	(No change is strikingly indicated)	
436 LPFT IN PR	(No change is strikingly indicated)	
1205, 1206 FAC FU FL	(No change is strikingly indicated)	
1207, 1209 FAC FU FL CT	(No change is strikingly indicated)	
722 ENG FU FLOW	(No change is strikingly indicated)	
1722 ENG FU FLOW CT	(No change is strikingly indicated) 3.97 198 .1 1.1 8.06 1.	
233 *HPOT DS T1 234 HPOT DS T2		
234HPOT DS T21190HPOT PRSL DR T	3.08 188 .1 1.1 8.06 1. .66 .1 .33 .1 1.1 4.56 .7	
1071 OX BLD INT T	(Sensor has not settled adequately to steady state conditions)	
1054, 1056 OX FAC FM DS T	(Sensor has not settled adequately to steady state conditions)	
854 FAC OX FM DS PR		
1210 FAC OX FLOW CT	(No change is strikingly indicated)	
1212, 1213 FAC OX FLOW	(No change is strikingly indicated)	
858, 860 ENG OX IN PR	(No change is strikingly indicated)	
1058 ENG OX IN TEMP	1.8 .3 .27 .1 .4 7.56 1.	
90 HPOP DS PR	(No change is strikingly indicated)	
325, 326 HPOP BALCAV PR	(No change is strikingly indicated)	
30, 734 LPOP SPD	(No change is strikingly indicated)	
209 LPOP DS PR	(No change is strikingly indicated)	
93, 94 PBP DS TMP	(Sensor has not settled adequately to steady state conditions)	
59, 159 PBP DS PR	(No change is strikingly indicated)	
410 FPB PC	(No change is strikingly indicated)	
480 OPB PC	(No change is strikingly indicated)	
878 *HX INT PR		
1 879 HX INT T	(Sensor has not settled adequately to steady state conditions)	
881 HX VENT IN PR	(No change is strikingly indicated)	
882 HX VENT IN T	(Sensor has not settled adequately to steady state conditions)	
883 HX VENT DP	1.79 .3 .24 .1 .4 7.76 1.	
40 *OPOV ACT POS	.94 .1 .23 .1 .2 4.06 .7	
42 FPOV ACT POS	(No change is strikingly indicated)	

		me= 115.6 sec du			dizer	pump redlin	e acceler	ometer		1
	Damage:	lications occur no Preburner oxidizo hotgas manifold a	er pump sp	peparated					section of th	e
COLTEDIA	Impact:	Not Available					· · · · · · · · · · · · · · · · · · ·			
CRITERIA LI		ng Level Anomaly = (Absolute Chang			Value/S	teady State	Value) x	100	Ęxçurs	ion ti
	• <u>Rate_Cr</u>	<u>iteria (RC</u>) = LC,						-		
		<u>n Criteria</u> (<u>DC</u>) = Duration from 1	the point	of first	failure	indication	s to c/o	time Cha	ange	~
	20			01 11130	i ai tui c	marcation	3 10 070	······		
	EVEL VALUE ASSIGNM				•					
<u>LEVEL-A</u> : Value of	LC A-Value	LEVEL-B: Value of RC E	3-Value	LEVEL Value	of DC	C-Value				
	1.0	>10%/sec	1.0	>	5sec	1.0				
>2%-3%. 1%-2%.		>5 ·10%/sec 1 · 5%/sec	.5 .3		5sec 1sec					
		<1%/sec	.1		5sec					
	* Desserves			1						
	••••Parameter	s prefixed with a	in asteris	K Indicat	e a cha	nge continu	LEVELS	CUTOTT TIM	e.	
PID NO.(S)	PARAMETER		<u>LC</u>	LEVEL - A	RC	LEVEL-B	<u>A + B</u>	<u>DC</u>	LEVEL-C	
744.771	AND CINT OD	(1100 HO 11 DO)				•				
366-371 366-163	(INJ CLNT PR) (INJ CLNT PR)	-(MCC HG IN PR) -(MCC PC)	-	does not does not	-					
371-163	(MCC HG IN PR)	-(MCC PC)	•	does not						
395-163	*(MCC OX INJ PR)		484.6	1.	6923.		2.0	.07	0.	
940-371 459-383	(HPFP CL LNR PR (HPFP DS PR))-(MCC HG IN PR) -(MCC PC)	(Sensor 37.1	does not 1.	exist) 530.6		2.0	.07	0.	
410-371	(FPB PC)	-(MCC HG IN PR)		does not			2.0		J.	
480-371	(OPB PC)	-(MCC HG IN PR)	•	does not						
63,163 200	MCC PC MCC PC AVG					y indicated) y indicated)				
436	*MCC CLNT DS PR		50.	1.	1250.	1.	2.0	.04	0.	
18	*MCC CLNT DS T		24.7	1.	494.6	1.	2.0	.05	0.	
24 1921	MCC FU INJ PR MCC LN CAV P		-	does not						
595	*MCC OX INJ TEMP		(Sensor 2.39	does not .7	axist) 34.3	1.	1.7	.07	0.	
86	*HPFP IN PR		.9.6	1.	240.4	1.	2.0	.04	0.	
459 659	*HPFP DS PR		26.5	1.	661.8		2.0	.04	0.	
457	*HPFP DS T HPFP BAL CAV PR		6.0 19.	11.	120. 475.	1.	2.0 2.0	.05 .05	0. 0.	
52, 764	*HPFP SPD		5.4	1.	180.2		2.0	.06	0.	
53, 940	*HPFP CL LNR PR		42.5	1.	1062.5	51.	2.0	.06	0.	
650 657	HPFP CL LNR T HPFP DR PR			does not		. indiacand				
658	HPFP DR TEMP					<pre>indicated) indicated)</pre>				
231	*HPFT DS T1 A		61.	1.	1220.8		2.0	.05	~ 0.	
232 754	*HPFT DS T1 B *LPFP SPD		33.	1.	659.2	1.	2.0	.05	0.	
436	*LPFT IN PR		10.4 22.4	1. 1.	172.8 448.9	1. 1.	2.0 2.0	.06 .05	0. 0.	
205, 1206	*FAC FU FL		3.5	1.	70.6	1.	2.0	.05	0.	
207, 1209 722	FAC FU FL CT ENG FU FLOW			does not						
722	ENG FU FLOW CT			does not does not						
518	*HPOT DS T1		33.3	1.	1110.	1.	2.0	.03	0.	
519 190	*HPOT DS T2 HPOT PRSL DR T		33.3	1.	1110.	1.	2.0	.03	0.	
071	OX BLD INT T			-		indicated) indicated)				
054, 1056	OX FAC FM DS T			does not		marcatedy				
854 210	FAC OX FM DS PR			-		indicated)				
212, 1213	FAC OX FLOW CT FAC OX FLOW			does not		indicated)				
	*ENG OX IN PR		181.3	1.	3020.8		2.0	.06	0.	
058	ENG OX IN TEMP		(Sensor	has not s	ettled a	adequately t	o steady	state con	ditions)	
	*HPOP DS PR *HPOP BALCAV PR		88.6 67.7	1.	886.	1.	2.0	.1	0.	
30, 734	LPOP SPD			1. ge is str	112.9 ikingly	1. indicated)	2.0	.06	0.	
209	*LPOP DS PR		48.3	1.	965.5	1.	2.0	.05	0.	
93, 94 59, 159	PBP DS TMP *PBP DS PR					indicated)	2.0		•	
410	FPB PC		38.3 27.8	1. 1.	383. 927.5	1. 1.	2.0 2.0	.1 .06	0. 0.	
80	OPB PC		28.7	1.	956.5	1.	2.0	.06	0.	
378 379 -	*HX INT PR		5.4	1.	108.1	1.	2.0	.05	0.	
579 - 381	HX INT T HX VENT IN PR					indicated) indicated)				
382	HX VENT IN T					indicated)				
383 40	HX VENT DP *OPOV ACT POS		(Sensor d	does not e	exist)					
			17.8	1.	1780.8	1.	2.0	.01	0.	

Table III-14: 750-175 Data Base

· · · · · · · · · · ·

والموالي والاستوار والمتعاد متعملات المراجع المعالية المتعالية والمنافعة والمتعاد والمتعاد والمتعاد

.

7	Data Braz di		· · · · · · · · · · · · · · · · · · ·								
ł	-Test 902-	or Early Parameter 112 (Fuel Blockage	<u>r Indicators of Te</u> e: Solidified-N2	<u>st Clas</u>	sification of pump	n: Duct, inlet) (Manifold, d	or Heat E June 197	Xchanger i 8 for Eng	Failure ine 0101.	
			me= 5.75 sec due		• •						
			lications occur ne		•						
			LPFP and HPOP (wo	uld not	rotate),	MCC inje	ctor (7-inje	ctor bef	fle elemer	nts eroded),	nozzle
			(3-tube splits)								
)	CRITERIA LE		Unavailable. ng Level Anomaly	Criteria	(10)						<u> </u>
	WITCHIN C		= (Absolute Chang			e Value/S	teady State	Value) x	100.	Exer	rsion time
		•Rate Cr	<u>iteria</u> (<u>RC</u>) = LC/						- 11		rsion time
			<u>n Criteria</u> (<u>DC</u>) = Duration from t	he noin	of fire	+ foilure	indications	to clo	eina Ik	Change	
				ne porm	. 01 1113		marcacions		·		
	WEIGHTED LE	VEL VALUE ASSIGNM	ENT LEGEND:								DC c/o
	LEVEL-A:	10 A. Malua	LEVEL-B:	Malina		EL-C:	C Malua		_		
	Value of	LC A-Value	Value of RC B >10%/sec	-Value	val	ue of DC >5sec	C-Value	\mathcal{C}	AIGHTA	7° m	
	>2%-3%.		>5 .10%/sec	.5	>1	•5sec		OF	POOD	U PACE IS	
	1%-2%.		1 - 5%/sec	.3		•1sec			-004	U PACE IS QUALITY	•
			<1%/sec	.1		<.5sec	0.				
		*Parameter	s prefixed with a	n asteri	sk indic	ate a cha	nge continue	s until d	cutoff tim	ne.	
								LEVELS			
	PID NO.(S)	PARAMETER		LC	LEVEL - A	<u>RC</u>	LEVEL - B	<u>A + B</u>	DC	LEVEL-C	
	366-372	(INJ CLNT PR)	-(MCC HG IN PR)	(No ch	ange is	strikinal	y indicated)				
	366-383	(INJ CLNT PR)	-(MCC PC)	(No ch	ange is :	strikingl	y indicated)				
	372-383	(MCC HG IN PR)					y indicated)				
1	395-383 940-372	(MCC OX INJ PR) (HPFP CL LNR PR)-(MCC HG IN PR)		ange is : ir does no		y indicated)				
	459-383	(HPFP DS PR)	-(MCC PC)	4.3	1.	8.02	.5	1.5	.58	.3 .3	
	410-372	*(FPB PC)	-(MCC HG IN PR)	6.2	1.	12.3	1.	2.0	.5	.3	
	480-372 63,163	(OPB PC) *MCC PC	-(MCC HG IN PR)	(No ch 3.3	angéis: 1.	strikingl 5.96	y indicated) .5	1.5	.55	.3	
	200	*MCC PC AVG		3.3	1.	6.0	.5	1.5	.55	.3	
	17	MCC CLNT DS PR		2.7	.7	5.4	.5	1.2	.57	.3	
	18	MCC CLNT DS T MCC FU INJ PR		•	r does no						
1	24 1921	MCC LN CAV P		-	r does na r does na						
	595	MCC OX INJ TEMP		•	r does no						
M	86	*HPFP IN PR		47.	1.	62.6	1.	2.0	.75	.3	
	52 659	*HPFP DS PR *HPFP DS T		3.8 23.6	1.	_ 6.7 81.4	.5 1.	1.5 2.0	.57 .29	.3 0.	
	457	*HPFP BAL CAV PR		7.4	1.	11.9	1.	2.0	.62	.3	
1	52, 764	*HPFP SPD		10.9	1.	24.3	1.	2.0	.45	0.	
	53, 940	HPFP CL LNR PR			rs do not	-					
Į	650	HPFP CL LNR T			r does no						
	657 658	HPFP DR PR HPFP DR TEMP			r does no r does no						
	231	*HPFT DS T1 A		23.8	1.	43.2	1.	2.0	.55	.3	
1	232	*HPFT DS T1 B		21.6	1.	127.2	1.	2.0	.17	0.	
	754 436	*LPFP SPD		17.3 2.8	1.	49.5	1.	2.0	.35	0.	
	1205, 1206	LPFT IN PR *Fac fu fl		29.	.7 1.	4.4 44.6	.3 1.	1.0 2.0	.64 .65	.3 .3	
	1207, 1209	FAC FU FL CT		(No ch		trikingly	(indicated)				
	722 1722	*ENG FU FLOW ENG FU FLOW CT		12.8	1. Ange ie e	51.1 trikingly	1. / indicated)	2.0	.25	0.	3
	233	*HPOT DS T1		7.4	≇ngenss 1.	15.8	1.	2.0	.47	0.	
	234	*HPOT DS T2		9.0	1.	19.1	1.	2.0	.47	0.	
	1190 1071	HPOT PRSL DR T					adequately t	to steady	state co	nditions)	
	1071	OX BLD INT T OX FAC FM DS T		-	r does no ange is s		indicated)				
	854	FAC OX FM DS PR		(No cha	ange is s	trikingly	indicated)				
	1210	FAC OX FLOW CT					indicated)				
	1212, 1213 858, 860	*FAC OX FLOW ENG OX IN PR		2.11 (No ch	.7 Ingeiss	4.32 trikingly	.3 indicated)	1.0	.49	0.	:
	1058	ENG OX IN TEMP					adequately t	o steady	state con	nditions)	
	338	*HPOP DS PR		1.97	.3	3.28	.3	.6	.6	.3	1
	325, 326 30, 734	HPOP BALCAV PR					indicated)				1.
	209	LPOP DS PR		4.4	1.	25.9	1.	2.0	.17	0.	
	93, 94	PBP DS TMP			· does no	t exist)			-		
I	59, 159 410	PBP DS PR		(Sensor 2.5	s malfun .7		1	17	10	0	
1	480	FPB PC OPB PC		1.5	.7	17.9 10.8	1. 1.	1.7 1.3	.19 .14	0. 0.	5.
	878	HX INT PR		1.5	.3	10.8	1.	1.3	. 14	0.	
4	879	HX INT T			does no						
	881 882	HX VENT IN PR HX VENT IN T			· does no · does no	-					2
	883	HX VENT DP			does no	•					
1	40	OPOV ACT POS		2.3	.7	4.9	.3	1.0	.48	0.	
	42	FPOV ACT POS		8.3	1.	17.2	1.	2.0	.48	0.	

- - -

Table III-15: 902-112 Data Base

	Cutoff T	tructural, Fuel Lo ime= 18.58 sec du	e to a HPF	TP discha						
	<pre>Early indDamage:</pre>	dications occur n MFV cracked hous nozzle, electric	ing, HPFT	1st and 2			sion, mino	er damage	to controlle	г,
		\$8.3M, Delay Tim	<u>e- 14 week</u>	<u>(s</u>						
CRITERIA LEG	END: Operati	ing Level Anomaly = (Absolute Chan	<u>Criteria</u> ge in Stea	(<u>LC</u>) dv State	Value/S	teady State	Value) x	100.	Exc	ursion ti
	● <u>Rate Cr</u>	<u>riteria</u> (<u>RC</u>) = LC,	/(Excursic	on time in	terval	in seconds)		1		
	• <u>Duratic</u> DC	<u>on Criteria</u> (<u>DC</u>) = Duration from	the point	of first	failure	indication	s to c/o t	ime -	Change	-1
			p					L		DC c
LEVEL-A:	EL_VALUE_ASSIGNM	LEVEL-B:		LEVEL	<u>-C:</u>					
	C A-Value		B-Value		of DC	C-Value				
>2%.3%	···· 1.0 ···· .7	>10%/sec >5 -10%/sec								
1%-2%		1 - 5%/sec								
<1%		<1%/sec				0.				
	*Parameter	rs prefixed with a	an asteris	k indicat	e a cha	nge continue	es until c LEVELS	utoff tim	e.	
PID NO.(S)	PARAMETER		LC	LEVEL - A	<u>RC</u> .	LEVEL-B	$\underline{A + B}$	DC	LEVEL-C	
366-371	(INJ CLNT PR)	-(MCC HG IN PR)	(Sanson	does not	exist					
366-163	(INJ CLNT PR)	- (MCC PC)	• • • • • • •	does not						
371 - 163 395 - 163	(MCC HG IN PR) (MCC OX INJ PR)			· does not · does not						
940-371		R)-(MCC HG IN PR)		does not						
459-383	(HPFP DS PR)	-(MCC PC)		is unava						
410-371 480-371	(FPB PC) (OPB PC)	-(MCC HG IN PR) -(MCC HG IN PR)		does not does not						
41P1023D	MCC PC		5.02	1.	125.4		2.0	.12	0.	
41P1039D	MCC PC AVG		5.02	1.	125.4		2.0 2.0	.12 .12	0. 0.	
41P1067D 41T1070D	MCC CLNT DS PR MCC CLNT DS T		41.6 .86	1.	1039. 21.6	1. 1.	1.1	.12	0.	
24	MCC FU INJ PR			does not	-	••				
921	MCC LN CAV P		•	does not						
595 86	MCC OX INJ TEMP HPFP IN PR	•	• • • • • • •	·does not ·is unava	-					
41P1029D	HPFP DS PR		74.6	1.	1864.		2.0	.12	0.	
659 457	HPFP DS T HPFP BAL CAV PR			· does not · does not						
41R1006D	HPFP SPD	N				adequately	to steady	state co	onditions)	
53, 940	HPFP CL LNR PR			s do not						
550 557	HPFP CL LNR T HPFP DR PR		• • • • • • • •	does not does not						
558	HPFP DR TEMP			does not						
49T1010H	HPFT DS T1 A		29.77	1.	372.1	1.	2.0	.08	0.	
9T1011H 1R1072D	HPFT DS T1 B LPFP SPD		29. 3.5	1. 1.	362.9 86.5	1. 1.	2.0 2.0	.08 .12	0. 0.	
436	LPFT IN PR			does not		••				
205, 1206	FAC FU FL			does not						
207, 1209 41R1034D	FAC FU FL CT ENG FU FLOW		(Sensor 1.73	does not	43.2	1.	1.3	.12	0.	
722	ENG FU FLOW CT		(Sensor	does not	exist)		~ ~	~~	C	
	*HPOT DS T1 *HPOT DS T2		36.4 36.4	1. 1.	454.5 454.5	1. 1.	2.0 2.0	.08 .08	0. 0.	
190	HPOT PRSL DR T			does not		T .	2.7			
071	OX BLD INT T		•	does not						
)54, 1056 354	OX FAC FM DS T FAC OX FM DS PR	1		does not does not						
210	FAC OX FLOW CT		(Sensor	does not	exist)					
212, 1213 358, 860	FAC OX FLOW ENG OX IN PR		-	does not does not	-					
158, 000	ENG OX IN TEMP			does not						
1P1030D	HPOP DS PR		25.4	1.	634.3	1.	2.0	.12	0.	
325, 326 30, 734	HPOP BALCAV PR		•	does not does not	•					
209	LPOP DS PR			does not						
93, 94	PBP DS TMP		•	does not	-					
1P1033D 1P1031D	PBP DS PR FPB PC		(Sensor 51.5	not avai 1.	lable) 1287.	1 1.	2.0	. 12	0.	
41P1032D	OPB PC		8.2	1.	205.1	1.	2.0	.12	0.	
378	HX INT PR		•	does not	•					
379 381	HX INT T HX VENT IN PR		•	does not does not	•					•••
382	HX VENT IN T		(Sensor	does not	exist)					
383 1110280	HX VENT DP			does not		adequately	to stead	state co	nditions)	
	OPOV ACT POS		(sensor	1185 1101	seilleÖ	aucquatery	LO SLEAUY	alala UU	······································	

• •

•

.

Table III-16: SF6-01 Data Base

.

Data Base fo Test 901-225	<u>or Early Paramete</u> 5 (Main Oxidizer	er Indicators of Te Valve: Heat Addi	<u>est Clas</u> tion to I	<u>sification</u> LOX) condu	<u>n</u> : Valv Jcted 12	e Failure December 19	78 for Eng	ine 2001	I.	
	Cutoff T	ime= 255.63 sec. d	lue to a	HPFT disc			-		-	
	Early in Damage:	dications occur ne Extensive engine	ar 100% fire dam	PL age. MCC	iniector	· (LOX inlet	elbow rupt	ured. m	any IOX posts bu	irped
		out), HPOP (disch	arge duc	t rupture	d)					
CRITERIA LE		\$10M, Delay Time- ing Level Anomaly						*		
	LC	= (Absolute Chang	e in Ste	ady State	Value/S	Steady State	Value) x 1	00. []	, Excursi	on time
		<u>riteria</u> (<u>RC</u>) = LC/ <u>on Criteria</u> (<u>DC</u>)	LEXCUPSI	on time i	ntervat	in seconds)				
	DC	= Duration from t	he point	of first	failure	indications	s to c/o ti	me 🛛	change	-
	VEL_VALUE_ASSIGN								DC-	
<u>LEVEL-A</u> : Value of I	LC A-Value	<u>LEVEL-B</u> : Value of RC B	-Value	<u>LEVE</u> Valu	L <u>-C</u> : e of DC	C-Value				
	1.0	>10%/sec				1.0				
>2%-3% 1%-2%	3	>5 -10%/sec 1 - 5%/sec				···· .7 ···· .3		ORIGI	NAL PAGE	rs
<1%		<1%/sec	.1	<pre>></pre>	.5sec	0.		<u></u>		
	*Parameter	's prefixed with a	n asteri	sk indicat	te a cha	inge, continue	es until cu	toff tim	for the paramete Ne.	(~ .
PID NO.(S)	PARAMETER		LC	LEVEL-A	<u>RC</u>	LEVEL-B	LEVELS	DC	LEVEL	
		- / MCC 110 711 001				<u></u>			<u>#8, 8</u>	
366-371 366-383	(INJ CLNT PR) (INJ CLNT PR)	-(MCC HG IN PR) -(MCC PC)	(Sensoi 12.9	r malfunci 1.	(10n) 322.6	1.	2.0	.1	0.	
371-383 395-383	(MCC HG IN PR)		•	r malfunct 1.		4	2.0		•	
940-371		E)-(MCC HG IN PR)	•	does not	-		2.0	.1	0.	
459-383 412-371	(HPFP DS PR) (FPB PC)	-(MCC PC) -(MCC HG IN PR)	3.3 (Sensor	1. malfunct	166.7	1.	2.0	.07	0.	
480-371	(OPB PC)	-(MCC HG IN PR)	(Sensor	malfunct	ion)					
63, 163 200	MCC PC MCC PC AVG		6.01 6.01	1.	1202.	1.	2.0 2.0	-14 -14	0. 0.	
17	MCC CLNT DS PR		2.6	.7	36.9	1.	2.0	.15	0.	
18 24	MCC CLNT DS T MCC FU INJ PR		(Sensor 5.1	does not	128.7		2.0	.16	0.	
1921 595	MCC LN CAV P MCC OX INJ TEMP		•	does not does not	-					
86	HPFP IN PR		2.9	.7	48.1	1.	2.0	. 18	0.	
52 659	HPFP DS PR *HPFP DS T		3.2 3.1	- 1. 1.	- 39.8 77.3	1. 1.	2.0 2.0	.16 .04	0. 0.	
457	*HPFP BAL CAV PR		5.3	1.	87.7	1.	2.0	.06	0.	
52, 764 53, 940	HPFP SPD HPFP CL LNR PR		4.2 (Sensor	1. does not	83.3 exist)	1.	2.0	.05	0.	
650	HPFP CL LNR T		=	does not	-					
657	HPFP DR PR		•	does not does not					•	
658 231 *	HPFP DR TEMP *HPFT DS T1 A		15.1	1.	151.	1.	2.0	.1	0.	
232 754	HPFT DS T1 B LPFP SPD		15.1 (No cha	1. nge is sta	151. rikingly	1. / indicated)	2.0	.1	0.	
436	LPFT IN PR		(Sensor	does not	exist)		1.3	07	n	
1205, 1206 1207, 1209	FAC FU FL FAC FU FL CT		1.3 (No cha	.3 nge is st	33.3 rikingly	1. / indicated)		.07	0.	
722	ENG FU FLOW ENG FU FLOW CT		3.1	1.	76.9	1. / indicated)	2.0	.18.	0.	
1722 233	HPOT DS T1		12.3(4.) 1.(1.)	176(39) 1.(1.) .			37.6) 0.(1.)	
234 1190	HPOT DS T2 HPOT PRSL DR T			1. has not :	176. settled	1. adequately 1	2.0 to steady s	.08 tate cor	0. nditions)	
1071	OX BLD INT T		(No cha	nge is sta	rikingly	<pre>indicated)</pre>			-	
1054, 1056 854	OX FAC FM DS T *FAC OX FM DS PR		(No cha 6.5	nge is sti 1.	107.5	indicated)	2.0	.06	0.	
1210	FAC OX FLOW CT	-	(No cha	nge is st	rikingly	<pre>indicated)</pre>	2.0	.05	0.	
	*FAC OX FLOW *ENG OX IN PR		7.0 23.7	1. 1.	140.4 295.7	1. 1.	2.0	.08	0.	
1058	ENG OX IN TEMP		.3 28.	.1 1.	.007 310.9	.1 1.	.2	147.6 .16	1. 0.	
	HPOP DS PR *HPOP BALCAV PR		31.3	1.	390.6	1.	2.0	. 18	0.	
30, 734	LPOP SPD LPOP DS PR		8.9 45.8	1. 1.	127.3 572.9	1.	2.0 2.0	.15 .16	0. 0.	
93, 94	PBP DS TMP		(Sensor	does not	exist)					
•	PBP DS PR *FPB PC		14. 6.9	1. 1.	175.4 86.6	1. 1.	2.0 2.0	.15 .08	0. 0.	
480 1	OPB PC		6.	1.	75.	1.	2.0	.08	0.	
878 ¹ 879	*HX INT PR HX INT T		5.1 (Sensor	1. malfunct		1.	2.0 1.7	.08	υ.	
881	HX VENT IN PR		2.4	.7	39.6	1. adequately 1	1.7 ·**	.06 tate cor	0. ditions)	
882 883 1	HX VENT IN T "HX VENT DP		2.2	.7	44.9	1.	1.7	.05	0	
	OPOV ACT POS		(Sensor .4	has not a	settled 3.04	adequately t	o steady s 1.1(.8)		nditions) .3	
76	TENT ANT END						سنوسندي بهد	_)1-225 Dat	

Table III-17: 901-225 Data Base

•

Data Race for Farly Parameter	Indicators of Test Classification: High Pressure	Ovidizer Turbourn (NOOTO) Sailuas
-Test 901-110 (Rotor/Seal Su	oport, Heat Addition to LOX) conducted 24 March 197	7 for Engine 0003.
	me= 74. sec due to a HPOP fire.	
	dications occur near 75% PL	
	Najor damage in HPOTP and LPOP disch. duct, engine	
	fuel system insulation and facility instrumentatio	
	\$3.3M (for repair/replacement only), Delay Time- 6 ng Level Anomaly Criteria (LC)	weeks.
	= (Absolute Change in Steady State Value/Steady St	ate Value) x 100.
1 •Rate Cr	iteria (RC) = LC/(Excursion time interval in secon	ds)Excursion time
eDuratio	n Criteria (DC)	
DC	= Duration from the point of first failure indicat	ions to c/o time
WEIGHTED LEVEL VALUE ASSIGNM	IENT 1 EGEND+	
LEVEL-A:	LEVEL-B: LEVEL-C:	
Value of LC A-Value	Value of RC B-Value Value of DC C-Val	ue
>3% 1.0	>10%/sec 1.0 >5sec 1.0	
>2%-3%	>5 -10%/sec	
<1%	<1%/sec	
()Numbers w	ithin the parenthesis indicate an earlier and more	gradual "LC" change for the parameter.
*Parameter	s prefixed with an asterisk indicate a change cont	
	LC LEVEL-A RC LEVEL-B	LEVELS <u>A + B DC LEVEL-C</u>
PID NO.(S) PARAMETER	. <u>LC LEVEL-A RC LEVEL-B</u>	
366-372 (INJ CLNT PR)	-(MCC HG IN PR) (No change is strikingly indicat	
366-383 (1NJ CLNT PR)	-(MCC PC) (No change is strikingly indicat	
372-383 (MCC HG IN PR) 395-383 (MCC OX INJ PR)		-
)-(MCC HG IN PR) (Sensor does not exist)	,
459-383 (HPFP DS PR)	-(MCC PC) (No change is strikingly indicat	
412-372 (FPB PC)	<pre> (MCC HG IN PR) (No change is strikingly indicat</pre>	
480-372 (OPB PC) 63, 163 MCC PC	-(MCC HG IN PR) (No change is strikingly indicat (No change is strikingly indicat	
200 HCC PC AVG	(No change is strikingly indicat	1
17 MCC CLNT DS PR	(No change is strikingly indicat	
18 MCC CLNT DS T	(No change is strikingly indicat	
24 MCC FU INJ PR 1951, 1956 MCC LN CAV P	1.36 .3 .16 .1 (Sensor does not exist)	.1 16.3 1.
595 MCC OX INJ TEMP	(No change is strikingly indicat	ed)
86 HPFP IN PR	(No change is strikingly indicat	
52 HPFP DS PR	(No change is strikingly indicat	
659 HPFP DS T	(No change is strikingly indicat	ed)
457 HPFP BAL CAV PR 52, 764 HPFP SPD	(Sensor malfunction) (No change is strikingly indicat	ed)
53, 940 HPFP CL LNR PR	(Sensor does not exist)	
650 HPFP CL LNR T	(Sensor does not exist)	ORIGINAL PAGE IS
657 HPFP DR PR	(Sensor does not exist)	OF POOR QUALITY
658 HPFP DR TEMP 231 HPFT DS T1 A	(Sensor does not exist)	• • • • • •
232 HPFT DS T1 B	(No change is strikingly indicat (No change is strikingly indicat	
754 LPFP SPD	(No change is strikingly indicat	
436 LPFT IN PR	(No change is strikingly indicat	ed)
1205, 1206 FAC FU FL 1207, 1209 FAC FU FL CT	(No change is strikingly indicat	
722 ENG FU FLOW	(No change is strikingly indicat (No change is strikingly indicat	
1722 ENG FU FLOW CT	(No change is strikingly indicat	
233 RPOT DS T1	1.67 .3 2.38 .3	.6 16.3 1.
234 HPOT DS T2 1190 *HPOT PRSL DR T	1.47 .3 2.1 .3 258(6.) 1.(1.) 860.(.7) 1.(.1	.6 16.3 1.
1071 OX BLD INT T	(Sensor has not settled adequate) 2.(1.1) .3(17.8) 0.(1.) (v to steady state conditions)
1054, 1056 OX FAC FM DS T	(No change is strikingly indicate	ed)
854 FAC OX FM DS PR	(No change is strikingly indicate	ed)
1210 FAC OX FLOW CT 1212, 1213 FAC OX FLOW	(No change is strikingly indicate (No change is strikingly indicate	
858, 860 ENG OX IN PR	(No change is strikingly indicate (No change is strikingly indicate	ed)
1058 ENG OX IN TEMP	(No change is strikingly indicate	ed)
90 HPOP DS PR	(No change is strikingly indicate	ed)
325, 326 HPOP BALCAV PR 30, 734 LPOP SPD	(No change is strikingly indicate (No change is strikingly indicate	
302 LPOP DS PR	(No change is strikingly indicate (No change is strikingly indicate	d)
93, 94 PBP DS TMP	(Sensor does not exist)	
59, 159 PBP DS PR 410 FPB PC	(No change is strikingly indicate	d)
410 FPB PC 480 OPB PC	(No change is strikingly indicate (No change is strikingly indicate	
878 HX INT PR	(Sensor has not settled adequate	y to steady state conditions)
879 HX INT T	(Sensor does not exist)	, ,
881 HX VENT IN PR 882 HX VENT IN T	(Sensor does not exist)	
882 HX VENT IN T 883 HX VENT DP	(Sensor does not exist) (No change is strikingly indicate	d)
40 OPOV ACT POS		.2 18.45 1.
42 FPOV ACT POS	.36 .1 .21 .1	.2 17.7 1.
	Table I	II-18: 901-110 Data Base

1		<u> </u>								
Data Base	for Early Paramete	er Indicators of 1	est Clas	sificatio	<u>n:</u> Nig	h Pressure	Oxidizer Tu	rbopump (HPC	TP) Failure	
· <u>lest</u>	201-136 (Rotor Sea	(Support) conduct	ted 8 Sep	tember 19	77 for	Engine 0004	•			
1	····Farly i	Time= 300.2 sec. o ndications occur r	3UE TO LO 2007 00%	SS OT ELE	ctrical	power and	Engine Conti	roller respo	nse.	
	Damage:	LOX feed system	(erosion	FL OF SAVAR	ad) HD	NTP (1c+ e+	ege turbine	blades dama	and) NCC and	
4		nozzle (extensiv	ve slag c	oating).	engine (controller	damaged tes	st facility	(\$ 2M demage)	
	Impact:	\$2.4M, Delay Tin	ne· 4 wee	ks.					(*.cn damage)	
CRITERIA L	EGEND: •Operati	ing Level Anomaly	Criteria	(LC)			· · · · · · · · · ·			
	LC	= (Absolute Chang	e in Ste	ady State	Value/S	Steady Stat	e Value) x 1	100. 1	Exemple	
1	• <u>Rate Cr</u>	<u>riteria</u> (<u>RC</u>) = LC/	(Excursi	on time i	nterval	in seconds)	-	T - Fxcursic	AL TIME
1	•Duratio	on Criteria (DC)						Cha	nge !/ 📐	
	DC	= Duration from t	he point:	of first	failur	e indicatio	ns to c/o ti	ime -{		
	EVEL VALUE ASSIGNM								DC	- c/o
LEVEL-A Value of		<u>LEVEL-B</u> : Value of RC B		LEVE		.				
	1.0	>10%/sec	Value		e of DC	C-Value				
		>5 ·10%/sec	.5					•		
		1 · 5%/sec	.3							
<1%.		<1%/sec				0.				
	()Numbers w	within the parenth	esis ind	icate an e	earlier	"LC" chang	e for the pa	rameter.		_
	*Parameter	rs prefixed with a	n asteri	sk indicat	te a cha	ange contin	ues until cu	toff time.		
	** <u>NOTE</u> : Parame	eter changes where	DC range	es betweer	n 49 to	115 second	s may or may	not be from	n an anomaly,	
	the fu	uel tank was vente	d (as sch							
PID NO.(S)	PARAMETER		<u>LC</u>	LEVEL - A	<u>RC</u>	<u>LEVEL-B</u>	LEVELS A+B	<u>DC LI</u>	VEL·C	
366-372	*(INJ CLNT PR)	-(MCC HG IN PR)	3.26	1.	.03	.1	1.1	96.	4	
366-383	(INJ CLNT PR)	·(MCC PC)	.84	.1	.03	.1	.2	90. 116.	1.	
372-383	*(MCC HG IN PR)	-(MCC PC)	2.18	.7	.02	.1	.8	116.	1.	
395-383	*(MCC OX INJ PR)	-(MCC PC)	1.68	.3	.12	.1	.4	13.8	1.	j
940-372	(HPFP CL LNR PR)-(MCC HG IN PR)	(Sensor	does not		I.				
459-383	(HPFP DS PR)	-(MCC PC)	.43	.1	.02	.1	.2	116.	1.	
412-372	(FPB PC)	-(MCC HG IN PR)		.1	.02	.1	.2	112.	1.	
480-372 63, 163	*(OPB PC) MCC PC	-(MCC HG IN PR)	1.12	.3	.01	.1	.4	112.	1.	
200	MCC PC AVG		.26	.1	.13	.1	.2	25.	1.	
17	MCC CLNT DS PR		.26	.1 .1	.13 .02	.1 .1	.2 .2	25.	1.	Í
18	MCC CLNT DS T						.د to steady s	112.	1.	1
24	MCC FU INJ PR		(Sensor	has not	settled	adequately	to steady s	state condit	ions)	
1951, 1956	MCC LN CAV P			does not			to steady a		101157	
595	MCC OX INJ TEMP			does not						
86	**HPFP IN PR		22.6	1.	.27	.1	1.1	126.	1.	1
52	*HPFP DS PR		.58	· .1	005	.1	.2	112.	1.	
659	HPFP DS T		2.84	.7	.03	.1	.8	122.	·1.	
457	HPFP BAL CAV PR		1.18	.3	.01	.1	.4	126.	1.	1
764 53, 940	HPFP SPD		1.09	.3	.01	.1	.4	122.	1.	
	HPFP CL LNR PR		(Sensor	s do not	exist)					1
650	HPFP CL LNR T		-	does not						
657	HPFP DR PR			does not						1
658	HPFP DR TEMP			does not	exist)		,			
231	HPFT DS T1 A HPFT DS T1 B		1.47	.3	.02	.1	.4	112.	1.	
754	LPFP SPD		.66	.1	.02	2) .3(.1)	1.0(.4)	112. 112.	1. 1.	
436	LPFT IN PR		.34	.1	.02	.1	.2	112.	1.	
1205, 1206	FAC FU FL		.84	.1	.05	.1	.2	66.	1.	
1207, 1209	FAC FU FL CT		(No char	nge is str		indicated)			
722	ENG FU FLOW		.74	ī.1 (.009	.1	.2	112.	1.	
1722	ENG FU FLOW CT		(No char	nge is str	ikingly	indicated				
233	*HPOT DS T1					.1(.1)	.4(.4)			
234	HPOT DS T2		1.0(1.4)	.5(.5)	.04(.0	(3) .1(.1)	.4(.4)			
1190 1071	HPOT PRSL DR T OX BLD INT T			does not		3) .1(.1)	.4(.8)	13.8(98.)	1.(1.)	
1054, 1056	OX FAC FM DS T		.004	.1	.0001	.1	.2	92.6	1.	[
854	FAC OX FM DS PR					indicated)			• •	- 1
1210	FAC OX FLOW CT		(No chan	ige is str	ikingly	indicated)			
1212, 1213	FAC OX FLOW		.41	.1	.01	.1	.2	27.8	1.	I
858,860	ENG OX IN PR			ge is str	ikingly	indicated)			
1058	ENG OX IN TEMP					• • •	to steady s			
90	HPOP DS PR		2.42	.7 🕄		.1	.8	112.	1.	
325, 326	HPOP BALCAV PR		1.39	.3	.03	.1	.4	112.	1.	
30, 734	*LPOP.SPD LPOP DS PR		1.24	.3	6.2	.5	.8	.2	0.	}
302 93, 94	PBP DS TMP					indicated)	,			
59, 159	PBP DS PR			doesn't e doesn't e						
412	FPB PC		.3	.1	.02	.1	.2	112.	1.	I
480	OPB PC		.33	1 8	.02	.1	.2	112.	1.	
878	HX INT PR		.79		.03	.1	.2	27.8	1.	
879	HX INT T		1.86	.1 () .3 ()	.02	.1	.4	98.	1.	1
881	HX VENT IN PR		1.22	.3	.02	.1	.4	70.	1.	1
882	HX VENT IN T		1.38	.3	.07	.1	.4	73.	1.	1
883	HX VENT DP		.52	.1	.02	.1	.2	70.	1.	1
40	*OPOV ACT POS		3.(1.05)		.12(.0		.8(.4)			
42	*FPOV ACT POS		1.78	.3	.02	.1	-4	112.	1.	

Table III-19: 901-136 Data Base

Data Base for Early Parameter Indicators of T	act Classifications With Descure Ori	dian Turkey - (NDOTD) Failure
Test 902-120 (Heat Addition to Liquid Oxygen	(LOX)) conducted 18 July 1978 for Engi	ne 0101.
Cutoff Time= 41.81 sec due	to a high-pressure oxidizer preburner	pump axial vibration redline.
Facty indications occur pe	ear 100% PL > HPOP, controller simulator and contro	
burned facility i	nstrumentation system.	
Impact: \$1.65M, Delay Time- 5 wee	ks	<u> </u>
CRITERIA LEGEND: Operating Level Anomaly	<u>Criteria</u> (<u>LC</u>) e in Steady State Value/Steady State \	(alue) x 100
•Rate Criteria (RC) = LC/	(Excursion time interval in seconds)	Alue) x 100.
•Duration Criteria (DC)		change !
DC = Duration from t	he point of first failure indications	
WEIGHTED LEVEL VALUE ASSIGNMENT LEGEND:		
LEVEL-A: LEVEL-B:	<u>LEVEL-C</u> : -Value Value of DC C-Value	
Value of LC A-Value Value of RC E >3% 1.0 >10%/sec		CRIGINAL PAGE IS
>2%-3%	.5 >1 ·5sec	OF POOR QUALITY
1%-2%3 1 - 5%/sec <1%		
*Parameters prefixed with a	n asterisk indicate a change continues	; until cutoff time. LEVELS
PID NO.(S) PARAMETER	LC LEVEL-A RC LEVEL-B	<u>A + B DC LEVEL-C</u>
		2.0 .04 0.
366-372 *(INJ CLNT PR) -(MCC HG IN PR) 366-383 *(INJ CLNT PR) -(MCC PC)	54.5 1. 1363.6 1. 11.9 1. 595.2 1.	2.0 .02 0.
372-383 *(MCC HG IN PR) -(MCC PC)	6.3 1. 211.6 1.	2.0 .03 0.
395-383 *(MCC OX INJ PR) -(MCC PC) 940-372 (HPFP CL LNR PR)-(MCC HG IN PR)	23.6 1. 589.2 1. (Sensor does not exist)	2.0 .04 0.
459-383 *(HPFP CL LNR PR)-(MCC HG IN PR)	2.1 .7 51.7 1.	1.7 .04 0.
411-372 *(FPB PC) -(MCC HG IN PR)		1.7 .02 0. 1.7 .02 0.
480-372 *(OPB PC) -(MCC HG IN PR) 63, 163 *MCC PC	2.8 .7 138.9 1. 23.3 1. 333.3 1.	2.0 .07 0.
200 MCC PC AVG	(Sensor does not exist)	
17 MCC CLNT DS PR	(Sensor does not exist)	
18 MCC CLNT DS T 24 MCC FU INJ PR	(Sensor does not exist) (Sensor does not exist)	
1951, 1956 MCC LN CAV P	(Sensor does not exist)	
595 MCC OX INJ TEMP 86 *HPFP IN PR	(Sensor does not exist) 12.5 1. 178.6 1.	2.0 .07 0.
52 HPFP DS PR	(No change is strikingly indicated)	
659 HPFP DS T	(Sensor does not exist)	
457 HPFP BAL CAV PR 52, 764 HPFP SPD	(No change is strikingly indicated) (No change is strikingly indicated)	
53, 940 HPFP CL LNR PR	(Sensor does not exist)	
650 HPFP CL LNR T	(Sensor does not exist)	
657 HPFP DR PR 658 HPFP DR TEMP	(Sensor does not exist) (Sensor does not exist)	
658 HPFP DR TEMP 231 HPFT DS T1 A	(No change is strikingly indicated)	
232 HPFT DS T1 B	(No change is strikingly indicated)	
754 LPFP SPD 436 LPFT IN PR	(No change is strikingly indicated) (No change is strikingly indicated)	
1205, 1206 FAC FU FL	(No change is strikingly indicated)	
1207, 1209 FAC FU FL CT	(No change is strikingly indicated) (No change is strikingly indicated)	
722 ENG FU FLOW 1722 ENG FU FLOW CT	(No change is strikingly indicated)	и.
233 HPOT DS T1	(No change is strikingly indicated)	
234 HPOT DS T2 1190 HPOT PRSL DR T	(No change is strikingly indicated) (No change is strikingly indicated)	
1071 OX BLD INT T	(Sensor does not exist)	
1054, 1056 OX FAC FM DS T	(No change is strikingly indicated)	
854 FAC OX FM DS PR 1210 FAC OX FLOW CT	(No change is strikingly indicated) (No change is strikingly indicated)	
1212, 1213 FAC OX FLOW	(No change is strikingly indicated)	2.0.02
858, 860 *ENG OX IN PR 1058 ENG OX IN TEMP	9.3 1. 463.9 1. (No change is strikingly indicated)	2.0 .02 0.
90 HPOP DS PR	(No change is strikingly indicated)	
325, 326 *HPOP BALCAV PR	5.8 1. 289.9 1.	2.0 .02 0. 2.0 .07 0.
30, 734 *LPOP SPD 302 *LPOP DS PR	55.6 1. 793.3 1. 78.4 1. 784. 1,	2.0 .1 0.
93, 94 PBP DS TMP	(Sensor does not exist)	
59, 159 *PBP DS PR	61.8 1. 882.6 1. 13 50. 1.	2.0 .07 0. 1.3 .02 0.
410 *FPB PC 480 *OPB PC	13 50. 1. 13 50. 1.	1.3 .02 0.
878 HX INT PR	(Sensor does not exist)	
879 HX INT T 1 881 HX VENT IN PR	(Sensor does not exist) (Sensor does not exist)	
882 HX VENT IN T	(Sensor does not exist)	and a second sec
883 HX VENT DP	(No change is strikingly indicated)	1.7 .02 0.
40 *OPOV ACT POS 42 *FPOV ACT POS	2.9 .7 142.9 1. 2.5 .7 125. 1.	1.7 .02 0.

· · · • ·

•

•

-

Table III-20: 902-120 Data Base . .

Data Base f	or Early Parameter	Indicators of Te	st Class	ification	: High P	ressure F	uel Turbopum	p (HPFTP) F	ailure	
	-340 (Turn Around I) conduc	ted on 15	October 1	1981 for E				
	Early indic	cations occur nea	r 109% P	Ľ						
		PFT turnaround sh ozzle beily band				Ed, HPFT E	ullnose nut	and stud er	oded away,	
CRITERIA LE	GEND: Operation	navailable. g Level Anomaly C	ritería	((C)						
	LC =	(Absolute Change	in Stea	dy State '			Value) x 100	•	, Excursi	ion time
		<u>teria</u> (<u>RC</u>) = LC/(Criteria (DC)	Excursion	n time in	terval in	seconds)			- + 2	
		Duration from th	e point (of first	failure in	dications	to c/o time	Change	<u> </u>	
	VEL VALUE ASSIGNME								DC-	c/o
LEVEL-A: Value of		<u>LEVEL·B</u> : Value of RC B-	Value	<u>LEVEL</u> Value		C-Value				
1	1.0	>10%/sec	1.0		5sec 5sec					
1%-2%	3	>5 -10%/sec 1 - 5%/sec	.3	.5 •	1sec	3				
<1%	1	<1%/sec	.1	<,	5sec	. 0.				
	()Numbers wit	thin the parenthe	sis indi	cate an e	arlier "LC	" change	for the para LEVELS	meter.		
PID NO.(S)	PARAMETER			LEVEL-A	<u>RC</u> LE	VEL-B	<u>A + B</u>	DC LEV	<u>EL-C</u>	
366-371	(INJ CLNT PR)	(MCC HG IN PR)	(Sensor	does not	exist)					
366-383 371-383	(INJ CLNT PR) - (MCC HG IN PR) -	(MCC PC)	(Sensor 17.7	does not	exist) 117.8	1.	2.0	115.5	1.	•
395-163	(MCC OX INJ PR) -	(MCC PC)	1.82	.3	.23	.1	.4	122.5	1.	
940-371 459-383	(HPFP CL LNR PR)- (HPFP DS PR) -	·(MCC HG IN PR) ·(MCC PC)		1.(1.)	5.(9.5) 13(1.7)	.5(.5) 1.(.3)	1.5(1.5)	116(384.9)		
411-371	(FPB PC)	(MCC HG IN PR)	4.8(1.1)	1.(.3)	7(.97)	.5(.1)	1.5(.4)	116(127.)		
480-371 63, 163	(OPB PC) - MCC PC	(MCC HG IN PR)) 1.(.3) .3(.1)	4.7(3.) 11(1.5)	.3(.3) 1.(.3)	1.3(.6) 1.3(.4)	116(127.) 116(127.)		
200 17	MCC PC AVG MCC CLNT DS PR			.3(.1)	11(1.5) 11(3.5)		1.3(.4) 1.3(.4)	116(127.) 116(127.)		
18	MCC CLNT DS T		.7(.7)	.1(.1)	7(7.)	.5(.5)	.6(.6)	115(127.)	1.(1.)	
24 1921	MCC FU INJ PR MCC LN CAV P		2.2 (Sensor	.7 has not s	14.6 settled ad	1. equately	1.7 to steady st	115.5 ate conditi	1.(1.) ons)	
595	MCC OX INJ TEMP		.43(.2)	.1(.1)	.43(.2)	.1(.1)	.2(.2)	115(128.)	1.(1.)	
86 52	HPFP IN PR HPFP DS PR		5.1(1.7)			1.(.3) 1.(.3)	2.0(.6) 1.3(.4)	116(127.) 116(127.)		
659 457	HPFP DS T HPFP BAL CAV PR			.3(.1)-	5.2(.8)	.5(.1)	.8(.2) 1.7(.2)	116(127.)	• •	
52, 764	HPFP SPD		1.37	.3	6.86	.5	.8	115.5	1.	
53, 940	HPFP CL LNR PR HPFP CL LNR T		3.8(6.9)) 1.(1.) does not	.72(1.1)	.1(.3)	1.1(1.3)	116(384.9)	1.(1.)	
650 657	HPFP DR PR		(Sensor	does not	exist)					
658 663	HPFP DR TEMP HPFT DS T1 A		(Sensor 6.4(7.)	does not	exist) 16(73.)	1.(1.)	2.0(2.)	116(384.9)	1.(1.)	
664	HPFT DS T1 B		6.(3.6)	1.(1.)	14(1.)	1.(.3)	2.0(1.3)	116(384.9)	1.(1.)	
754 436	LPFP SPD LPFT IN PR		1.2(.3)	.3(.1)	1.9(1.6)	.3(.3)	.6(.4) 1.3(.2)	116(127.)		
1205, 1206	FAC FU FL FAC FU FL CT		2.5(.8)	.7(.1)	8.3(.8) rikingly i		1.2(.2)	115(127.)	1.(1.)	
1207, 1209 722	ENG FU FLOW		3.3(.6)	1.(.1)	27(3.2)	1.(.3)	2.0(.4)	116(127.)	1.(1.)	
1722 233	ENG FU FLOW CT HPOT DS T1		(No char 5.3	nge is sti 1.	rikingly i .4	ndicated)	1.1	124.9	1.	
234	HPOT DS T2		4.55	1.	.48	.1	1.1	123.	1.	
1190 1071	HPOT PRSL DR T OX BLD INT T		2.2 (No char	.7 nge is sti	.17 rikingly i	.1 ndicated)	.8	124.5	1.	
1054, 1056 854	OX FAC FM DS T FAC OX FM DS PR		.01	.1 Stalie stu	.02 rikingly i	.1 rdicated)	.2	126.5	1.	
1210	FAC OX FLOW CT		(No char	nge is stu	rikingly i	ndicated)		10/ 5		
1212, 1213 858, 860	FAC OX FLOW ENG OX IN PR		.5 (No char	.1 nge is stu	.97 rikingly i	.1 ndicated)	.2	126.5	1.	
1058	ENG OX IN TEMP		(No char	nge is sti	rikingly i	ndicated)				
90 325, 326	HPOP DS PR HPOP BALCAV PR				rikingly i 12(1.1)		1.3(.4)	116(127.)	1.(1.)	
30, 734	LPOP SPD LPOP DS PR		(No char 2.1	nge is stu .7	rikinglyin 11.6	g indicat 1.	ed) 1.7	115.5	1.	
209 93, 94	PBP DS TMP		.35(.24)	.1(.1)	1.8(.5)	.3(.1)	.4(.2)	116(127.)	1.(1.)	
59, 159 410	PBP DS PR FPB PC		.32(.63) (Sensor).1(.1) not avail	1.6(1.3) lable)	.3(.3)	.4(.4)	116(127.)	1.(1.)	
480	OPB PC		1.2(.4)	.3(.1)	12(.9)	1.(.1)	1.3(.2)	116(127.)		
878 879	LHX INT PR		.99(.5) 2.72	.1(.1) .7	2.8(.9) .23	.3(.1)	.4(.2) .8	123.1	1.(1.) 1.	
881	HX VENT IN PR		.9 1.48	.1 .3	4.5 .12	.3 .1	-4 -4	115.5 123.1	1. 1.	
882 883	HX VENT IN T 🖉 HX VENT DP		1.49(.3)	.3(.1)	4.97(.3)	.3(.1)	.6(.2)	116(127.)	1.(1.)	1
40 42	OPOV ACT POS		2.1(1.9)		.75(.51) 2.2(.2)		.8(.4) 1.3(.4)	118(127.)		1
									·······	

Table III-21: 901-340 Data Base

-

÷ .

.

. •

2

.

. --

- <u>Test 901</u>	363 (Turn Around	er Indicators of Te d Duct Cracked/Torr	i) conduct	ed 30 Ma:	rch 1982	for Engli	ne 2013.			
<u></u>	Cutoff I	ime≈ 250. sec, Prog	iram Durat	tion.						
	Early inc	dications occur nea HPFT -14 turbine s	er 109% PL	Janaka						
	Damage:	Unavailable.	sneet meta	H CFacks	•					
CRITERIA LE		ing Level Anomaly (riteria (LC)						
<u>entrenta ce</u>	L(C = (Absolute Change	e in Stea	ady State	Value/S	teady Sta	te Value) x 1	00.	, Excursi	on tim
		riteria (<u>RC</u>) = LC/(Excursion	n time in	terval i	n seconds)	-	7-+2	
	• <u>Duratio</u>	on Criteria (<u>DC</u>) C = Duration from 1			failung	indicati	+/- +i	Cha	ange / 🖊	-
	D	= puration from t	ne point	or tirst	Taiture	indicati				<u>_j></u>
	VEL VALUE ASSIGN	MENT LEGEND:						L		C,
LEVEL - A:		LEVEL-B:		<u>LEVEL</u>						
Value of I		Value of RC B· >10%/sec	Value		of DC 5sec	C-Value		<u>ASTRA</u>	NAL PACE	-
>3%	1.0	>10%/sec			5sec			in the second	State I to a	13
1%-2%		1 - 5%/sec			1sec				OR GEALI	ТΥ
		<1%/sec	.1	<.	5sec	0.				
	()Numbers wi	ithin the parenthes	is indica	ite an ea	rlier "L	C [#] change	for the para	meter.		
		•					LEVELS		EVEL . P	
PID NO.(S)	PARAMETER			.EVEL - A	RC	LEVEL-B	<u>A + B</u>	<u>DC 1</u>	EVEL·C	
366-367	(INJ CLNT PR)	-(MCC HG IN PR)	(Sensor	does not	exist)					
366-163	(INJ CLNT PR)	-(MCC PC)	•	does not						
367-163	(MCC HG IN PR)	-(MCC PC)	2.	.7	1.54	.3	1.0	112.7	1.	
395-163	(MCC OX INJ PR)) - (MCC PC)	1.52	.3	.61	.1	.4	114.5	1.	
940-367		R)-(MCC HG IN PR)	30.2(25)	.3	34(1.6) 1.(.3) .1	2.0(1.3)	114(165) 114.6	1.(1.)	
459-163 410-367	(HPFP DS PR) (FPB PC)	-(MCC PC) -(MCC HG IN PR)	.81	.1	.92	.1	.4	112.7	1.	
410-367	(OPB PC)	-(MCC HG IN PR)	1.16	.3	.83	.1		114.5	1.	
63, 163	MCC PC	••••••	.49	.1	.288	.1	.4 .2	114.5	1.	
200	MCC PC AVG		.46	.1	.27	.1	.2	114.5	1.	
17	MCC CLNT DS PR		.65	.1 malfunct	.41	.1	.2	114.5	1.	
18 24	MCC CLNT DS T MCC FU INJ PR		(Sensor	.1	.61	.1	.2	114.5	1.	
24 951, 1956	MCC LN CAV P			malfunct		••				
595	MCC OX INJ TEM	þ	.3	.1	.32	.1	.2	113.7	1.	
86	HPFP IN PR		1.03	.3	2.6	.3	.6	114.	1.	
52	HPFP DS PR		.63	.1	2.09	.3 .1	.4 .2	114. 114.3	1.	
659	HPFP DS T HPFP BAL CAV PI		.64 (No char			indicate		114.2	۱.	
457 52,764	HPFP BAL CAV PI	n	.3	.1	.3	.1	.2	114.5	1.	
53, 940	HPFP CL LNR PR		1.65(.8)) .1(.1)	.4(.2)	114(165)	1.(1.)	
650	HPFP CL LNR T		19.7	1.0	19.7	1.0	2.0	120.4	1.	
657	HPFP DR PR		(Sensor	does not	exist)		2.0	140.4	••	
658	HPFP DR TEMP		(Sensor	does not	exist)					
231	HPFT DS T1 A		1.3(1.3)	.3(.3)	1.1(.1).3(.1)	.6(.4)	113(165)		
232 754	HPFT DS T1 B		1.85	.3	-26	.1	.4	113.6	1.	
754 436	LPFP SPD LPFT IN PR		.44 .68	.1 .1	.49 .76	.1 .1	.2 .2	114.6 114.5	1. 1.	
1205, 1206	FAC FU FL					indicated	 	(14.2	••	
1207, 1209	FAC FU FL CT		(No chan	ge is st	rikingly	indicate	3)			
722	ENG FU FLOW					indicated				
722 233	ENG FU FLOW CT HPOT DS T1		(No chan .6			indicated		117 7	4	
233	HPOT DS T2		.° .73	.1 .1	.8 .81	.1 .1	.2	113.3 112.6	1. 1.	
190	HPOT PRSL DR T						.د to steady s			
071	OX BLD INT T		(Sensor	has not :	settled	adequately	to steady s	tate condi	tions)	
054, 1056	OX FAC FM DS T		(No chan	ge is st	rikingly	indicated	d)			
354	FAC OX FM DS PR		(No chan	ge is sti	rikingly	indicated	1)			
210 212, 121 3	FAC OX FLOW CT		(No chan .65	ge is sti .1	rikingly .4	indicated		114.5	1.	
358, 860	ENG OX IN PR					indicated	.2 1)	114.7	1.	
58	ENG OX IN TEMP					indicated	ć)			
90	HPOP DS PR		.58	.1	.38	.1	.2	114.6	1.	
325, 326	HPOP BALCAV PR		.68	.1	.61	.1	.2	114.	1.	
30, 734 302	LPOP SPD LPOP DS PR					indicated indicated				
93, 94	PBP DS TMP		.22	.1	.19	.1	.2	114.0	1.	
59, 159	PBP DS PR	-	1.17	.3	1.31	.3	.6	113.8	1.	
410	FPB PC		.45	.1	.5	.1	.2	114.5	1.	
480	OPB PC		.84	.1	.76	.1	.2	113.9	1.	
878 870	HX INT PR		.6	.1	.4	.1 	.2	114.8	1.	
879 881	HX INT T HX VENT IN PR		(Sensor) .67	nas not s	.52	dequately .1	' to steady si		tions) 1.	
882	HX VENT IN PR					 dequatelv	.2: ' to steady si	114. tate condi	tions)	
883	HX VENT DP		.62	.1	.89	.1	.2 [#]	114.	1.	
									-	
40 42	OPOV ACT POS FPOV ACT POS		3.11 1.01	1. .3	.65	.1 .1	.2	114. 113.8	1.	

.,

-+-+

.

LEVEL-A Value o >3% >2%-3% 1%-2% <1% PID NO.(\$ 366-372 366-383 372-383 395-383 940-372 459-383 940-372 459-383 411-372 480-371 63, 163 200 436 18 24 951, 1956 595 86 459 659 457 52, 764 940 657 657 657 657 657 657 657 657 657 657	LEGEND: Operat Constraints Co	LEVEL-B: Value of RC >10%/sec >5 -10%/sec 1 - 5%/sec <1%/sec <1%/sec 2007 - (MCC HG IN PR) - (MCC PC) - (MCC PC) - (MCC PC) - (MCC PC) - (MCC PC) - (MCC HG IN PR) - (MCC HG IN PR)	y Criteria nge in St C/(Excurs the point an aster <u>LC</u>) 45.7 6.81 6.88 4.76) 10. 2.08) 7.88) 4.49 (No ct 1.2 (Sense (Sense (Sense (Sense (Sense (Sense (Sense) (Sense) (Sense) (Sense) (Sense)	a (LC) eady State ion time i t of first LEVE Valu >1	<pre>value/Si nterval failure failure >5sec -1sec -5sec ite a char RC 76.2 3.7 38.3 5.67 9.9 1.54 6.57 3.74 trikingl) t exist) t exist) t exist) t exist) t exist) t exist) t exist) t exist) f exist) t exist) t exist) f exist f exist) f exist)</pre>	teady State 1 in seconds) indications C-Value 1.0 7 3 0. nge continue: LEVEL-B 1. .3 1. .5 .5 .3 .5 .3 y indicated) y indicated) .3 .5 .1 .1 .3 .5 .5 .1 .1 .3 .5	Value) x 1 to c/o ti	ORIG OF PC	Linge	TSION TIN
WE I GHTED LEVEL - A Value o >3% >2X-3% 1X-2% <1% PID NO. (\$ 366-372 366-372 366-372 366-372 366-372 366-372 366-372 366-372 366-372 366-372 366-372 459-383 940-372 459-383 411-372 480-371 63, 163 200 436 24 951, 1956 595 86 459 659 457 52, 764 940 657 657 657 657 657 657 657 657 657 657 657 657 <t< th=""><th>LEGEND: OPERAT COPERATE OPERATE OPERATE OPERATE OPERATE COPE</th><th><pre>ting Level Anomaly = (Absolute Char <u>Criteria</u> (<u>RC</u>) = LC <u>ion Criteria</u> (<u>DC</u>) = Duration from <u>(MENT LEGEND:</u> <u>LEVEL-B:</u> Value of RC >10%/sec >5 -10%/sec 1 - 5%/sec (1 - 5%/sec 21%/sec ers prefixed with -(MCC HG IN PR) -(MCC PC) -(MCC PC) -(MCC PC) -(MCC PC) -(MCC HG IN PR) -(MCC HG IN PR) -(MC</pre></th><th>nge in Sto C/(Excurs the poin B-Value . 1.0 5 3 1 an aster <u>LC</u>) 45.7 6.81 6.88 4.76) 10. 2.08) 4.49 (No cl (No cl (No cl (No cl (Sense (Sense (Sense (Sense (Sense (Sense (Sense (Sense (Sense))</th><th>eady State ion time i t of first Valu >1 .5 isk indica <u>LEVEL-A</u> 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.</th><th>nterval failure failure failure sec failure sec failure failur</th><th>in seconds) indications C-Value 1.0 7 3 0. nge continue: <u>LEVEL-B</u> 1. .5 .5 .3 .5 .3 .5 .3 .5 .3 .5 .3 .5 .1 .1 .3 .5 .5 .3 .5 .5 .3 .5 .5 .3 .5 .5 .1 .1 .5 .5 .5 .5 .5 .1 .1 .5 .5 .5 .5 .1 .5 .5 .1 .5 .5 .5 .1 .5 .5 .5 .5 .5 .1 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5</th><th>to c/o ti s until cu LEVELS <u>A + B</u> 2.0 1.3 2.0 1.5 1.5 1.5 1.5 1.5 1.6 1.5 1.3 .6</th><th>me ORIC: OF PC toff tim <u>DC</u> .74 1.84 1.34 1.34 1.34 1.34 1.34 1.34 1.34 1.3</th><th>LEVEL - C </th><th></th></t<>	LEGEND: OPERAT COPERATE OPERATE OPERATE OPERATE OPERATE COPE	<pre>ting Level Anomaly = (Absolute Char <u>Criteria</u> (<u>RC</u>) = LC <u>ion Criteria</u> (<u>DC</u>) = Duration from <u>(MENT LEGEND:</u> <u>LEVEL-B:</u> Value of RC >10%/sec >5 -10%/sec 1 - 5%/sec (1 - 5%/sec 21%/sec ers prefixed with -(MCC HG IN PR) -(MCC PC) -(MCC PC) -(MCC PC) -(MCC PC) -(MCC HG IN PR) -(MCC HG IN PR) -(MC</pre>	nge in Sto C/(Excurs the poin B-Value . 1.0 5 3 1 an aster <u>LC</u>) 45.7 6.81 6.88 4.76) 10. 2.08) 4.49 (No cl (No cl (No cl (No cl (Sense (Sense (Sense (Sense (Sense (Sense (Sense (Sense (Sense))	eady State ion time i t of first Valu >1 .5 isk indica <u>LEVEL-A</u> 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	nterval failure failure failure sec failure sec failure failur	in seconds) indications C-Value 1.0 7 3 0. nge continue: <u>LEVEL-B</u> 1. .5 .5 .3 .5 .3 .5 .3 .5 .3 .5 .3 .5 .1 .1 .3 .5 .5 .3 .5 .5 .3 .5 .5 .3 .5 .5 .1 .1 .5 .5 .5 .5 .5 .1 .1 .5 .5 .5 .5 .1 .5 .5 .1 .5 .5 .5 .1 .5 .5 .5 .5 .5 .1 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	to c/o ti s until cu LEVELS <u>A + B</u> 2.0 1.3 2.0 1.5 1.5 1.5 1.5 1.5 1.6 1.5 1.3 .6	me ORIC: OF PC toff tim <u>DC</u> .74 1.84 1.34 1.34 1.34 1.34 1.34 1.34 1.34 1.3	LEVEL - C 	
WE I GHTED LEVEL - A Value o >3% >2X-3% 1X-2% <1% PID NO. (\$ 366-372 366-372 366-372 366-372 366-372 366-372 366-372 366-372 366-372 366-372 366-372 459-383 940-372 459-383 411-372 480-371 63, 163 200 436 24 951, 1956 595 86 459 659 457 52, 764 940 657 657 657 657 657 657 657 657 657 657 657 657 <t< th=""><th>LC •Rate C •Durati DC •Durati DC •Durati DC •Durati DC •Durati DC •Durati DC •Durati DC •Durati NC *Paramete (INJ CLNT PR) (INJ CLNT PR) (INJ CLNT PR) (INJ CLNT PR) (MCC HG IN PR) (MCC HG IN PR) (MCC OX INJ PR (HPFP CL LNR PR MCC PC AVG MCC PC AVG MCC CLNT DS T MCC FU INJ PR MCC LN CAV P MCC OX INJ TEM HPFP DS PR HPFP DS T HPFP DS T HPFP SPD HPFP CL LNR PR HPFP CL LNR PR HPFP CL LNR PR</th><th><pre>C = (Absolute Char Criteria (RC) = LC ion Criteria (DC) C = Duration from (MENT LEGEND: LEVEL-B: Value of RC >10%/sec >5 -10%/sec <1%/sec <1%/sec <1%/sec ers prefixed with -(MCC PC) -(MCC PC) -(MCC PC) -(MCC PC) -(MCC PC) -(MCC PC) -(MCC PC) -(MCC PC) -(MCC HG IN PR) -(MCC HG IN PR)</pre></th><th>nge in Sto C/(Excurs the poin B-Value . 1.0 5 3 1 an aster <u>LC</u>) 45.7 6.81 6.88 4.76) 10. 2.08) 4.49 (No cl (No cl (No cl (No cl (Sense (Sense (Sense (Sense (Sense (Sense (Sense (Sense (Sense))</th><th>eady State ion time i t of first Valu >1 .5 isk indica <u>LEVEL-A</u> 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.</th><th>nterval failure failure failure sec failure sec failure failur</th><th>in seconds) indications C-Value 1.0 7 3 0. nge continue: <u>LEVEL-B</u> 1. .5 .5 .3 .5 .3 .5 .3 .5 .3 .5 .3 .5 .1 .1 .3 .5 .5 .3 .5 .5 .3 .5 .5 .3 .5 .5 .1 .1 .5 .5 .5 .5 .5 .1 .1 .5 .5 .5 .5 .1 .5 .5 .1 .5 .5 .5 .1 .5 .5 .5 .5 .5 .1 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5</th><th>to c/o ti s until cu LEVELS <u>A + B</u> 2.0 1.3 2.0 1.5 1.5 1.5 1.5 1.5 1.6 1.5 1.3 .6</th><th>me ORIC: OF PC toff tim <u>DC</u> .74 1.84 1.34 1.34 1.34 1.34 1.34 1.34 1.34 1.3</th><th>LEVEL - C </th><th></th></t<>	LC •Rate C •Durati DC •Durati DC •Durati DC •Durati DC •Durati DC •Durati DC •Durati DC •Durati NC *Paramete (INJ CLNT PR) (INJ CLNT PR) (INJ CLNT PR) (INJ CLNT PR) (MCC HG IN PR) (MCC HG IN PR) (MCC OX INJ PR (HPFP CL LNR PR MCC PC AVG MCC PC AVG MCC CLNT DS T MCC FU INJ PR MCC LN CAV P MCC OX INJ TEM HPFP DS PR HPFP DS T HPFP DS T HPFP SPD HPFP CL LNR PR HPFP CL LNR PR HPFP CL LNR PR	<pre>C = (Absolute Char Criteria (RC) = LC ion Criteria (DC) C = Duration from (MENT LEGEND: LEVEL-B: Value of RC >10%/sec >5 -10%/sec <1%/sec <1%/sec <1%/sec ers prefixed with -(MCC PC) -(MCC PC) -(MCC PC) -(MCC PC) -(MCC PC) -(MCC PC) -(MCC PC) -(MCC PC) -(MCC HG IN PR) -(MCC HG IN PR)</pre>	nge in Sto C/(Excurs the poin B-Value . 1.0 5 3 1 an aster <u>LC</u>) 45.7 6.81 6.88 4.76) 10. 2.08) 4.49 (No cl (No cl (No cl (No cl (Sense (Sense (Sense (Sense (Sense (Sense (Sense (Sense (Sense))	eady State ion time i t of first Valu >1 .5 isk indica <u>LEVEL-A</u> 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	nterval failure failure failure sec failure sec failure failur	in seconds) indications C-Value 1.0 7 3 0. nge continue: <u>LEVEL-B</u> 1. .5 .5 .3 .5 .3 .5 .3 .5 .3 .5 .3 .5 .1 .1 .3 .5 .5 .3 .5 .5 .3 .5 .5 .3 .5 .5 .1 .1 .5 .5 .5 .5 .5 .1 .1 .5 .5 .5 .5 .1 .5 .5 .1 .5 .5 .5 .1 .5 .5 .5 .5 .5 .1 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	to c/o ti s until cu LEVELS <u>A + B</u> 2.0 1.3 2.0 1.5 1.5 1.5 1.5 1.5 1.6 1.5 1.3 .6	me ORIC: OF PC toff tim <u>DC</u> .74 1.84 1.34 1.34 1.34 1.34 1.34 1.34 1.34 1.3	LEVEL - C 	
LEVEL-A Value o >3% >2%-3% 1%-2% <1% PID NO.(\$ 366-372 366-383 372-383 395-383 940-372 459-383 940-372 459-383 411-372 480-371 63, 163 200 436 18 24 951, 1956 595 86 459 659 457 52, 764 940 657 657 657 657 657 657 657 657 657 657		ion Criteria (DC) C = Duration from <u>(MENT LEGEND:</u> <u>LEVEL-B</u> : Value of RC >10%/sec >5 -10%/sec (1%/sec - 5%/sec - 1%/sec - 1%/s	B-Value . 1.0 5 3 1 an aster <u>LC</u>) 45.7 6.81 6.88 4.76) 10. 2.08) 7.88) 4.49 (No ct (No ct (No ct (No ct (Sense (Sens	t of first <u>LEVE</u> isk indica <u>LEVEL-A</u> 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	failure <u>L-C</u> : e of DC >5sec -1	indications C-Value 1.0 7 3 0. nge continue: <u>LEVEL-B</u> 1. .3 1. .5 .5 .3 .5 .3 .7 indicated) .3 .5 .1 .1 .3 .5 .5 .3 .5 .3 .5 .5 .3 .5 .5 .3 .5 .5 .3 .5 .5 .3 .5 .5 .5 .5 .3 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	s until cu LEVELS <u>A + B</u> 2.0 1.3 2.0 1.5 1.5 1.5 1.0 1.5 1.3 .6 1.5 .2 .4 .6	me CRIG ORIG OF PC toff tim <u>DC</u> .74 1.84 1.34 1.34 1.34 1.34 1.34 1.34 1.34 1.3	DEASL PAC DOR QUAN e. <u>LEVEL-C</u> .3 .7 .7 .7 .7 .7 0.	E IS
LEVEL-A Value o >3% >2%-3% 1%-2% <1% PID NO.(\$ 366-372 366-383 372-383 395-383 940-372 459-383 940-372 459-383 411-372 480-371 63, 163 200 436 18 24 951, 1956 595 86 459 659 457 52, 764 940 657 657 657 657 657 657 657 657 657 657	LEVEL VALUE ASSIGN : f LC A-Value 	C = Duration from <u>MENT LEGEND</u> : <u>LEVEL-B</u> : Value of RC >10%/sec >5 -10%/sec (1%/sec >5%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec	the point B-Value . 1.0 5 3 1 an aster <u>LC</u>) 45.7 6.81 6.88 4.76) 10. 2.08) 7.88) 4.49 (No cl (No cl 1.2 (Sense (Sens	LEVE Value >1 .5 isk indica LEVEL-A 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	L-C: we of DC >5sec -1	C-Value 1.0 7 3 0. .nge continue: <u>LEVEL-B</u> 1. .3 1. .5 .5 .3 .5 .3 (indicated) .3 .5 .1 .1 .1 .3 .5 .1 .1 .3 .5	s until cu LEVELS <u>A + B</u> 2.0 1.3 2.0 1.5 1.5 1.5 1.0 1.5 1.3 .6 1.5 .2 .4 .6	me CRIG ORIG OF PC toff tim <u>DC</u> .74 1.84 1.34 1.34 1.34 1.34 1.34 1.34 1.34 1.3	DEASL PAC DOR QUAN e. <u>LEVEL-C</u> .3 .7 .7 .7 .7 .7 0.	E IS
LEVEL-A Value o >3% >2%-3% 1%-2% <1% PID NO.(\$ 366-372 366-383 372-383 395-383 940-372 459-383 940-372 459-383 411-372 480-371 63, 163 200 436 18 24 951, 1956 595 86 459 659 457 52, 764 940 657 657 657 657 657 657 657 657 657 657	LEVEL VALUE ASSIGN f LC A-Value f LC A-Val	IMENT LEGEND: LEVEL-B: Value of RC >10%/sec >5 - 10%/sec 1 - 5%/sec <1%/sec	B-Value 1.0 1.0 an aster <u>LC</u>) 45.7 6.81 6.88 4.76) 10. 2.08) 7.88) 4.49 (No cl 1.2 (Sense (LEVE Value >1 .5 isk indica LEVEL-A 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	L-C: we of DC >5sec -1	C-Value 1.0 7 3 0. .nge continue: <u>LEVEL-B</u> 1. .3 1. .5 .5 .3 .5 .3 (indicated) .3 .5 .1 .1 .1 .3 .5 .1 .1 .3 .5	s until cu LEVELS <u>A + B</u> 2.0 1.3 2.0 1.5 1.5 1.5 1.0 1.5 1.3 .6 1.5 .2 .4 .6	ORIC: OF PC toff time <u>DC</u> .74 1.84 1.34 1.34 1.34 1.34 1.34 1.34 1.34 1.3	DTAL PAC DOR QUAT e. <u>LEVEL-C</u> .3 .7 .7 .7 .7 .7 0. .7 .7 0.	E IS
LEVEL-A Value o >3% >2%-3% 1%-2% <1% PID NO.(\$ 366-372 366-383 372-383 395-383 940-372 459-383 940-372 459-383 411-372 480-371 63, 163 200 436 18 24 951, 1956 595 86 459 659 457 52, 764 940 657 657 657 657 657 657 657 657 657 657	: f LC A-Value 1.0 7 3 1 *Paramete) PARAMETER (INJ CLNT PR) (INJ CLNT PR) (MCC HG IN PR) (MCC HG IN PR) (MCC HG IN PR) (MCC OX INJ PR (HPFP CL LNR P (HPFP DS PR) (FPB PC) (OPB PC) MCC PC MCC CLNT DS PR MCC CLNT DS T MCC FU INJ PR MCC CLN CAV P MCC OX INJ TEM HPFP DS PR HPFP DS T HPFP DS T HPFP DS T HPFP SPD HPFP CL LNR PR HPFP CL LNR PR	LEVEL-B: Value of RC >10%/sec >5 -10%/sec 1 - 5%/sec <1%/sec <1%/sec 2007 - (MCC HG IN PR) - (MCC PC) - (MCC PC) - (MCC PC) - (MCC PC) - (MCC PC) - (MCC HG IN PR) - (MCC HG IN PR)	. 1.0 5 3 1 an aster <u>LC</u>) 45.7 6.81 4.76) 10. 2.08) 7.88) 7.88) 4.49 (No ct (No ct 1.2 (Sensense (Sense (Sense (Sen	Value >1 .5 isk indica <u>LEVEL-A</u> 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	e of DC >5sec -1sec	1.0 7 3 0. 0. 	LEVELS <u>A + B</u> 2.0 1.3 2.0 1.5 1.5 1.0 1.5 1.3 .6 1.5 .2 .4 .6	OF P(toff tim <u>DC</u> .74 1.84 1.34 1.34 1.34 1.34 1.34 1.34 1.34 1.34 1.34 .44	DTAL PAC DOR QUAT e. <u>LEVEL-C</u> .3 .7 .7 .7 .7 .7 0. .7 .7 0.	E IS
Value o >3% >2%-3% 1%-2%-3% 1%-2%-3% 1%-2%-3% 1%-2%-3% 366-372 366-372 366-372 366-372 366-372 366-372 366-372 366-372 366-372 366-372 366-372 366-372 366-372 366-372 366-372 459-383 940-372 459-383 411-372 480-371 63, 163 200 436 24 951, 1956 557 52, 764 940 657 658 663 664 722 516 517 190 071 054, 1056 854 210	<pre>f LC A-Value 1.0 7 3 </pre>	Value of RC >10%/sec >5 -10%/sec 1 - 5%/sec ers prefixed with -(MCC HG IN PR) -(MCC PC) -(MCC PC) -(MCC PC) -(MCC PC) -(MCC HG IN PR) -(MCC HG IN PR) -(MCC HG IN PR) -(MCC HG IN PR) -(MCC HG IN PR)	. 1.0 5 3 1 an aster <u>LC</u>) 45.7 6.81 4.76) 10. 2.08) 7.88) 7.88) 4.49 (No ct (No ct 1.2 (Sensense (Sense (Sense (Sen	Value >1 .5 isk indica <u>LEVEL-A</u> 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	e of DC >5sec -1sec	1.0 7 3 0. 0. 	LEVELS <u>A + B</u> 2.0 1.3 2.0 1.5 1.5 1.0 1.5 1.3 .6 1.5 .2 .4 .6	OF P(toff tim <u>DC</u> .74 1.84 1.34 1.34 1.34 1.34 1.34 1.34 1.34 1.34 1.34 .44	COR QUAN e. <u>LEVEL-C</u> .3 .7 .7 .7 .7 0. .7 .7 0.	E IS LITY
>3% >2%-3% 1%-2% <1% 2%-3% 1%-2% <1% 366-372 366-383 372-383 395-383 940-372 459-383 411-372 480-371 63, 163 200 436 18 24 951, 1956 595 86 459 659 659 659 657 658 663 6657 658 6657 658 6657 658 6657 658 6657 658 6657 658 6657 655 722 722 516 517 190 071 071 054, 1056 854 210	1.0 	>10%/sec >5 -10%/sec 1 - 5%/sec <1%/sec ers prefixed with -(MCC HG IN PR) -(MCC PC) >1 -(MCC PC) -(MCC HG IN PR) -(MCC HG IN PR) -(MCC HG IN PR) -(MCC HG IN PR)	. 1.0 5 3 1 an aster <u>LC</u>) 45.7 6.81 4.76) 10. 2.08) 7.88) 7.88) 4.49 (No ct (No ct 1.2 (Sensense (Sense (Sense (Sen	>1 .5 isk indica <u>LEVEL-A</u> 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	>5sec -5sec -1sec -1sec -	1.0 7 3 0. 0. 	LEVELS <u>A + B</u> 2.0 1.3 2.0 1.5 1.5 1.0 1.5 1.3 .6 1.5 .2 .4 .6	OF P(toff tim <u>DC</u> .74 1.84 1.34 1.34 1.34 1.34 1.34 1.34 1.34 1.34 1.34 .44	COR QUAN e. <u>LEVEL-C</u> .3 .7 .7 .7 .7 0. .7 .7 0.	HE IS
>2%-3% 1%-2% -3% -2%-3% 1%-2% -2%-3% -2%-3% -3%		<pre>>5 -10%/sec 1 - 5%/sec <rs prefixed="" td="" with<=""><td>5 3 1 an aster . <u>LC</u>) 45.7 6.81 6.88 4.76) 10. 2.08) 7.88) 4.49 (No cl (No cl (No cl (No cl (Sense))</td><td>>1 .5 isk indica <u>LEVEL-A</u> 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.</td><td>-5sec -1sec -5sec -1sec -5sec -5sec -5sec -5sec -5sec -5sec -5sec -5sec -76.2 -3.7 -3.7 -3.7 -3.7 -3.7 -5.7 -3.7 -5.7 -5.7 -5.51 -5.51 -5.51 -5.51 -5.51 -6.88 -4.01 -6.</td><td></td><td>LEVELS <u>A + B</u> 2.0 1.3 2.0 1.5 1.5 1.0 1.5 1.3 .6 1.5 .2 .4 .6</td><td>OF P(toff tim <u>DC</u> .74 1.84 1.34 1.34 1.34 1.34 1.34 1.34 1.34 1.34 1.34 .44</td><td>COR QUAN e. <u>LEVEL-C</u> .3 .7 .7 .7 .7 0. .7 .7 0.</td><td></td></rs></pre>	5 3 1 an aster . <u>LC</u>) 45.7 6.81 6.88 4.76) 10. 2.08) 7.88) 4.49 (No cl (No cl (No cl (No cl (Sense))	>1 .5 isk indica <u>LEVEL-A</u> 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	-5sec -1sec -5sec -1sec -5sec -5sec -5sec -5sec -5sec -5sec -5sec -5sec -76.2 -3.7 -3.7 -3.7 -3.7 -3.7 -5.7 -3.7 -5.7 -5.7 -5.51 -5.51 -5.51 -5.51 -5.51 -6.88 -4.01 -6.		LEVELS <u>A + B</u> 2.0 1.3 2.0 1.5 1.5 1.0 1.5 1.3 .6 1.5 .2 .4 .6	OF P(toff tim <u>DC</u> .74 1.84 1.34 1.34 1.34 1.34 1.34 1.34 1.34 1.34 1.34 .44	COR QUAN e. <u>LEVEL-C</u> .3 .7 .7 .7 .7 0. .7 .7 0.	
1x-2x <pre></pre>		1 - 5%/sec <1%/sec ers prefixed with -(MCC HG IN PR) -(MCC PC) -(MCC PC) -(MCC PC) -(MCC HG IN PR) -(MCC HG IN PR) -(MCC HG IN PR) -(MCC HG IN PR)	3 1 an aster: <u>LC</u>) 45.7 6.81 6.88 4.76) 10. 2.08) 7.88) 4.49 (No cl (No cl 1.2 (Sense (Sens	.5 isk indica <u>LEVEL-A</u> 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	-1sec -1s		LEVELS <u>A + B</u> 2.0 1.3 2.0 1.5 1.5 1.0 1.5 1.3 .6 1.5 .2 .4 .6	toff tim <u>DC</u> .74 1.84 .72 .84 1.34 1.34 1.34 1.34 .44 1.95 1.34 1.2 .44	e. <u>LEVEL-C</u> .3 .7 .7 .7 .7 .7 0. .7 .7 0.	
PID NO. (S 366-372 366-383 372-383 395-383 940-372 459-383 411-372 480-371 63, 163 200 436 18 24 951, 1956 595 86 459 457 52, 764 940 657 657 657 657 658 663 664 754 207, 1209 436 722 722 516 517 190 071 054, 1056 854 210	*Parameter (INJ CLNT PR) (INJ CLNT PR) (INJ CLNT PR) (MCC HG IN PR) (MCC GX INJ PR (HPFP CL LNR P (HPFP DS PR) (FPB PC) (OPB PC) MCC PC MCC PC AVG MCC CLNT DS PR MCC CLNT DS PR MCC CLNT DS T MCC FU INJ PR MCC LN CAV P MCC OX INJ TEM HPFP DS PR HPFP DS T HPFP DS T HPFP SPD HPFP CL LNR PR HPFP CL LNR T	ers prefixed with -(MCC HG IN PR) -(MCC PC) -(MCC PC) (MCC PC) -(MCC HG IN PR) -(MCC HG IN PR) -(MCC HG IN PR) -(MCC HG IN PR) -(MCC HG IN PR)	an aster <u>LC</u>) 45.7 6.81 6.88 4.76) 10. 2.08) 7.88) 4.49 (No cl 1.2 (Sense (Sense (Sense (Sense 10.3 .96 1.06 1.2 .9 (Sense	isk indice <u>LEVEL-A</u> 1. 1. 1. 1. 1. 1. hange is s or does no or does no or does no or does no 1. .1. .3. .1 or measure or does no	RC 76.2 3.7 38.3 5.67 9.9 1.54 6.57 3.74 trikingl) trikingl) trikingl) trikingl) trikingl) trikingl) trikingl) trikingl) 4.01 t exist) t exist) t exist) t exist) 5.51 .85 88 4.01 6.	nge continue: <u>LEVEL-8</u> 1. .3 1. .5 .5 .3 / indicated) / indicated) .3 / indicated) .3 / indicated) .3 / indicated) .3 / indicated) .3	LEVELS <u>A + B</u> 2.0 1.3 2.0 1.5 1.5 1.0 1.5 1.3 .6 1.5 .2 .4 .6	<u>DC</u> .74 1.84 .72 .84 1.34 1.34 1.34 1.34 .44	LEVEL-C .3 .7 .3 .7 .7 .7 .7 0. .7 .7 .7 .7 0.	
366-372 366-383 372-383 375-383 95-383 940-372 459-383 411-372 480-371 63, 163 200 436 18 24 951, 1956 595 86 459 457 52, 764 940 659 659 457 52, 764 940 650 657 658 663 663 663 664 722 722 516 517 190 071 1054, 1056 854 210) PARAMETER (INJ CLNT PR) (INJ CLNT PR) (MCC HG IN PR) (MCC HG IN PR) (MCC OX INJ PR (HPFP CL LNR P (HPFP DS PR) (FPB PC) (OPB PC) MCC PC MCC PC AVG MCC CLNT DS PR MCC CLNT DS T MCC FU INJ PR MCC CLN CAV P MCC OX INJ TEM HPFP DS PR HPFP DS PR HPFP DS T HPFP BAL CAV P HPFP SPD HPFP CL LNR T	-(MCC HG IN PR) -(MCC PC) -(MCC PC) -(MCC PC) -(MCC HG IN PR) -(MCC HG IN PR) -(MCC HG IN PR) -(MCC HG IN PR) -(MCC HG IN PR)	LC) 45.7 6.81 6.88 4.76) 10: 2.08) 7.88) 4.49 (No cl 1.2 (Sense (Sense (Sense (Sense 10.3 .96 1.06 1.2 .9 (Sense (Sen	LEVEL-A 1. 1. 1. 1. 1. 1. 1. 1. hange is s	RC 76.2 3.7 38.3 5.67 9.9 1.54 6.57 3.74 trikingl) 4.01 t exist) t exist) t exist) t exist) t exist) t exist) 5.51 .85 88 4.01 6.	LEVEL-B 1. .3 1. .5 .5 .3 (indicated) (indicated) .3 .5 .1 .1 .3 .5 .1 .1 .3 .5 .5 .3 .5 .5 .5 .1 .5 .5 .5 .5 .1 .5 .5 .5 .5 .5 .5 .1 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	LEVELS <u>A + B</u> 2.0 1.3 2.0 1.5 1.5 1.0 1.5 1.3 .6 1.5 .2 .4 .6	<u>DC</u> .74 1.84 .72 .84 1.34 1.34 1.34 1.34 .44	LEVEL-C .3 .7 .3 .7 .7 .7 .7 0. .7 .7 .7 .7 0.	
366-372 366-383 372-383 375-383 95-383 940-372 459-383 411-372 480-371 63, 163 200 436 18 24 951, 1956 595 86 459 457 52, 764 940 659 659 457 52, 764 940 650 657 658 663 663 663 664 722 722 516 517 190 071 1054, 1056 854 210) PARAMETER (INJ CLNT PR) (INJ CLNT PR) (MCC HG IN PR) (MCC HG IN PR) (MCC OX INJ PR (HPFP CL LNR P (HPFP DS PR) (FPB PC) (OPB PC) MCC PC MCC PC AVG MCC CLNT DS PR MCC CLNT DS T MCC FU INJ PR MCC CLN CAV P MCC OX INJ TEM HPFP DS PR HPFP DS PR HPFP DS T HPFP BAL CAV P HPFP SPD HPFP CL LNR T	-(MCC HG IN PR) -(MCC PC) -(MCC PC) -(MCC PC) -(MCC HG IN PR) -(MCC HG IN PR) -(MCC HG IN PR) -(MCC HG IN PR) -(MCC HG IN PR)	LC) 45.7 6.81 6.88 4.76) 10: 2.08) 7.88) 4.49 (No cl 1.2 (Sense (Sense (Sense (Sense 10.3 .96 1.06 1.2 .9 (Sense (Sen	LEVEL-A 1. 1. 1. 1. 1. 1. 1. 1. hange is s	RC 76.2 3.7 38.3 5.67 9.9 1.54 6.57 3.74 trikingl) 4.01 t exist) t exist) t exist) t exist) t exist) t exist) 5.51 .85 88 4.01 6.	LEVEL-B 1. .3 1. .5 .5 .3 (indicated) (indicated) .3 .5 .1 .1 .3 .5 .1 .1 .3 .5 .5 .3 .5 .5 .5 .1 .5 .5 .5 .5 .1 .5 .5 .5 .5 .5 .5 .1 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	LEVELS <u>A + B</u> 2.0 1.3 2.0 1.5 1.5 1.0 1.5 1.3 .6 1.5 .2 .4 .6	<u>DC</u> .74 1.84 .72 .84 1.34 1.34 1.34 1.34 .44	LEVEL-C .3 .7 .3 .7 .7 .7 .7 0. .7 .7 .7 .7 0.	
366-372 366-383 372-383 375-383 95-383 940-372 459-383 411-372 480-371 63, 163 200 436 18 24 951, 1956 595 86 459 457 52, 764 940 659 659 457 52, 764 940 650 657 658 663 663 663 664 722 722 516 517 190 071 1054, 1056 854 210	(INJ CLNT PR) (INJ CLNT PR) (MCC HG IN PR) (MCC CX INJ PR (HPFP CL LNR P (HPFP DS PR) (FPB PC) (OPB PC) MCC PC AVG MCC CLNT DS PR MCC CLNT DS PR MCC CLNT DS T MCC CLNT CAV P MCC CLN CAV P MCC OX INJ TEM HPFP DS PR HPFP DS T HPFP BAL CAV P HPFP SPD HPFP CL LNR T	- (MCC PC) - (MCC PC) R) - (MCC PC) R) - (MCC HG IN PR) - (MCC HG IN PR) - (MCC HG IN PR) - (MCC HG IN PR) R) 45.7 6.81 6.88 4.76) 10. 2.08) 7.88) 4.49 (No ct (No ct 1.2 (Sense (Sense (Sense (Sense (Sense 10.3 .96 1.06 1.2 .9 (Sense	1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	76.2 3.7 38.3 5.67 9.9 1.54 6.57 3.74 trikingly trikingly texist) t exist) t exist) t exist) t exist) 5.51 .85 88 4.01 6.	1. .3 1. .5 .5 .3 .5 .3 (indicated) (indicated) .3 .5 .1 .1 .3 .5	2.0 1.3 2.0 1.5 1.5 1.0 1.5 1.3 .6	.74 1.84 .72 .84 1.34 1.34 1.34 1.34 .44 .44	.3 .7 .3 .7 .7 .7 .7 .7 0.	
366-383 372-383 395-383 940-372 459-383 411-372 480-371 63, 163 200 436 18 24 951, 1956 595 86 459 659 457 52, 764 940 650 657 657 658 663 664 754 207, 1209 436 772 207, 1209 436 772 207, 1209 436 772 207, 1209 436 722 516 517 190 071 071 071 054, 1056 854 210	(INJ CLNT PR) (MCC HG IN PR) (MCC OX INJ PR (HPFP CL LNR P (HPFP DS PR) (FPB PC) (OPB PC) MCC PC MCC PC AVG MCC CLNT DS PR MCC CLNT DS T MCC FU INJ PR MCC CLNT DS T MCC CLNT AS T MCC CLNT DS T MCC CLNT AS T MCC A	- (MCC PC) - (MCC PC) R) - (MCC PC) R) - (MCC HG IN PR) - (MCC HG IN PR) - (MCC HG IN PR) - (MCC HG IN PR) R	6.81 6.88 4.76 10. 2.08 7.88 7.88 4.49 (No ct 1.2 (Sense (Sense (Sense (Sense (Sense 10.3 .96 1.06 1.2 .9 (Sense (Sense	1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	3.7 38.3 5.67 9.9 1.54 6.57 3.74 trikingly 4.01 t exist) t exist) t exist) t exist) 5.51 .85 4.01 6.	.3 1. .5 .5 .3 y indicated) y indicated) .3 .5 .1 .1 .3 .5	1.3 2.0 1.5 1.5 1.0 1.5 1.3 .6	1.84 .72 .84 1.34 1.34 1.34 1.34 .44 .44	.7 .3 .7 .7 .7 .7 0.	
366-383 372-383 395-383 940-372 459-383 411-372 480-371 63, 163 200 436 18 24 951, 1956 595 86 459 659 457 52, 764 940 650 657 657 658 663 664 754 207, 1209 436 772 207, 1209 436 772 207, 1209 436 772 207, 1209 436 722 516 517 190 071 071 071 054, 1056 854 210	(INJ CLNT PR) (MCC HG IN PR) (MCC OX INJ PR (HPFP CL LNR P (HPFP DS PR) (FPB PC) (OPB PC) MCC PC MCC PC AVG MCC CLNT DS PR MCC CLNT DS T MCC FU INJ PR MCC CLNT DS T MCC CLNT AS T MCC CLNT DS T MCC CLNT AS T MCC A	- (MCC PC) - (MCC PC) R) - (MCC PC) R) - (MCC HG IN PR) - (MCC HG IN PR) - (MCC HG IN PR) - (MCC HG IN PR) R	6.81 6.88 4.76 10. 2.08 7.88 7.88 4.49 (No ct 1.2 (Sense (Sense (Sense (Sense (Sense 10.3 .96 1.06 1.2 .9 (Sense (Sense	1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	3.7 38.3 5.67 9.9 1.54 6.57 3.74 trikingly 4.01 t exist) t exist) t exist) t exist) 5.51 .85 4.01 6.	.3 1. .5 .5 .3 y indicated) y indicated) .3 .5 .1 .1 .3 .5	1.3 2.0 1.5 1.5 1.0 1.5 1.3 .6	1.84 .72 .84 1.34 1.34 1.34 1.34 .44 .44	.7 .3 .7 .7 .7 .7 0.	
372-383 395-383 940-372 459-383 411-372 480-371 63, 163 200 436 18 24 951, 1956 595 86 459 457 52, 764 940 650 657 657 658 663 664 754 207, 1209 436 722 516 517 190 071 054, 1056 854 210	(MCC HG IN PR) (MCC OX INJ PR (HPFP CL LNR P (HPFP DS PR) (FPB PC) (OPB PC) MCC PC MCC PC AVG MCC CLNT DS PR MCC CLNT DS T MCC FU INJ PR MCC LN CAV P MCC OX INJ TEM HPFP IN PR HPFP DS T HPFP DS T HPFP BAL CAV P HPFP SPD HPFP CL LNR T) - (MCC PC) R) - (MCC PC) PR)- (MCC HG IN PR) - (MCC PC) - (MCC HG IN PR) - (MCC HG IN PR) R	6.88 4.76 10. 2.08 7.88 4.49 (No ct 1.2 (Sens: (Sens: (Sens: 10.3 .96 1.06 1.2 .9 (Sens: (Sen	1. 1. 1. 1. hange is s hange is s .3 or does no or does no or does no 1. .3 .3 .1 .3 .1 or measure or does no	38.3 5.67 9.9 1.54 6.57 3.74 trikingly 4.01 t exist) t exist) t exist) t exist) 5.51 .85 88 4.01 6.	1. .5 .5 .3 (indicated) (indicated) .3 .5 .1 .1 .3 .5	2.0 1.5 1.5 1.0 1.5 1.3 .6	.72 .84 1.34 1.34 1.34 1.34 .44 .44	.3 .3 .7 .7 .7 .7 0.	
395-383 940-372 459-383 441-372 480-371 63, 163 200 436 18 24 951, 1956 595 86 459 657 657 658 663 664 754 207, 1209 436 516 517 190 071 054, 1056 854 210	(MCC OX INJ PR (HPFP CL LNR P (HPFP DS PR) (FPB PC) (OPB PC) MCC PC MCC PC AVG MCC CLNT DS PR MCC CLNT DS T MCC FU INJ PR MCC LN CAV P MCC OX INJ TEM HPFP DS PR HPFP DS PR HPFP DS T HPFP BAL CAV P HPFP SPD HPFP CL LNR T	R) - (MCC PC) PR)-(MCC HG IN PR) - (MCC PC) - (MCC HG IN PR) - (MCC HG IN PR) R PR	4.76) 10: 2.08) 7.88) 4.49 (No cl 1.2 (Sense (Sense (Sense 10.3 .96 1.06 1.2 .9 (Sense (Sense (Sense (Sense (Sense (Sense) 	1. 1. 1. hange is s hange is s or does no or does no or does no 1. .1 .3 .3 .1 or measure or does no	5.67 9.9 1.54 6.57 3.74 trikingly 4.01 t exist) t exist) t exist) t exist) t exist) 5.51 .85 88 4.01 6.	.5 .5 .3 .3 (indicated) (indicated) .3 .5 .1 .1 .3 .5	1.5 1.5 1.0 1.5 1.3 .6	.84 1.34 1.34 1.34 1.34 .44 1.95 1.34 1.2 .44	.3 .7 .7 .7 .7 0.	
459-383 411-372 480-371 63, 163 200 436 18 24 951, 1956 595 86 459 457 52, 764 940 650 657 658 663 664 754 207, 1209 436 722 722 516 517 190 071 071 1056 854 210	(HPFP DS PR) (FPB PC) (OPB PC) MCC PC MCC PC AVG MCC CLNT DS PR MCC CLNT DS T MCC FU INJ PR MCC LN CAV P MCC OX INJ TEM HPFP DS PR HPFP DS T HPFP DS T HPFP BAL CAV P HPFP SPD HPFP CL LNR T	-(MCC PC) -(MCC HG IN PR) -(MCC HG IN PR) R	2.08) 7.88) 4.49 (No ct (No ct 1.2 (Sense (Sense (Sense (Sense 10.3 .96 1.06 1.2 .9 (Sense (Sense	.7 1. 1. hange is s hange is s or does no or does no or does no 1. .1 .3 .3 .1 or measure or does no 0. .1 .3 .1 .1 .3 .1 .1 .3 .3 .1 .1 .3 .3 .1 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3	1.54 6.57 3.74 trikingly trikingly 4.01 t exist) t exist) t exist) t exist) 5.51 .85 88 4.01 6.	.3 .5 .3 (indicated) (indicated) .3 .5 .1 .1 .3 .5	1.0 1.5 1.3 .6 1.5 .2 .4 .6	1.34 1.34 1.34 .44 1.95 1.34 1.2 .44	.7 .7 0. .7 .7 .7 .7 0.	
411-372 480-371 63, 163 200 436 18 24 951, 1956 595 86 459 457 52, 764 940 650 657 658 663 664 722 722 516 517 190 071 071 054, 1056 854 210	(FPB PC) (OPB PC) MCC PC MCC PC AVG MCC CLNT DS PR MCC CLNT DS T MCC FU INJ PR MCC LN CAV P MCC LN CAV P MCC OX INJ TEM HPFP IN PR HPFP DS T HPFP DS T HPFP BAL CAV P HPFP SPO HPFP CL LNR PR	-(MCC HG IN PR) -(MCC HG IN PR) R) 7.88) 4.49 (No ct (No ct 1.2 (Sense (Sense (Sense (Sense 10.3 .96 1.06 1.2 .9 (Sense (Sense	1. 1. hange is s hange is s or does no or does no or does no 1. .1 .3 .1 or measure or does no 0. .1 .3 .1 .3 .1 or measure or does no 0. .3 .1 .3 .1 .3 .1 .3 .1 .3 .1 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3	6.57 3.74 trikingly trikingly 4.01 t exist) t exist) t exist) 5.51 .85 88 4.01 6.	.5 .3 y indicated) y indicated) .3 .5 .1 .1 .3 .5	1.5 1.3 .6 1.5 .2 .4 .6	1.34 1.34 .44 1.95 1.34 1.2 .44	.7 .7 0. .7 .7 .7 0.	
480-371 63, 163 200 436 18 24 951, 1956 595 86 459 659 457 52, 764 940 650 657 658 663 664 754, 1006 854 207, 1056 854 210	(OPB PC) MCC PC MCC PC AVG MCC CLNT DS PR MCC CLNT DS T MCC FU INJ PT MCC LN CAV P MCC LN CAV P MCC OX INJ TEM HPFP IN PR HPFP DS T HPFP DS T HPFP BAL CAV P HPFP SPD HPFP CL LNR T	-(MCC HG IN PR) R P	 4.49 (No ci (No ci 1.2 (Sense (Sense (Sense 10.3 .96 1.06 1.2 .9 (Sense (Sense (Sense (Sense (Sense (Sense (Sense 	1. hange is s hange is s or does no or does no or does no 1. .1 .3 .3 .1 or measure or does no	3.74 trikingly 4.01 t exist) t exist) t exist) t exist) 5.51 .85 88 4.01 6.	.3 y indicated) y indicated) .3 .5 .1 .1 .3 .5	1.3 .6 1.5 .2 .4 .6	1.34 .44 1.95 1.34 1.2 .44	.7 0. .7 .7 .7 0.	
63, 163 200 436 18 24 951, 1956 595 86 459 457 52, 764 940 650 657 658 663 664 754 207, 1209 436 722 722 516 517 190 071 071 071 071 054, 1056 854 210	MCC PC MCC PC AVG MCC CLNT DS PR MCC CLNT DS T MCC FU INJ PR MCC LN CAV P MCC OX INJ TEM HPFP IN PR HPFP DS T HPFP DS T HPFP BAL CAV P HPFP SPD HPFP CL LNR PR	1P >R	(No ci (No ci 1.2 (Sense (Sense (Sense 10.3 .96 1.06 1.2 .9 (Sense (Sense	hange is s hange is s or does no or does no or does no 1. .1 .3 .1 .3 .1 or measure or does no	trikingly 4.01 t exist) t exist) t exist) t exist) 5.51 85 88 4.01 6.	/ indicated) .3 .5 .1 .1 .3 .5	1.5 .2 .4 .6	1.95 1.34 1.2 .44	.7 .7 .7 0.	
436 18 24 951, 1956 595 86 459 459 457 52, 764 940 657 658 663 664 754 205, 1206 207, 1209 436 722 722 516 517 190 071 054, 1056 854 210	MCC CLNT DS PR MCC CLNT DS T MCC FU INJ PR MCC LN CAV P MCC OX INJ TEM HPFP IN PR HPFP DS PR HPFP DS T HPFP BAL CAV P HPFP SPD HPFP CL LNR T	IP PR .	1.2 (Sense (Sense (Sense 10.3 .96 1.06 1.2 .9 (Sense (Sense	.3 or does no or does no or does no 1. .3 .3 .1 or measure or does no	4.01 it exist) it exist) it exist) 5.51 .85 88 4.01 6.	.3 .5 .1 .3 .5	1.5 .2 .4 .6	1.95 1.34 1.2 .44	.7 .7 .7 0.	
18 24 951, 1956 595 86 459 659 457 52, 764 940 650 657 658 663 664 722 722 722 516 517 190 071 054, 1056 854	MCC CLNT DS T MCC FU INJ PR MCC LN CAV P MCC OX INJ TEM HPFP IN PR HPFP DS PR HPFP DS T HPFP BAL CAV P HPFP SPD HPFP CL LNR T	IP PR .	(Senso (Senso (Senso 10.3 .96 1.06 1.2 .9 (Senso (Senso	or does no or does no or does no 1. .1 .3 .3 .1 or measure or does no	t exist) t exist) t exist) t exist) 5.51 .85 88 4.01 6.	.5 .1 .1 .3 .5	1.5 .2 .4 .6	1.95 1.34 1.2 .44	.7 .7 .7 0.	
24 951, 1956 595 86 459 457 52, 764 940 650 657 658 663 663 664 724 207, 1209 436 722 722 516 517 722 516 517 190 071 190 071 190 071 190 054, 1056 854 210	MCC FU INJ PR MCC LN CAV P MCC OX INJ TEM HPFP DS PR HPFP DS T HPFP BAL CAV P HPFP SPD HPFP CL LNR PR HPFP CL LNR T	PR .	(Senso (Senso 10.3 .96 1.06 1.2 .9 (Senso (Senso	or does no or does no 1. .1 .3 .1 or measure or does no	t exist) t exist) 5.51 .85 88 4.01 6.	.1 .1 .3 .5	.2 .4 .6	1.34 1.2 .44	.7 .7 0.	
595 86 459 457 52, 764 940 650 657 658 663 664 724 207, 1209 436 722 722 516 517 190 071 190 071 190 071 1056 854 210	MCC OX INJ TEM HPFP IN PR HPFP DS PR HPFP DS T HPFP BAL CAV P HPFP SPD HPFP CL LNR PR HPFP CL LNR T	PR .	(Sens: 10.3 .96 1.06 1.2 .9 (Sens: (Sens:	or does no 1. .1 .3 .1 or measure or does no	t exist) 5.51 .85 88 4.01 6.	.1 .1 .3 .5	.2 .4 .6	1.34 1.2 .44	.7 .7 0.	
595 86 459 457 52, 764 940 650 657 658 663 664 724 207, 1209 436 722 722 516 517 190 071 190 071 190 071 1056 854 210	MCC OX INJ TEM HPFP IN PR HPFP DS PR HPFP DS T HPFP BAL CAV P HPFP SPD HPFP CL LNR PR HPFP CL LNR T	PR .	10.3 .96 1.06 1.2 .9 (Senso (Senso	1. .1 .3 .1 or measure or does no	5.51 .85 88 4.01 6.	.1 .1 .3 .5	.2 .4 .6	1.34 1.2 .44	.7 .7 0.	
459 659 457 52, 764 940 650 657 658 663 664 754 207, 1209 436 722 722 516 517 190 071 054, 1056 854 210	HPFP DS PR HPFP DS T HPFP BAL CAV P HPFP SPD HPFP CL LNR PR HPFP CL LNR T		.96 1.06 1.2 .9 (Senso (Senso	.1 .3 .1 or measure or does no	.85 88 4.01 6.	.1 .1 .3 .5	.2 .4 .6	1.34 1.2 .44	.7 .7 0.	
659 457 52, 764 940 650 657 658 663 664 754 205, 1206 207, 1209 436 772 722 722 722 516 517 190 071 054, 1056 854 210	HPFP DS T HPFP BAL CAV P HPFP SPD HPFP CL LNR PR HPFP CL LNR T		1.06 1.2 .9 (Senso (Senso	.3 .3 .1 or measure or does no	88 4.01 6.	.1 .3 .5	.4 .6	1.2	.7 0.	
457 52, 764 940 650 657 658 663 664 754 205, 1206 207, 1209 436 722 722 516 517 190 071 071 190 071 190 071 190 071 190	HPFP BAL CAV P HPFP SPD HPFP CL LNR PR HPFP CL LNR T		1.2 .9 (Senso (Senso	.3 .1 or measure or does no	4.01 6.	.3 .5	.6	.44		
940 650 657 658 663 664 754 205, 1206 207, 1209 436 722 722 516 517 722 516 517 190 071 071 071 054, 1056 854 210	HPFP CL LNR PR HPFP CL LNR T	t	(Senso (Senso	or measure or does no			4	. 19	0.	
650 657 658 663 664 754 205, 1206 207, 1209 436 722 722 516 517 516 517 190 071 071 071 054, 1056 854 210	HPFP CL LNR T	κ	(Sense	or does no	ment not		.0			
657 658 663 664 754 205, 1206 207, 1209 436 722 722 516 517 516 517 190 071 071 054, 1056 854 210						atalidu(C)				
658 663 664 754 207, 1209 207, 1209 207, 1209 722 516 517 722 516 517 190 071 071 054, 1056 854 210			(\$ 000	or does no						
663 664 754 205, 1206 207, 1209 436 722 516 517 720 516 517 190 071 071 054, 1056 854 210	HPFP DR TEMP			or does no						
754 205, 1206 207, 1209 436 722 516 517 190 071 190 071 054, 1056 854 210	*HPFT DS T1 A		13.88		7.54	.5	1.5	1.84	.7	
205, 1206 207, 1209 436 722 722 516 517 190 071 054, 1056 854 210	*HPFT DS T1 B		10.15		5.51	.5	1.5	1.84	.7 .7	
207, 1209 436 722 516 517 190 071 054, 1056 854 210	LPFP SPD FAC FU FL		1.63 (No.cl	.3 hange is s	.84 trikingly	.1 / indicated)	.4	2.06	•1	
722 722 516 517 190 071 054, 1056 854 210	FAC FU FL CT		(No cl	hange is s	trikingly	<pre>/ indicated)</pre>				
722 516 517 190 071 054, 1056 854 210	LPFT IN PR		1.2	.3	4.01	.3	.6	.44	0.	
516 517 190 071 054, 1056 854 210	ENG FU FLOW ENG FU FLOW CT	•	1.38 (No. cl	.3 hange is s	6.27	.5 (indicated)	-8	.74	.3	
517 190 071 054, 1056 854 210	HPOT DS T1		2.33	nangenss .7	1.17	.3	1.0	1.34	.7	
071 054, 1056 854 210	HPOT DS T2		2.43	.7	1.23	.3	1.0	1.34	.7	
054, 1056 854 210	HPOT PRSL DR T	•				adequately	to steady	state co	nditions)	
854 210	OX BLD INT T *OX FAC FM DS T		(Senso	or does no .1	t exist) .03	.1	.2	1.34	.7	
210	FAC OX FM DS P					(indicated)	• 6	1.54	••	
343 4347	FAC OX FLOW CT		(No ct	hange is s	trikingly	<pre>/ indicated)</pre>		-	_	
212, 1213	FAC OX FLOW		.58	.1	.9	.1 . indianal	.2	.64	.3	
858,860 058	ENG OX IN PR ENG OX IN TEMP	•				<pre>/ indicated) adquately to</pre>		tate cor	ditions)	
338	*HPOP DS PR		2.67	.7	1.99	.3	1.0	1.34	.7	
325, 326	*HPOP BALCAV PR	:	2.9	.7	1.36	.3	1.0	2.14	.7	
30, 734	LPOP SPD					(indicated)				
302 93,94	LPOP DS PR PBP DS TMP			nange is s or does no		indicated)				
59, 159	PBP DS PR		1.18	.3	23.6	1.	.4	.24	0.	
410	*FPB PC		1.7	.3	1.89	.3	.6	1.06	.7	
480	*OPB PC		1.3	.3	4.35	.3	.6	.48	0.	
878 879	HX INT PR		-	or does no						
579 581	HX INT T HX VENT IN PR		-	or does no or does no						
882	HX VENT IN T		(Senso	or does no	t exist)					
883			(Senso	or does no	t exist)					
40 42	HX VENT DP		(No ch 2.75	nange is s .7	trikingly 5.5	indicated)		.72	.3	
76	HX VENT DP OPOV ACT POS FPOV ACT POS		6.13			.5	1.2			

Data Base for Early Parameter Indicators of -Test 901-436 (Coolant Liner Buckle) conduct	Test Classification: High Pressure Fuel Turbopump (MPFTP) Failure cted 14 February 1984 for Engine 0108.	
	due to a high pressure fuel turbine discharge temperature redline.	
Early indications occur ne	near 109% PL	
posts eroded back	lute blown off, 2nd stage disk w/blades 75-80% eroded), MCC injector (LOX ck to interpropellant plate), nozzle (3-areas of burn through), engine due to LOX rich shutdown.	
····Impact: Unavailable.		_
CRITERIA LEGEND: Operating Level Anomaly		
	nge in Steady State Value/Steady State Value) x 100.	time [
Duration Criteria (DC)		
DC = Duration from t	the point of first failure indications to c/o time	\mathbf{N}
WEIGHTED LEVEL VALUE ASSIGNMENT LEGEND:		c/0
LEVEL-A: LEVEL-B:	LEVEL-C:	
Value of LC A-Value Value of RC B >3% 1.0 >10%/sec	B-Value Value of DC C-Value . 1.0 >5sec 1.0	
>2%-3%		
1%-2%		
<pre></pre> <pre><</pre>	an asterisk indicate a change continues until cutoff time.	-
()Numbers within the parenth	thesis indicate an earlier "LC" change for the parameter	
<u>PID NO.(S)</u> PARAMETER	LC LEVEL-A RC LEVEL-B LEVEL A+B DC LEVEL-C	
366-367 (INJ CLNT PR) - (MCC HG IN PR)		
366-383 (INJ CLNT PR) - (MCC PC) 367-383 (MCC HG IN PR) - (MCC PC)	(Sensor has not settled adequately to steady state conditions)	
367-383 (MCC HG IN PR) - (MCC PC) 395-383 *(MCC OX INJ PR) - (MCC PC)	(Sensor does not exist) 9.6 1. 19.6 1. 2.0 .49 0.	
940-367 (HPFP CL LNR PR)-(MCC HG IN PR)	825(60) 1.(1.) 208(13) 1.(1.) 2.0(2.0) 4(12.56) .7(1.)	
459-383 *(HPFP DS PR) -(MCC PC) 410-367 (FPB PC) -(MCC HG IN PR)	4.2 1. 10.2 1. 2.0 .41 0.	
410-367 (FPB PC) - (MCC HG IN PR) 480-367 (OPB PC) - (MCC HG IN PR)		
63, 163 *MCC PC	3.86 1. 7.88 .5 1.5 .51 .3	
200 *MCC PC AVG	3.86 1. 7.88 .5 1.5 .51 .3	
17 *MCC CLNT DS PR 18 *MCC CLNT DS T	3.09 1. 7.03 .5 1.5 .51 .3 3.33 1. 9.26 .5 1.5 .36 0.	
24 *MCC FU INJ PR	1.91 .3 6.37 .5 .8 .51 .3	
1951, 1956 MCC LN CAV P 595 MCC OX INJ TEMP	(Sensor malfunction)	
86 *HPFP IN PR	(No change is strikingly indicated) 29.8 1. 53.2 1. 2.0 .56 .3	
52 *HPFP DS PR	4.41 1. 7.88 .5 1.5 .5 .3	
659 HPFP DS T 457 *HPFP BAL CAV PR		
437 "HPFP BAL LAV PR 52, 764 *HPFP SPD	5.63 1. 12.24 1. 2.0 .46 0. 5.71 1. 13.93 1. 2.0 .47 0.	
940 HPFP CL LNR PR	10.5(2) 1.(.3) 3.(.4) .3(.1) 1.3(.4) 3.96(13) .7(1.)	
650 *HPFP CL LNR T	14.52 1. 36.2 1. 2.0 .4 0.	
657 HPFP DR PR	(No change is strikingly indicated)	
658 HPFP DR TEMP 231 *HPFT DS T1 A	(No change is strikingly indicated) 20. 1. 39.22 1. 2.0 .51 .3	
232 *HPFT DS T1 B	22.8 1. 44.72 1. 2.0 .51 .3	
754 *LPFP SPD	.61 .1 5.08 .5 .6 .12 0. 4.08 1. 8.87 .5 1.5 .46 0.	
436 *LPFT IN PR 1205, 1206 *FAC FU FL	4.08 1. 8.87 .5 1.5 .46 0. 11.9 1. 25.8 1. 2.0 .46 0.	
1207, 1209 FAC FU FL CT	(No change is strikingly indicated)	
722 *ENG FU FLOW 1722 ENG FU FLOW CT	2.45 .7 12.27 1. 1.7 .5 .3 (No change is strikingly indicated)	
233 *HPOT DS T1	2.58 .7 16.1 1. 1.7 .16 0.	
234 *HPOT DS T2	1.47 .3 13.4 1. 1.3 .11 0.	
1193 HPOT PRSL DR T 1071 OX BLD INT T	.71 .1 .48 .1 .2 3.46 .7 (No change is strikingly indicated)	
1054, 1056 OX FAC FM DS T	(No change is strikingly indicated)	
854 FAC OX FM DS PR	(No change is strikingly indicated) (No change is strikingly indicated)	
1210 FAC OX FLOW CT 1212, 1213 *FAC OX FLOW	(No change is strikingly indicated) 1.22 .3 7.62 .5 .8 .16 0.	
858, 860 *ENG OX IN PR	4.76 1. 43.2 1. 2.0 .11 0.	
1058 ENG OX IN TEMP	(No change is strikingly indicated) (No change is strikingly indicated)	
90 HPOP DS PR 325, 326 *HPOP BALCAV PR	(No change is strikingly indicated) 1.56 33 4.34 .3 .6 .36 0.	
30, 734 LPOP SPD	(No change is strikingly indicated)	
302 *LPOP DS PR	8.8 1. 31.6 1. 2.0 .28 0. (No change is strikingly indicated)	
93, 94 PBP DS TMP 59, 159 PBP DS PR	(No change is strikingly indicated)	
410 *FPB PC	2.92 .7 5.2 .5 1.2 .56 .3	
480 *0PB PC	.99 .1 2.17 .3 .4 .46 0. (No change is strikingly indicated)	
878 NX INT PR 879 HX INT T	.35 (1 .122 .1 .2 3.46 .7	••
881 HX VENT IN PR	(No change is strikingly indicated)	
882 HX VENT IN T	(No change" is strikingly indicated) (No change is strikingly indicated)	
883 HX VENT DP 40 OPOV ACT POS	3.62 1. 6.24 .5 1.5 .34 0.	
42 FPOV ACT POS	11.9 1. 24.3 1. 2.0 .51 .3	

trappers minister scale selection sc

Data Base for	r Early Parameter Indicators of 1	est Classification: High Pressure Fuel Turbopump (HPFTP) Failure
- <u>Test 901-3</u>	364 (Hotgas Intrusion to Rotor Co Cutoff Time= 392.15 sec du	voling) conducted on 7 April 1982 for Engine 2013. Ne a PBP radial accelerameter redline.
	Early indications occur ne	ear 109% PL
	Damage: Engine sustained subsequent impact	extensive internal and external damage as a result of the failure and With the spillway. The test facility showed light to moderate damage.
	Impact: \$26M, Delay Time-	8 weeks.
CRITERIA LEGE		Criteria (LC) le in Steady State Value/Steady State Value) x 100. Excursion time
	• <u>Rate Criteria</u> (<u>RC</u>) = LC/	(Excursion time interval in seconds)
	<pre>eDuration Criteria (DC) DC = Duration from t</pre>	he point of first failure indications to c/o time
	EL VALUE ASSIGNMENT LEGEND:	
LEVEL-A: Value of LO	<u>LEVEL·B</u> : C A-Value Value of RC B	-Value Value of DC C-Value
>3%	1.0 >10%/sec 	1.0 >5sec 1.0 ORTOPIST PACE TO
1%-2%		.5 >1 -5sec
<1%		
1	*Parameters prefixed with a	n asterisk indicate a change continues until cutoff time.
	** <u>NOTE</u> : Parameter changes wher	e DC ranges between 233 to 292.2 seconds may or may not be from an anomaly; ed on and off between these equivalent DC ranges.
PID NO.(S)	PARAMETER	<u>LC LEVEL-A RC LEVEL-B LEVELS A+B DC LEVEL-C</u>
366-367	(INJ CLNT PR) - (MCC HG IN PR)	(Sensor does not exist)
366-163	(INJ CLNT PR) - (MCC PC)	(Sensor does not exist)
367-163 * 395-163	*(MCC HG IN PR) -(MCC PC) (MCC OX INJ PR) -(MCC PC)	11.9 105 .1 1.1 233.71 1. (No change is strikingly indicated)
940-367 *	(HPFP CL LNR PR)-(MCC HG IN PR)	21(8) 1.(1.) .5(.2) .1(.1) 1.1(1.1) 186.2(270) 1.
459-383 410-367	(HPFP DS PR) -(MCC PC) (FPB PC) -(MCC HG IN PR)	1.56(.6) .3(.1) .01(.02) .1(.1) .4(.2) 117(292.) 1.(1.) 4.3(1.3) 1.(.3) .05(.05) .1(.1) 1.1(.4) 117(263.) 1.(1.)
480-367	(OPB PC) - (MCC HG IN PR)	3.05 104 .1 1.1 186.2 1.
	MCC PC MCC PC AVG	.82 .1 1.03 .3 .4 6.45 1. .82 .1 1.03 .3 .4 6.45 1.
	MCC CLNT DS PR MCC CLNT DS T	.82 .1 .01 .1 .2 292.2 1.
	MCC FU INJ PR	1.44 .3 .04 .1 .4 117. 1. .73(.2) .1(.1) .01(.01) .1(.1) .2(.2) 117(292.) 1.(1.)
	MCC LN CAV P	(Sensor malfunction)
1	MCC OX INJ TEMP "HPFP IN PR	.7 .1 .01 .1 .2 186.2 1. 6.32 113 .1 1.1 292.2 1.
	HPFP DS PR ThPFP DS T	.9(.93) .1(.1) .01(.03) .1(.1) .2(.2) 117(292.) 1.(1.)
	HPFP US I	2.33 .7 .01 .1 .8 292.2 1. (Sensor malfunction)
	HPFP SPD HPFP CL LNR PR	.4(.4) .1(.1) 1.(.3) .3(.1) .4(.2) 7.2(117) 1.(1.) .5(.14) .1(.1) .01(.004) .1(.1) .2(.2) 98.2(274) 1.(1.)
	HPFP CL LNR T	.5(.14) .1(.1) .01(.004) .1(.1) .2(.2) 98.2(274) 1.(1.) (Sensor does not exist)
657	HPFP DR PR	(Sensor does not exist)
	HPFP DR TEMP HPFT DS T1 A	(Sensor does not exist) 2.4(2.8) .7(.7) 6.1(.02) .5(.1) 1.2(.8) 7.2(292.) 1.(1.)
232	HPFT DS T1 B	2.95(2.) .7(.7) 7.4(.02) .5(.1) 1.2(.8) 7.2(292.) 1.(1.)
	LPFP SPD LPFT IN PR	.63(.4) .1(.1) .01(.01) .1(.1) .2(.2) 117(292.) 1.(1.) .52(.2) .1(.1) .004(.01) .1(.1) .2(.2) 117(292.) 1.(1.)
1205, 1206	FAC FU FL FAC FU FL CT	1.33 .3 .005 .1 .4 292.2 1.
722	ENG FU FLOW	(No change is strikingly indicated) .99 .1 .003 .1 .2 292.2 1.
	ENG FU FLOW CT HPOT DS T1	(No change is strikingly indicated)
234	HPOT DS T2	6.25 109 .1 1.1 184.2 1.
	HPOT PRSL DR T OX BLD INT T	(Sensor has not settled adequately to steady state conditions)
1054, 1056	OX FAC FM DS T	3.2 15 .1 1.1 188.2 1. .24 .1 .003 .1 .2 204.5 1.
	FAC OX FM DS PR FAC OX FLOW CT	144. 1. 2.12 .3 1.3 189.2 1. (No change is strikingly indicated)
1212, 1213	FAC OX FLOW	(No change is strikingly indicated)
	ENG OX IN PR ENG OX IN TEMP	144. 1. 2.12 .3 1.3 189.2 1. .24 .1 .003 .1 .2 204.5 1.
90	HPOP DS PR	(No change is strikingly indicated)
	HPOP BALCAV PR LPOP SPD	2.2 .7 .04 .1 .8 188.2 1. 1.7 .3 .03 .1 .4 189.2 1.
209	LPOP DS PR	34.4 152 .1 1.1 188.2 1.
59, 159	PBP DS TMP PBP DS PR	1.02 .3 .02 .1 .4 188.2 1. 1.92 .3 .03 .1 .4 184.2 1.
410	FPB PC	.62(.4) .1(.1) .01(.01) .1(.1) .2(.2) 117(263.) 1.(1.)
78 1	OPB PC HX INT PR	1.1 .3 .02 .1 .4 182.2 1. .51 .1 .02 .1 .2 146.1 1.
79	HX INT T	4.7 107 .1 1.1 181.2 1.
882	HX VENT IN PR HX VENT IN T	(No change is strikingly indicated) (Sensor has not settled adequately to steady state conditions)
883 1	HX VENT DP	(Sensor has not settled adequately to steady state conditions)
	OPOV ACT POS FPOV ACT POS	3.9(2.3) 1.(.7) .05(.1) .1(.1) 1.1(.8) 210(292.) 1.(1.) 2.9(.7) .7(.1) .04(.02) .1(.1) .8(.2) 182(292.) 1.(1.)
<u> </u>		Table ITI-25: 901-364 Data Bage

· --· .

.

.

Data Base fr - <u>Test 902</u>	Data Base for Early Parameter Indicators of Test Classification: High Pressure Fuel Turbopump (HPFTP) Failure - <u>Iest 902-209</u> (Hotgas Intrusion to Rotor Cooling) conducted 16 November 1980 for Engine 2008. Cutoff Time= 823. sec., Program Duration. Early indications occur near 90% PL Damage: FPB injector (minor inner baffle tip erosion), HPFTP (nut found off turbine, dome and lock tab missing). Impact: Unavailable,									
CRITERIA LE	GEND: •Operati	ng Level Anomaly (Criteria	(<u>LC</u>)					Fxcur	sion time
	● <u>Rate Cr</u> ●Duratio	= (Absolute Changu <u>iteria (RC)</u> = LC/0 <u>n Criteria (DC</u>) = Duration from th	(Excursic	n time in	iterval i	n seconds)		c	hange	
WEIGHTED LEV LEVEL-A:	VEL VALUE ASSIGNM	LEVEL-B:		LEVEL		_				
	LC A-Value	Value of RC B >10%/sec	-Value 1.0		of DC 5sec	C-Value				
>2%-3%	7	>5 -10%/sec	.5		5sec					
1%-2% <1%		1 - 5%/sec <1%/sec			1 sec 5sec					
	·····									
<u>P1D NO.(S)</u>	PARAMETER		LC	LEVEL • A	<u>RC</u>	<u>LEVEL-B</u>	LEVELS <u>A + B</u>	DC	LEVEL-C	
366-371	(INJ CLNT PR)	-(MCC HG IN PR)		does not						
366-383 371-383	(INJ CLNT PR) (MCC HG IN PR)	-(MCC PC) -(MCC PC)		does not does not						
395-383	(MCC OX INJ PR)		(Sensor	does not	exist)					
940-371 459-383	(HPFP CL LNR PR (HPFP DS PR))-(MCC HG IN PR) -(MCC PC)	(Sensor	does not	exist) .32	.1	.2	204.	1.	
411-371	(FPB PC)	-(MCC HG IN PR)		does not		••	• 6	204.	••	
480-371	(OPB PC)	-(MCC HG IN PR)	• • • • • • •	does not			~			
63, 163 200	MCC PC MCC PC AVG		.21 .14	.1 .1	.11	.1 .1	.2 .2	117.1 176.2	1. 1.	
17	MCC CLNT DS PR		.24	.1	.4	.1	.2	203.5	1.	
18	MCC CLNT DS T		•	malfunct	ion) .04	.1	.2	173.	1.	
24 1951, 1956	MCC FU INJ PR MCC LN CAV P		.46 (Sensor	.1 malfunct		• 1	.2	173.	1.	
595	MCC OX INJ TEMP			does not	exist)					
1 86	HPFP IN PR		1.13	.3 .1 _	.11 2.08	.1 .3	.4 .4	213. 203.2	1. 1.	
52 659	HPFP DS PR HPFP DS T		.42 .	.1 -	.26	.1	.2	203.2	1.	
457	HPFP BAL CAV PR		.75	.1	.37 ·	.1	.2	204.	1.	
52, 764 53, 940	HPFP SPD HPFP CL LNR PR		.16 (Sensor	.1 s do not (.26 exist)	.1	.2	203.1	1.	
650	HPFP CL LNR T		-	does not						
657	HPFP DR PR		(Sensor	does not	exist)					
658	HPFP DR TEMP		(Sensor	does not	exist) .05	.1	.4	203.	1.	
231	HPFT DS T1 A HPFT DS T1 B		1.16 (Sensor	.3 • maifunct		• 1	•7	205.		
754	LPFP SPD		.33	.1	.6	.1	.2	203.1	1.	
436	LPFT IN PR		.32 (Sensor	.1 has not	.16 settled	.1 adequately	.2 to steady :	204. state con	1. ditions)	
1205, 1206 1207, 1209	FAC FU FL FAC FU FL CT		(No cha	inge is st	rikingly	indicated)			
722	ENG FU FLOW		.34	.1	.57	.1 . indicated	.2	175.8	1.	
1722 233	ENG FU FLOW CT HPOT DS T1		(NO CD8 2.14	inge is st	.71	indicated	.8	203.1	1.	
234	HPOT DS T2		1.70	.3	.85	.1	.4	203.	1.	
1190	HPOT PRSL DR T		(Sensor	has not	settled	adequately	to steady to steady	state con state con	ditions)	
1071	OX BLD INT T OX FAC FM DS T		(No cha	inge is st	rikingly	<pre>indicated</pre>)			
854	FAC OX FM DS PR		(No cha	nge is st	rikingly	indicated)			
1210 1212, 1213	FAC OX FLOW CT FAC OX FLOW		(No cha	inge is st inge is st	rikingly	<pre>/ indicated / indicated</pre>	,)			
858, 860	ENG OX IN PR		(No cha	inge is st	rikingly	<pre>indicated</pre>)			
1058	ENG OX IN TEMP		(No cha .44	inge is st .1	rikingly .15	/ indicated .1) .2	176.	1.	
90 325, 326	HPOP DS PR		.38	.1	.13	.1	.2	176.	1.	
30, 734	LPOP SPD		(No cha	inge is st		indicated				
302 93, 94	LPOP DS PR PBP DS TMP		(No cha .1	inge is st .1	.025	<pre>/ indicated .1</pre>	.2	177.	1.	
59, 159	PBP DS PR		.72	.1	.18	.1	.2	177.	1.	
414	FPB PC		.26	.1	.02	.1	.2 .2	193. 177.	1.	
480 878	OPB PC HX INT PR		.31 .52	.1 .1	.08 .17	.1 .1	.2	178.	1.	
1 879	HX INT T		1.03	.3	.09	.1	.4	203.	1.	
881	HX VENT IN PR		1.31	.3	.26	_1 adequately	.4 to steady :	208. state con	1. ditions)	
882 883	HX VENT IN T HX VENT DP		(Sensor 1.47	.3	.06	.1	.4	208.	1.	
40	OPOV ACT POS		.35	.1	1.75	.3	.4	203.2	1.	
42	FPOV ACT POS		.36	.1	.12	.1	.2 ·	202.	1.	
					E III	ble II	T-26.	902-2	09 Data	Page

يدير ورا المراجعة

Data Base for Early Parameter Indicators of	Data Base for Early Parameter Indicators of Test Classification: High Pressure Fuel Turbopump (HPFTP) Failure					
- <u>Test 902-249</u> (Power Transfer Failure, Turbine Blades) conducted 21 september 901 for channe out of Cutoff Time= 450.58 sec due to HPFTP accelerometer redline.						
Early indications occur near 109% PL Damage: HPFTP (massive turbine damage, HPFP inlet ruptured), entire engine gutted due to LOX rich shutdown.						
CRITERIA LECEND: Operating Level Anomaly	Impact: \$15.1M, Delay Time- 3 weeks.					
IC = (Absolute Cha	nge in Steady State Value/Steady State Value) x 100. C/(Excursion time interval in seconds)					
Duration Criteria (DC)	Change					
DC = Duration from WEIGHTED LEVEL VALUE ASSIGNMENT LEGEND:	the point of first failure indications to c/o time					
LEVEL-A: LEVEL-B:	LEVEL-C: B-Value Value of DC C-Value					
>3% 1.0 >10%/sec	1.0 >5sec 1.0					
>2%-3%						
-14/ 1 /14/000						
+ Deservations profixed with	an actorick indicate a change continues until cului time.					
**NOTE: Parameter changes wh	ere DC ranges between 131.0 · 350.6 seconds may or may not be from an ended y, ferred between these equivalent DC ranges.					
PID NO.(S) PARAMETER	LC LEVEL-A RC LEVEL-B LEVELS A+B DC LEVEL-C					
366-371 (INJ CLNT PR) - (MCC HG IN PR) (Sensor does not exist)					
366-383 (INJ CLNT PR) - (MCC PC) 371-383 (MCC HG IN PR) - (MCC PC)	(Sensor does not exist) (Sensor does not exist)					
395-383 *(MCC OX INJ PR) -(MCC PC)	3.2 104 .1 1.1 90.6 1.					
940-371 (HPFP CL LNR PR)-(MCC HG IN PR 459-383 *(HPFP DS PR) -(MCC PC)	2.2 .7 .01 .1 .8 . 500.6 1.					
410-371 (FPB PC) - (MCC HG IN PR						
63, 163 MCC PC	(No change is strikingly indicated)					
200 MCC PC AVG 17 *MCC CLNT DS PR	(No change is strikingly indicated) 1.04 .3 .003 .1 .4 350.6 1.					
18 *MCC CLNT DS T	4.2 101 .1 1.1 326.6 1. 1.08 .3 .005 .1 .4 200.6 1.					
24 *MCC FU INJ PR 1921 MCC LN CAV P	(Sensor malfunction)					
595 *MCC OX INJ TEMP 86 **HPFP IN PR	.25 .1 .001 .1 .2 275.6 1. 2.11 .7 .01 .1 .8 130.6 1.					
52 HPFP DS PR	1.2 .3 .006 .1 .4 200.6 1.					
659 *HPFP DS T # 457 *HPFP BAL CAV PR	1.82 .3 .01 .1 .4 150.6 1.					
52, 764 *HPFP SPD 53, 940 HPFP CL LNR PR	2.9(1.3) .7(.3) .02(.01) .1(.1) .8(.4) 130.6(351) 1.(1.) (Sensors do not exist)					
650 HPFP CL LNR T	(Sensor does not exist)					
657 HPFP DR PR 658 HPFP DR TEMP	(Sensor does not exist) (Sensor does not exist)					
231 HPFT DS T1 A 232 HPFT DS T1 B	17.5(5) 1.(1.) .13(.0002) .1(.1) 1.1(1.1) 130.6(351) 1.(1.) 5.3(3.6) 1.(1.) .04(.0001) .1(.1) 1.1(1.1) 130.6(351) 1.(1.)					
754 LPFP SPD	1.2(.9) $.3(.1)$ $.01(.01)$ $.1(.1)$ $.4(.2)$ $121(351.)$ $1.(1.)$					
436 LPFT IN PR 1205, 1206 FAC FU FL	3.63 101 .1 1.1 350.6 1.					
1207, 1209 FAC FU FL CT 722 ENG FU FLOW	(No change is strikingly indicated) 3.59 101 .1 1.1 350.6 1.					
1722 ENG FU FLOW CT	(No change is strikingly indicated)					
233 HPOT DS T1 234 HPOT DS T2	4.5(6.9) 1.(1.) .03(.1) .1(.1) 1.1(1.1) 75.6(351) 1.(1.)					
1190 HPOT PRSL DR T 1071 OX BLD INT T	4.6(4.7) 1.(1.) .04(.07) .1(.1) 1.1(1.1) 141(351.) 1.(1.) 5.95 111 .1 1.1 350.6 1.					
1054, 1056 OX FAC FN DS T	1.53 .3 .004 .1 .4 350.6 1.					
854 FAC OX FM DS PR 1210 FAC OX FLOW CT	(No change is strikingly indicated)					
1212, 1213 FAC OX FLOW 858, 860 ENG OX IN PR	2.9 .7 .03 .1 .8 100.6 1. 220. 1. 4.1 .3 1.3 350.6 1.					
1058 ENG OX IN TEMP	1.53 .3 .004 .1 .4 350.6 1.					
90 HPOP DS PR 325, 326 HPOP BALCAV PR	.75(1.6) .1(.3) .01(.03) .1(.1) .2(.4) 101(351.) 1.(1.)					
30, 734 LPOP SPD 209 LPOP DS PR	.62(1.8) .1(.3) .004(.03) .1(.1) .2(.4) 151(351.) 1.(1.) 1.7(20.) .3(1.) .03(.37) .1(.1) .4(1.1) 66.(351.) 1.(1.)					
93, 94 PBP DS TMP	(Sensor has not settled adequately to steady state conditions)					
59, 159 PBP DS PR 410 FPB PC	1.4 .3 .04 .1 .4 350.6 1.					
480 OPB PC 878 HX INT PR	1.8(1.1) .3(.3) .01(.02) .1(.1) .4(.4) 251(351.) 1.(1.) 1.1 .3 .004 .1 .4 250.6 1.					
879 HX INT T	4.2(4.9) 1.(1.) .01(.01) .1(.1) 1.1(1.1) 201(351.) 1.(1.)					
881 HX VENT IN PR 882 HX VENT IN T	4.5 1045 .1 1.1 350.6 1. 1.5(9.1) .3(1.) .02(.13) .1(.1) .4(1.1) 71.(351.) 1.(1.)					
883 HX VENT DP	3.8 1. .038 .1 1.1 350.6 1. 7(3.8) 1.(1.) .03(.07) .1(.1) 1.1(1.1) 226(351.) 1.(1.)					
40 OPOV ACT POS 42 FPOV ACT POS	3.5(3.3) 1.(1.) .04(.08) .1(.1) 1.1(1.1) 101(351.) 1.(1.)					
	Table III-27: 902-249 Data Bace					

.

Table III-27: 902-249 Data Base

<u>Data Base f</u> - <u>Test 902</u>	-095 (Power Trans	er Indicators of Te sfer Failure, Turbi ime= 51.09 sec due	ine Blades	s) conduc	cted on 17	7 November	1977 for 1	LIMP (HPFTP) Engine 000) Failure 2.	
	Early ind	ime= 51.09 sec due dications occur nea HPFTP (extensive t	ar 95% PL					-tad 15 MC	r face out	e ended)
	Impact:	Unavailable.							y 1005 int.	3 61 04647
<u>CRITERIA LE</u>	LC • <u>Rate</u> Cr • <u>Duratic</u>	ing Level Anomaly C = (Absolute Change <u>riteria (RC</u>) = LC/(on Criteria (DC) = Duration from th	e in Stead (Excursion	dy State n time in	nterval in	n seconds)		-	inge	ursion time
	VEL VALUE ASSIGNM	MENT LEGEND: LEVEL-8:		LEVEL	·			L		DC c/o
<u>LEVEL-A</u> : Value of		Value of RC B-	-Value	Value	e of DC	C-Value				
>3% >2%-3%	1.0	>10%/sec			>5sec					
17-27		1 - 5%/sec	.3	.5 •	•1sec	3				
<u> </u>		<1%/sec	.1	<	.5sec	0.				
	*Parameter	rs prefixed with ar	n asterisl	k indicat	•		es until co LEVELS	utoff time	•	
PID NO.(S)				LEVEL·A		LEVEL-B	<u>A + B</u>	<u>DC</u>	<u>LEVEL-C</u>	
366-372 366-383	(INJ CLNT PR) (INJ CLNT PR)	-(MCC HG IN PR) -(MCC PC)	(No chai .42	nge is st .1	.25	indicated)	2	15.39	1.	
372-383	(MCC HG IN PR)	-(MCC PC)	.78	.1	.46	.1	.2	15.39	1.	
395-383 940-372	(MCC OX INJ PR)) -(MCC PC) R)-(MCC HG IN PR)		nge is st does not		indicated))			
459-383	(HPFP CL LNR PH (HPFP DS PR)	-(MCC PC)				indicated)	J			
410-372	(FPB PC)	-(MCC HG IN PR)	(No cha	nge is st	trikingly	indicated))			
480-372	(OPB PC) MCC PC	-(MCC HG IN PR)				indicated) indicated)				
63, 163 200	MCC PC AVG					indicated)				
17	MCC CLNT DS PR		(No cha	nge is st	trikingly	indicated)				
18 24	MCC CLNT DS T *MCC FU INJ PR		(Sensor .86	malfunct	tion) .09	.1	.2	15.39	1.	
1921	MCC LN CAV P			does not		• 1	• • •	و در د ار ا	1.	
595	MCC OX INJ TEMP	<i>ې</i>	(Sensor	does not	t exist)					
86 52	HPFP IN PR					adequately indicated)		state con	ditions)	
659	HPFP DS PR HPFP DS T					indicated)				
457	HPFP BAL CAV PR	х ·	(No cha	nge is st	trikingly	indicated))			
52,764 53,940	HPFP SPD HPFP CL LNR PR			nge is st s do not		indicated)	1			
650	HPFP CL LNR T		•	does not						
657	HPFP DR PR		-	does not					•	
658	HPFP DR TEMP			does not						
231 232	HPFT DS T1 A HPFT DS T1 B			nge is st malfunct		indicated)	i			
754	LPFP SPD		.43	.1	.06	.1	.2	15.39	1.	
436	LPFT IN PR					indicated)				
1205, 1206 1207, 1209	FAC FU FL FAC FU FL CT					indicated) indicated)				
722	ENG FU FLOW		(No cha	nge is st	trikingly	indicated))			
1722	ENG FU FLOW CT HPOT DS T1					indicated) adequately			-: + i one)	
233 234	HPOT DS T2					adequately				
1190	HPOT PRSL DR T		(No chai	nge is st	trikingly	indicated))			
1072 1054, 1056	OX BLD INT T OX FAC FM DS T					adequately adequately				
854	*FAC OX FM DS PR		(Sensor 9.2	nas not	.9	.1	1.1	10.29	1.	
1210	FAC OX FLOW CT		(No cha	nge is st	trikingly	indicated)				
1212, 1213	FAC OX FLOW ENG OX IN PR		(No cha 8.66	nge is st 1.	trikingly .84	indicated)) 1.1	10.29	1.	
858,860 1058	ENG OX IN TEMP					indicated)		14.27	••	
338	HPOP DS PR		.34	.1	.2	.1	.2	10.29	1.	
325, 326 30, 734	HPOP BALCAV PR					indicated) indicated)				
209	LPOP DS PR		2.12	.7	.25	.1	.8	8.59	1.	
93, 94	PBP DS TMP		-	does not						
341 412	PBP DS PR FPB PC					indicated) indicated)				
412	OPB PC					indicated)				
878	THX INT PR		1.13	.3	.14	.1	.4	17.1	1.	
879 881	HX INT T *HX VENT IN PR		(Sensor 1.76	has not	.15	adequately	to steady .4	state con 12.	ditions) 1.	
882	HX VENT IN T					adequately	-			
883	HX VENT DP		(Sensor	has not	settled	adequately	to steady	state con	ditions)	
40 42	*OPOV ACT POS FPOV ACT POS		2.7 (No chai	.7 nge is st	.3 trikingly	.1 indicated)	.8	9.09	1.	
			(110 6110)			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				

·····

i su T

4

•

.

Early indi Damage: H ND: Operatin LC = Operation CC = Operation CC = Operation DC = Operation	ng Level Anomaly (= (Absolute Change iteria (RC) = LC/(<u>Criteria</u> (DC) = Duration from the ENT LEGEND: LEVEL-B: Value of RC B: >5 -10%/sec 1 - 5%/sec <1%/sec ithin the parenthe - (MCC HG IN PR) - (MCC PC) - (MCC PC) - (MCC PC)	ar 109% seal dro .02 inch Criteria je in Ste (Excursi the point (Excursi the point (Excursi the point .3 .1 esis ind LC (Senso (Senso (Senso (No chi (No chi (No chi (No chi (No chi (No chi (Senso) .27 .1.64 (No cha 2.8 (No cha (No cha (No cha (No cha (Senso) .27 .1.64 (No cha (No cha (No cha (No cha (Senso) .27 .1.64 (No cha (No cha (No cha (No cha (Senso) .27 .1.64 (No cha (No cha (No cha (No cha (Senso) .27 .1.64 (No cha (No cha (Senso) .27 .1.64 (No cha (No cha (No cha (Senso) .27 .1.64 (No cha (No cha (No cha (No cha (Senso) .27 .1.64 (No cha (No cha (No cha (Senso) .27 .1.64 (No cha (Senso) .27 .1.64 (No cha (Senso) .27 .1.64 (No cha (Senso) .27 .1.64 (No cha (No cha	PL opped appro- nes) a (LC) eady State ion time in t of first Value >1 - .5 - .5 - .4 dicate an e LEVEL-A or does not iange is st ange is st ange is st ange is st ange is st ange is st .1 .3) 1.(.3) 1. r has not .1 .3 ange is st .7	Value/S nterval failure failure c of DC 5sec 5sec 5sec factor failure failure failure 5sec factor fact	teady State in seconds) indications C-Value 1.0 7 3 0.	Value) x 10 to c/o tim dual "LC" c LEVELS <u>A + B</u> 1.1 .2 1.1(.4) 1.1	200. he hange for <u>DC</u> <u>1</u> 400. 300. 15.5(350. 400.	the parameter EVEL-C 1. .) 1. .) 1. .) 1.	ion tim
Impact: L ND: Operatin LC = eRate Cri eDuration DC = L VALUE ASSIGNME A-Value 1.0 7 3 1 ()Numbers wi PARAMETER (INJ CLNT PR) (INJ CLNT PR) (MCC HG IN PR) (MCC OX INJ PR) (MCC OX INJ PR) (MFFP CL LNR PR) (MFFP DS PR) MCC PC AVG MCC CLNT DS T MCC LN CAV P MCC CLN TDS T MCC LN CAV P MCC CLN TDS T MCC N CAV P MCC OX INJ TEMP MFFP IN PR MFFP DS PR MFFP DS PR MFFP DS T MFFP DS T MFFP DS T	Jnavailable ng Level Anomaly (= (Absolute Change iteria (RC) = LC/(- Criteria (DC) = Duration from the ENT LEGEND: LEVEL-B: Value of RC B- >5 -10%/sec 1 - 5%/sec 1 - 5%/sec (1 - 5%/sec - (MCC HG IN PR) - (MCC PC) - (MCC PC)	Criteria Je in Ste (Excursi the point -Value 1.0 .5 .3 .1 esis ind <u>LC</u> (Senso (No chi (No chi (No chi (No chi (No chi 2.3 3.3(1.1 8.24 (Sensoi .27 1.64 (No cha 2.8 (No cha (No cha (N	a (<u>LC</u>) ady State ion time in t of first <u>LEVEL</u> Value >1 - .5 dicate an e <u>LEVEL-A</u> or does not ange is st ange is st ange is st ange is st ange is st .1 .1 .3 .1 .3 ange is st .3 .7	terval failure failure failure failure for the state for t	in seconds) indications C-Value 1.0 7 3 0. and more grad LEVEL-B (indicated) (in	to c/o tim dual "LC" c LEVELS <u>A + B</u> 1.1 1.1 .2 1.1(.4) 1.1 to steady st .2	hange for <u>DC</u> 400. 300. 15.5(350. 400. tate condit 200.	the parameter EVEL-C 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	
LC = •Rate Cri •Duratior DC = L VALUE ASSIGNME A-Value 1.0 7 3 1 ()Numbers wi PARAMETER (INJ CLNT PR) (INJ CLNT PR) (MCC HG IN PR) (MCC HG IN PR) (MCC OX INJ PR) (HPFP CL LNR PR) (HPFP CL LNR PR) (HPFP DS PR) MCC CLNT DS T MCC LN CAV P MCC CLN TAS T MCC LN CAV P MCC CLN TAS T MCC LN CAV P MCC CLN TAS T MCC LN CAV P MCC OX INJ TEMP MPFP DS PR MPFP DS PR MPFP DS T MPFP DS T MPFP DS T	<pre>(Absolute Change iteria (RC) = LC/n <u>Criteria (DC)</u> = Duration from th <u>INT LEGEND</u>: <u>LEVEL-B</u>: Value of RC B· >10%/sec 1 - 5%/sec <1%/sec (1%/sec 1 - 5%/sec (1%/sec 1 - 5%/sec (1%/sec) (1%/sec)</pre>	e in Ste (Excursi the point -Value 1.0 .5 .3 .1 esis ind <u>LC</u> (Senso (No chi (No chi (No chi (No chi (No chi 2.5 3.3(1.3 8.24 (Sensoi .27 1.64 (No chi 8.28 (No chi 8.24 (Sensoi .27 1.64 (No chi 8.28 (No chi 8.24 (Sensoi .27 1.64 (No chi 8.28 (No chi 8.24 (Sensoi .27 1.64 (No chi 8.28 (No chi 8.24 (Sensoi .27 1.64 (No chi 8.28 (No chi 8.24 (Sensoi .27 1.64 (No chi 8.28 (No chi 8.24 (Sensoi .27 .1 .28 (No chi 8.28 (No chi 8.24 (Sensoi .27 .1 .28 (No chi 8.24 (Sensoi .27 .1 .28 (No chi .64 (No chi .64 (No chi .65 .28 (No chi .64 (No chi .65 .28 (No chi .64 (No chi .65 .28 (No chi .64 (No chi .65 .28 (No chi .64 (No chi .65 .28 (No chi .64 (No chi .64 (No chi .65 .28 (No chi .64 (No chi .64 (No chi .65 .28 (No chi .64 (No chi .64 (No chi .64 (No chi .64 (No chi .64 (No chi .64 (No chi .65 .28 (No chi .64 (No chi .65 .64 (No chi .64 (No chi .65 .65 (No chi .64 (No chi .65 .65 (No chi .64 (No chi .65 .65 (No chi .64 (No chi .65 .65 (No chi .65 .65 (No chi .65 .65 (No chi .65 .65 (No chi .65 .65 (No chi .65 (No chi (No chi	t of first LEVEL Value Value Value 2 	terval failure failure failure failure for the state for t	in seconds) indications C-Value 1.0 7 3 0. and more grad LEVEL-B (indicated) (in	to c/o tim dual "LC" c LEVELS <u>A + B</u> 1.1 1.1 .2 1.1(.4) 1.1 to steady st .2	hange for <u>DC</u> 400. 300. 15.5(350. 400. tate condit 200.	the parameter EVEL-C 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	
A-Value A-Value A-Value 1.0 7 3 1 ()Numbers wi PARAMETER (INJ CLNT PR) (INJ CLNT PR) (INJ CLNT PR) (MCC OX INJ PR) (MCC OX INJ PR) (MPFP CL LNR PR) (MPFP CL LNR PR) (MPFP CL LNR PR) (FPB PC) (OPB PC) ACC PC AVG ACC CLNT DS PR ACC CLNT DS T ACC CLN CAV P ACC CLN CAV P ACC OX INJ TEMP HPFP IN PR HPFP DS PR HPFP DS T HPFP DS T HPFP BAL CAV PR	<u>ENT LEGEND:</u> <u>LEVEL-B</u> : Value of RC B· >10%/sec 1 - 5%/sec <1%/sec <1%/sec <1%/sec <1%/sec (MCC HG IN PR) -(MCC PC) -(MCC PC) -(MCC PC) -(MCC HG IN PR) -(MCC PC) -(MCC	-Value 1.0 .5 .3 .1 esis ind <u>LC</u> (Senso (No chi (No chi (No chi (No chi (No chi (No chi (No chi 2.5 3.3(1.3 8.24 (Senso .27 1.64 (No cha 2.8 (No cha .28 (No cha .27 1.64 (No cha .28 (No cha .27 .164 (No cha .28 (No cha	LEVEL Value >1	L-C: e of DC -5sec -1sec -sec earlier (RC t exist) rikingly rikingly rikingly rikingly rikingly .005 .44(.0 .03 settled .01 1.64 rikingly	C-Value 1.0 7 3 0. and more grad <u>LEVEL-8</u> (indicated) (indicated)	dual "LC" c LEVELS <u>A + B</u> 1.1 1.1 1.1 1.1 to steady st .2	thange for <u>DC</u> <u>L</u> 400. 300. 15.5(350. 400. tate condit 200.	the parameter EVEL-C 1. .) 1. .) 1. 1. tions) 1.	
A-Value 1.0 7 3 1 ()Numbers wi PARAMETER (INJ CLNT PR) (INJ CLNT PR) (MCC HG IN PR) (MCC HG IN PR) (MCC OX INJ PR) (MFFP DS PR) (COPB PC) ACC PC ACC CLNT DS PR ACC CLNT DS PR ACC CLNT DS T ACC CLN CAV P ACC CN INJ TEMP AFFP IN PR AFFP DS PR AFFP DS T ACC PC	LEVEL-B: Value of RC B: >5 -10%/sec 1 - 5%/sec <1%/sec <1%/sec (1%/sec) (1%/sec (1%/sec) (1%/sec) (1%/sec (1%/sec)	1.0 .5 .3 .1 esis ind <u>LC</u> (Senso (Senso (Senso (No chi (No chi (No chi (No chi (No chi 2.5 3.3(1.1 8.24 (Sensol .27 .1.64 (No cha 2.8 (No cha (No cha .28 (No cha .27 .1.64 (No cha .28 (No cha .28 (No cha .20 .27 .1.64 (No cha .28 (No cha .20 .27 .1.64 (No cha .28 (No cha .28 (No cha .20 .27 .1.64 (No cha .28 (No cha .20 .27 (Sensol (Sensol .27 (Sensol .27 (Sensol .27 (Sensol	Value >1 - .5 - .5 - .5 - .5 - .5 - .5 - .5 - .5	e of DC 5sec 5sec 1sec searlier (<u>RC</u> t exist) rikingly rikingly rikingly rikingly rikingly rikingly .005 .44(.0 .03 settled .01 1.64 rikingly	<pre> 1.073 0. and more grad LEVEL-B y indicated) y indicated 11) .1(.1) .1 adequately t .1 .3</pre>	LEVELS <u>A + B</u> 1.1 .1 1.1 to steady st .2	<u>DC L</u> 400. 15.5(350. 400. tate condit 200.	<u>EVEL-C</u> 1. 1. .) 1. 1. tions) 1.	
1.0 7 3 1 ()Numbers wi PARAMETER (INJ CLNT PR) (INJ CLNT PR) (INJ CLNT PR) (MCC OX INJ PR) (HPFP CL LNR PR) (HPFP CL LNR PR) (HPFP DS PR) (FPB PC) (COPB PC) ACC PC ACC PC ACC PC ACC CLNT DS PR ACC CLNT DS T ACC CLN TAS T ACC CLN CAV P ACC OX INJ TEMP APFP IN PR APFP DS PR APFP DS T APFP DS T	>10%/sec >5 -10%/sec 1 - 5%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/sec <1%/s	1.0 .5 .3 .1 esis ind <u>LC</u> (Senso (Senso (Senso (No chi (No chi (No chi (No chi (No chi 2.5 3.3(1.1 8.24 (Sensol .27 .1.64 (No cha 2.8 (No cha (No cha .28 (No cha .27 .1.64 (No cha .28 (No cha .28 (No cha .20 .27 .1.64 (No cha .28 (No cha .20 .27 .1.64 (No cha .28 (No cha .28 (No cha .20 .27 .1.64 (No cha .28 (No cha .20 .27 (Sensol (Sensol .27 (Sensol .27 (Sensol .27 (Sensol	sicate an e LEVEL-A or does not ange is st ange is st .1 .3) 1.(.3) 1. r has not .1 .3 ange is st .7	<pre>>5sec -5sec -1sec -sec -sec earlier (RC t exist) rikingly .08 rikingly .08 rikingly .005 .44(.0 .03 settled .01 1.64 rikingly</pre>	<pre> 1.073 0. and more grad LEVEL-B y indicated) 11) .1(.1) .1 adequately t .1 .3</pre>	LEVELS <u>A + B</u> 1.1 .1 1.1 to steady st .2	<u>DC L</u> 400. 15.5(350. 400. tate condit 200.	<u>EVEL-C</u> 1. 1. .) 1. 1. tions) 1.	r.
	<pre>>5 -10%/sec 1 - 5%/sec <1%/sec thin the parenthe -(MCC HG IN PR) -(MCC PC) -(MCC PC) -(MCC PC) -(MCC HG IN PR) -(MCC PC) -(MCC HG IN PR)</pre>	.5 .3 .1 esis ind <u>LC</u> (Senso (Senso (No ch: (No ch: (No ch: (No ch: (No ch: (No ch: 2.3 (Senso) .27 1.64 (No ch: 2.8 (No ch: 2.8 (Senso) 2.3 (Senso) (Senso) (Senso) (Senso) (Senso) (Senso) (Senso)	>15 - .5 - .5 - .5 - .5 - .5 - .5 - .5	5sec 1sec 5sec earlier (RC t exist) t exist) trikingly trikingly trikingly trikingly trikingly trikingly trikingly trikingly trikingly trikingly trikingly	<pre></pre>	LEVELS <u>A + B</u> 1.1 .1 1.1 to steady st .2	<u>DC L</u> 400. 15.5(350. 400. tate condit 200.	<u>EVEL-C</u> 1. 1. .) 1. 1. tions) 1.	 r.
	<1%/sec thin the parenthe (MCC HG IN PR) (MCC PC) (MCC PC) (MCC PC) (MCC PC) (MCC HG IN PR) (MCC HG IN PR)	.1 esis ind (Senso (Senso (No chi (No chi (No chi (No chi (No chi 3.3(1.1 8.24 (Senso .27 1.64 (No chi 2.8 (No chi	<pre>dicate an e LEVEL-A or does not ange is st ange is st .1 3) 1.(.3) 1. r has not .1 .3 ange is st .7</pre>	Ssec earlier (<u>RC</u> t exist) trikingly trikingly trikingly trikingly trikingly trikingly trikingly trikingly trikingly trikingly trikingly trikingly trikingly	0. and more grad <u>LEVEL-B</u> (indicated) (indicate	LEVELS <u>A + B</u> 1.1 .1 1.1 to steady st .2	<u>DC L</u> 400. 15.5(350. 400. tate condit 200.	<u>EVEL-C</u> 1. 1. .) 1. 1. tions) 1.	 F.
PARAMETER (INJ CLNT PR) (INJ CLNT PR) (MCC HG IN PR) (MCC OX INJ PR) (HPFP CL LNR PR) (HPFP DS PR) (FPB PC) (OPB PC) ACC PC AVG ACC PC AVG ACC CLNT DS PR ACC CLNT DS T ACC FU INJ PR ACC CLN CAV P ACC CLN CAV P ACC OX INJ TEMP APFP IN PR APFP DS PR APFP DS T APFP DS T	-(MCC HG IN PR) -(MCC PC) -(MCC PC) -(MCC PC) -(MCC PC) -(MCC PC) -(MCC HG IN PR) -(MCC HG IN PR)	LC (Senso (No ch: (No ch: (No ch: (No ch: (No ch: (No ch: 3.3(1.3 8.24 (Sensoi .27 1.64 (No ch: 2.8 (No ch:	LEVEL-A or does not ange is st ange is st ange is st ange is st ange is st ange is st ange is st .1 3) 1.(.3) 1. r has not .3 ange is st .3	<u>RC</u> t exist) t exist) trikingly trikingly trikingly trikingly .005 .44(.0 .03 settled .01 1.64 rikingly	LEVEL-8 y indicated) y indicated) y indicated) y indicated) y indicated) y indicated) y indicated) y indicated) 11) .1(.1) .1 adequately t .1 .3	LEVELS <u>A + B</u> 1.1 .1 1.1 to steady st .2	<u>DC L</u> 400. 15.5(350. 400. tate condit 200.	<u>EVEL-C</u> 1. 1. .) 1. 1. tions) 1.	r.
PARAMETER (INJ CLNT PR) (INJ CLNT PR) (MCC HG IN PR) (MCC OX INJ PR) (HPFP CL LNR PR) (HPFP DS PR) (FPB PC) (OPB PC) ACC PC AVG ACC PC AVG ACC CLNT DS PR ACC CLNT DS T ACC FU INJ PR ACC CLN CAV P ACC CLN CAV P ACC OX INJ TEMP APFP IN PR APFP DS PR APFP DS T APFP DS T	-(MCC HG IN PR) -(MCC PC) -(MCC PC) -(MCC PC) -(MCC PC) -(MCC HG IN PR) -(MCC PC) -(MCC HG IN PR)	LC (Senso (No ch: (No ch: (No ch: (No ch: (No ch: (No ch: 3.3(1.3 8.24 (Sensoi .27 1.64 (No ch: 2.8 (No ch:	LEVEL-A or does not ange is st ange is st ange is st ange is st ange is st ange is st ange is st .1 3) 1.(.3) 1. r has not .3 ange is st .3	<u>RC</u> t exist) t exist) trikingly trikingly trikingly trikingly .005 .44(.0 .03 settled .01 1.64 rikingly	LEVEL-8 y indicated) y indicated) y indicated) y indicated) y indicated) y indicated) y indicated) y indicated) 11) .1(.1) .1 adequately t .1 .3	LEVELS <u>A + B</u> 1.1 .1 1.1 to steady st .2	<u>DC L</u> 400. 15.5(350. 400. tate condit 200.	<u>EVEL-C</u> 1. 1. .) 1. 1. tions) 1.	r.
(INJ CLNT PR) (INJ CLNT PR) (MCC HG IN PR) (MCC OX INJ PR) (HPFP CL LNR PR) (HPFP DS PR) (FPB PC) (OPB PC) (OPB PC) ACC PC ACC PC AVG ACC CLNT DS PR ACC CLNT DS T ACC FU INJ PR ACC CLN CAV P ACC OX INJ TEMP HPFP IN PR HPFP DS PR HPFP DS T HPFP BAL CAV PR	-(MCC PC) -(MCC PC) -(MCC PC) -(MCC PC) -(MCC HG IN PR) -(MCC PC) -(MCC HG IN PR)	(Senso (Senso (No ch: 18.9 (No ch: (No ch: (No ch: (No ch: 65 3.3(1.3 8.24 (Sensoi .27 1.64 (No ch: 2.8 (No ch:	or does not ange is st ange is st .1 3) 1.(.3) 1. r has not .1 .3 ange is st .7	t exist) t exist) trikingly trikingly trikingly trikingly trikingly trikingly .005 .44(.0 .03 settled .01 1.64 rikingly	y indicated) y indicated) 1 y indicated) y indicated) y indicated) y indicated) y indicated) 11) .1(.1) .1 adequately t .1 .3	1.1 .2 1.1(.4) 1.1 to steady st .2	400. 300. 15.5(350. 400. tate condit 200.	1. 1. .) 1. 1. tions) 1.	
(INJ CLNT PR) (MCC HG IN PR) (MCC OX INJ PR) (HPFP CL LNR PR) (HPFP DS PR) (FPB PC) (OPB PC) (OPB PC) (OPB PC) (CC PC AVG ACC PC AVG ACC CLNT DS PR ACC CLNT DS T ACC FU INJ PR ACC OX INJ TEMP (PFP IN PR IPFP DS PR IPFP DS T IPFP BAL CAV PR	-(MCC PC) -(MCC PC) -(MCC PC) -(MCC PC) -(MCC HG IN PR) -(MCC PC) -(MCC HG IN PR)	(Senso (No chi (No chi (No chi (No chi (No chi (No chi (No chi 3.3(1.3 8.24 (Sensoi .27 1.64 (No chi 2.8 (No chi	ange is st ange is st .1 3) 1.(.3) 1. r has not .1 .3 ange is st .3	: exist) :rikingly :rikingly :rikingly :rikingly :rikingly :rikingly .005 .44(.0 .03 settled .01 1.64 rikingly	<pre>/ indicated) .1 / indicated) / indicated) / indicated) / indicated) / indicated) .1 .1 .1 adequately t .1 .3</pre>	.2 1.1(.4) 1.1 to steady st .2	300. 15.5(350. 400. tate condit 200.	1. .) 1. 1. tions) 1.	
(MCC HG IN PR) (MCC OX INJ PR) (HPFP CL LNR PR) (HPFP DS PR) (FPB PC) (OPB PC) ACC PC ACC PC AVG ACC CLNT DS PR ACC CLNT DS T ACC CLNT DS T ACC CLN CAV P ACC CLN CAV PR ACC OX INJ TEMP APFP IN PR HPFP DS PR HPFP DS T IPFP BAL CAV PR	-(MCC PC) -(MCC PC) -(MCC HG IN PR) -(MCC PC) -(MCC PC) -(MCC HG IN PR)	(No chi (No chi (No chi (No chi (No chi (No chi :65 3.3(1.1 8.24 (Sensol .27 1.64 (No chi 2.8 (No chi	ange is st ange is st ange is st ange is st ange is st ange is st ange is st .1 3) 1.(.3) 1. r has not .1 .3 ange is st .3 ange is st	rikingly .08 .rikingly .rikingly .rikingly .rikingly .005 .44(.0 .03 settled .01 1.64 rikingly	<pre>/ indicated) .1 / indicated) / indicated) / indicated) / indicated) / indicated) .1 .1 .1 adequately t .1 .3</pre>	.2 1.1(.4) 1.1 to steady st .2	300. 15.5(350. 400. tate condit 200.	1. .) 1. 1. tions) 1.	
(HCC OX INJ PR) (HPFP CL LNR PR) (HPFP DS PR) (FPB PC) (OPB PC) ACC PC ACC PC ACC CLNT DS PR ACC CLNT DS T ACC CLNT DS T ACC CLN CAV P ACC CLN CAV P ACC CN INJ TEMP ACC OX INJ TEMP APFP IN PR APFP DS PR APFP DS T APFP DS T	-(MCC PC) -(MCC HG IN PR) -(MCC PC) -(MCC HG IN PR)	(No chi 18.9 (No chi (No chi (No chi .65 3.3(1.1 8.24 (Sensoi .27 1.64 (No chi 2.8 (No chi	ange is st 1. ange is st ange is st ange is st ange is st .1 3) 1.(.3) 1. r has not .3 ange is st .7	rikingly .08 rikingly rikingly rikingly .005 .44(.0 .03 settled .01 1.64 rikingly	<pre>/ indicated) .1 / indicated) / indicated) / indicated) / indicated) / indicated) .1 .1 .1 adequately t .1 .3</pre>	.2 1.1(.4) 1.1 to steady st .2	300. 15.5(350. 400. tate condit 200.	1. .) 1. 1. tions) 1.	
(HPFP DS PR) (FPB PC) (OPB PC) ACC PC ACC PC AVG ACC CLNT DS PR ACC CLNT DS T ACC FU INJ PR ACC LN CAV P ACC LN CAV P ACC LN CAV P ACC N INJ TEMP APFP IN PR APFP DS PR APFP DS T APFP BAL CAV PR	-(MCC PC) -(MCC HG IN PR)	18.9 (No ch: (No ch: (No ch: (No ch: 55 3.3(1.1 8.24 (Sensoi .27 1.64 (No chz 2.8 (No chz	1. ange is st ange is st ange is st ange is st .1 3) 1.(.3) 1. r has not .1 .3 ange is st .7	.08 rikingly rikingly rikingly rikingly .005 .44(.0 .03 settled .01 1.64 rikingly	.1 y indicated) y indicated) y indicated) y indicated) y indicated) .1 .1 .1 adequately t .3	.2 1.1(.4) 1.1 to steady st .2	300. 15.5(350. 400. tate condit 200.	1. .) 1. 1. tions) 1.	
(FPB PC) (OPB PC) ACC PC ACC PC AVG ACC CLNT DS PR ACC CLNT DS PR ACC CLNT DS T ACC FU INJ PR ACC LN CAV P ACC LN CAV P ACC OX INJ TEMP HPFP IN PR HPFP DS PR HPFP DS T HPFP BAL CAV PR	-(MCC HG IN PR)	(No chi (No chi (No chi .65 3.3(1.3 8.24 (Sensol .27 1.64 (No chi 2.8 (No chi	ange is st ange is st ange is st .1 3) 1.(.3) 1. r has not .1 .3 ange is st .7	rikingly rikingly rikingly .005 .44(.0 .03 settled .01 1.64 rikingly	<pre>/ indicated) / indicated) / indicated) / indicated) / indicated) 11) .1(.1) .1 adequately t .1 .3</pre>	1.1(.4) 1.1 to steady st .2	15.5(350, 400. tate condit 200.	.) 1. 1. tions) 1.	
ACC PC ACC PC AVG ACC CLNT DS PR ACC CLNT DS T ACC FU INJ PR ACC LN CAV P ACC OX INJ TEMP ACC OX INJ TEMP AFFP IN PR AFFP DS PR AFFP DS T AFFP BAL CAV PR	-(MCC HG IN PR)	(No chi (No chi .65 3.3(1.1 8.24 (Sensol .27 1.64 (No chi 2.8 (No chi	ange is st ange is st .1 3) 1.(.3) 1. r has not .1 .3 ange is st .7	rikingly 005 .44(.0 .03 settled .01 1.64 rikingly	<pre>/ indicated) / indicated) .1 11) .1(.1) .1 adequately t .1 .3</pre>	1.1(.4) 1.1 to steady st .2	15.5(350, 400. tate condit 200.	.) 1. 1. tions) 1.	
ACC PC AVG ACC CLNT DS PR ACC CLNT DS T ACC FU INJ PR ACC LN CAV P ACC OX INJ TEMP ACC OX INJ TEMP APFP IN PR APFP DS PR APFP DS T APFP DS T		(No chi .65 3.3(1.3 8.24 (Sensol .27 1.64 (No chi 2.8 (No chi	ange is st .1 3) 1.(.3) 1. r has not .1 .3 ange is st .7	rikingly .005 .44(.0 .03 settled .01 1.64 rikingly	<pre>/ indicated) .1 1) .1(.1) .1 adequately t .1 .3</pre>	1.1(.4) 1.1 to steady st .2	15.5(350, 400. tate condit 200.	.) 1. 1. tions) 1.	
ACC CLNT DS T ACC FU INJ PR ACC LN CAV P ACC OX INJ TEMP APFP IN PR APFP DS PR APFP DS T APFP BAL CAV PR		3.3(1.3 8.24 (Sensor .27 1.64 (No cha 2.8 (No cha	3) 1.(.3) 1. r has not .1 .3 ange is st: .7	.44(.0 .03 settled .01 1.64 rikingly	01) .1(.1) .1 adequately t .1 .3	1.1(.4) 1.1 to steady st .2	15.5(350, 400. tate condit 200.	.) 1. 1. tions) 1.	
ACC FU INJ PR ACC LN CAV P ACC OX INJ TEMP APFP IN PR APFP DS PR APFP DS T APFP BAL CAV PR		8.24 (Sensor .27 1.64 (No cha 2.8 (No cha	1. r has not .1 .3 ange is st .7	.03 settled .01 1.64 rikingly	.1 adequately t .1 .3	1.1 to steady st .2	400. tate condit 200.	1. tions) 1.	
ICC OX INJ TEMP IPFP IN PR IPFP DS PR IPFP DS T IPFP BAL CAV PR		(Sensor .27 1.64 (No cha 2.8 (No cha	r has not .1 .3 ange is st .7	settled .01 1.64 rikingly	adequately t .1 .3	to steady st .2	tate condit 200.	tions) 1.	
HPFP IN PR HPFP DS PR HPFP DS T HPFP BAL CAV PR		1.64 (No cha 2.8 (No cha	.3 ange is st .7	1.64 rikingly	.3				
HPFP DS PR HPFP DS T HPFP BAL CAV PR		(No cha 2.8 (No cha	ange is st .7	rikingly					
IPFP BAL CAV PR		(No cha		004	•				
			ande ie et		.1 indicated)	.8	400.	1.	
IPFP SPD		.54	.1	.001	.1	.2	400.	1.	
IPFP CL LNR PR		1.31	.3	.003	.1	.4	400.	1.	
IPFP CL LNR T IPFP DR PR			r does not r does not						
IPFP DR TEMP		(Senso	r does not	exist)					
IPFT DS T1 A IPFT DS T1 B			2) 1.(.3)		1) .1(.1)	1.1(.4) 1.1(.2)	125(400.) 125(400.)		
.PFP SPD		.64(.4)) .1(.1)	.6(.00	3).1(.1)	.2(.2)	200(400.)		
.PFT IN PR FAC FU FL					indicated)	.2	400-	1.	
AC FU FL CT		(No cha	ange_is st	rikingly	indicated)				
ING FU FLOW			.3 ange is st	.003 rikingly	.1 indicated)	.4	400.	1.	
IPOT DS T1		5.84	1.	.03	.1	1.1	200.	1.	
					.1	.8 .2	200 . 200.	1.	
X BLD INT T		(Sensor	r has not :	settled	adequately t	o steady st	tate condit	tions)	
IX FAC FM DS T AC OX FM DS PR		(Sensor	r has not :	settled	adequately t	o steady st	tate condit	tions)	
AC OX FLOW CT		(No cha	ange is st	rikingly	indicated)				
AC OX FLOW									
NG OX IN TEMP	3.	.3	.1	.001	.1	.2	300.	1.	
POP DS PR									
POP SPD	2 4	(No cha	ange is stu	rikingly	indicated)				
POP DS PR						•	200		
BP DS PR		(No cha	ange is str	rikingly	indicated)	• 4	200.	1.	
PB PC	<u> </u>	(No cha	ange is str	rikingly	indicated)				
X INT PR	्र्य	(No cha	is str	.003	1nd1cated)	.2	400.	1.	
XINTT 🖒	র্ত	5.81	1.	.02	.1	1.1	400.	1.	
X VENT IN PR X VENT IN T	-	(NO CHA	has not a	settled a	ingicated)	o steady st	ate condit	ions)	
X VENT DP		1.69	.7	.004	.1	.8	400.	1.	
				.12(.1)	, .1(.1)) .1(.1)				
シュミションファンファンドデデデビデデンシングア	AC FU FL AC FU FL CT NG FU FLOW NG FU FLOW CT POT DS T1 POT DS T2 POT PRSL DR T X BLD INT T X FAC FM DS T AC OX FM DS PR AC OX FLOW CT AC OX FLOW NG OX IN TEMP POP DS PR POP BALCAV PR POP DS PR POS PC (INT PR (VENT IN PR (VENT IN PR	AC FU FL AC FU FL CT NG FU FLOW NG FU FLOW CT POT DS T1 POT DS T2 POT PRSL DR T X BLD INT T X FAC FM DS T AC OX FM DS PR AC OX FLOW CT AC OX FLOW NG OX IN PR NG OX IN TEMP POP DS PR POP DS PR POP DS PR POP DS PR PB PC PB PC C INT T K VENT IN PR K VENT IN PR K VENT DP POV ACT POS	AC FU FL .96 AC FU FL CT (No ch NG FU FLOW 1.47 NG FU FLOW CT (No ch POT DS T1 5.84 POT DS T2 2.55 POT PRSL DR T .9 X BLD INT T (Senso AC OX FM DS PR (No ch AC OX FLOW CT (No ch AC OX FLOW CT (No ch NG OX IN PR (No ch NG OX IN PR (No ch NG OX IN PR (No ch POP DS PR (No ch PB PC (No ch C INT T (Sensor C VENT IN PR (Sensor C VENT IN PR 1.69 POV ACT POS 3.1(1.5)	AC FU FL.96.1AC FU FL CT(No change is stNG FU FLOW1.47.3NG FU FLOW CT(No change is stPOT DS T15.841.POT DS T22.55.7POT PRSL DR T.9.1X BLD INT T(Sensor has notX BLD INT T(Sensor has notAC OX FM DS PR(No change is stAC OX FLOW CT(No change is stAC OX FLOW CT(No change is stNG OX IN PR(No change is stNG OX IN PR(No change is stNG OX IN TEMP.3POP DS PR(No change is stPOP DS PR.47POP DS PR.47POP DS PR.47POP DS PR.47POP DS PR.47POP DS PR.47POP DS PR.46POP DS PR.47POP DS PR.47POP DS PR.47POP DS PR.47POP DS PR.46POP DS PR.47POP DS PR.47POP DS PR.47POP DS PR.47POP DS PR.47PS PC.1(No change is st)(No change is st)C INT T.581C VENT IN PR.581C VENT IN PR.69C VENT IN PRC VENT IN PR<	AC FU FL.96.1.002AC FU FL CT(No change is strikinglyNG FU FLOW1.47.3.003NG FU FLOW CT(No change is strikinglyPOT DS T15.84103POT DS T22.55.7.01POT PRSL DR T.9.1.04X BLD INT T(Sensor has not settledAC OX FM DS PR(No change is strikinglyAC OX FLOW CT(No change is strikinglyPOP DS PR(No change is strikinglyPB PC(No change is strikinglyYB PC(No change is strikinglyYC VENT IN PR(No change is strikinglyYC VENT IN PR <t< td=""><td>AC FU FL .96 .1 .002 .1 AC FU FL CT (No change is strikingly indicated) NG FU FLOW 1.47 .3 .003 .1 NG FU FLOW 1.47 .3 .003 .1 NG FU FLOW CT (No change is strikingly indicated) .003 .1 POT DS T2 2.55 .7 .01 .1 POT PRSL DR T .9 .1 .04 .1 X BLD INT T (Sensor has not settled adequately t .1 .1 X FAC FM DS T (Sensor has not settled adequately t .1 .1 AC OX FM DS PR (No change is strikingly indicated) .1 .1 AC OX FLOW CT (No change is strikingly indicated) .3 .1 .001 .1 MG OX IN PR (No change is strikingly indicated) .3 .1 .001 .1 MG OX IN PR (No change is strikingly indicated) .3 .1 .002 .1 MG OX IN PR (No change is strikingly indicated) .47 .1 .002 .1 MG OX IN PR (No change is strikingly indicated) .47</td><td>AC FU FL .96 .1 .002 .1 .2 AC FU FL CT (No change is strikingly indicated) .4 NG FU FLOW 1.47 .3 .003 .1 .4 NG FU FLOW 1.47 .3 .003 .1 .4 NG FU FLOW T (No change is strikingly indicated) .4 POT DS T1 5.84 .03 .1 1.1 POT DS T2 2.55 .7 .01 .1 .8 POT PRSL DR T .9 .1 .04 .1 .2 X BLD INT T (Sensor has not settled adequately to steady st (Sensor has not settled adequately to steady st (No change is strikingly indicated) AC OX FLOW CT (No change is strikingly indicated) .3 .1 .001 .1 .2 NG OX IN PR (No change is strikingly indicated) .3 .1 .001 .1 .2 POP BALCAV PR .4 .4 .3 .1 .001 .1 .2 POP DS PR .4 .4 .3 .003 .1 .2 POP DS PR .</td><td>AC FU FL.96.1.002.1.2400.AC FU FL CT(No change is strikingly indicated).003.1.4400.NG FU FLOW1.47.3.003.1.4400.NG FU FLOW CT(No change is strikingly indicated).2001.2200.POT DS T15.84103.11.1200.POT DS T22.55.7.01.1.8200.POT PSL DR T.9.1.04.1.2200.X BLD INT T(Sensor has not settled adequately to steady state conditAC OX FLOW CT(No change is strikingly indicated)AC OX FLOW CT(No change is strikingly indicated)AC OX FLOW(No change is strikingly indicated)AC OX FLOW(No change is strikingly indicated)NG OX IN PR.3.1.001NG OX IN PR.3.1.002NG OX IN TEMP.3.1.002POP DS PR.47.1.002POP DS PR.47.1.002POP DS PR.47.1.002NO change is strikingly indicated).47PB PC.47.003(No change is strikingly indicated)PB PC.68.1(No change is strikingly indicated)PB PC.69.1(No change is strikingly indicated)C VENT IN PR.1(VENT IN PR.2(VENT IN PR.69(VENT IN PR(</td><td>AC FU FL .96 .1 .002 .1 .2 400. 1. AC FU FL CT (No change is strikingly indicated) No change is strikingly indicated) No change is strikingly indicated) NG FU FLOW 1.47 .3 .003 .1 .4 400. 1. NG FU FLOW 1.47 .3 .003 .1 .4 400. 1. NG FU FLOW 1.47 .3 .003 .1 .1 200. 1. NG FU FLOW 5.84 1. .03 .1 1.1 200. 1. POT DS T1 5.84 1. .03 .1 1.2 200. 1. POT PRSL DR T .9 .1 .04 .1 .2 200. 1. X BLD INT T (Sensor has not settled adequately to steady state conditions) X X KC OK FLOW CT (No change is strikingly indicated) NG OX FLOW CT (No change is strikingly indicated) NG OX FLOW (No change is strikingly indicated) NG OX IN TEMP .3 .1 .001 .1 .2 300. 1. POP DS PR (No</td></t<>	AC FU FL .96 .1 .002 .1 AC FU FL CT (No change is strikingly indicated) NG FU FLOW 1.47 .3 .003 .1 NG FU FLOW 1.47 .3 .003 .1 NG FU FLOW CT (No change is strikingly indicated) .003 .1 POT DS T2 2.55 .7 .01 .1 POT PRSL DR T .9 .1 .04 .1 X BLD INT T (Sensor has not settled adequately t .1 .1 X FAC FM DS T (Sensor has not settled adequately t .1 .1 AC OX FM DS PR (No change is strikingly indicated) .1 .1 AC OX FLOW CT (No change is strikingly indicated) .3 .1 .001 .1 MG OX IN PR (No change is strikingly indicated) .3 .1 .001 .1 MG OX IN PR (No change is strikingly indicated) .3 .1 .002 .1 MG OX IN PR (No change is strikingly indicated) .47 .1 .002 .1 MG OX IN PR (No change is strikingly indicated) .47	AC FU FL .96 .1 .002 .1 .2 AC FU FL CT (No change is strikingly indicated) .4 NG FU FLOW 1.47 .3 .003 .1 .4 NG FU FLOW 1.47 .3 .003 .1 .4 NG FU FLOW T (No change is strikingly indicated) .4 POT DS T1 5.84 .03 .1 1.1 POT DS T2 2.55 .7 .01 .1 .8 POT PRSL DR T .9 .1 .04 .1 .2 X BLD INT T (Sensor has not settled adequately to steady st (Sensor has not settled adequately to steady st (No change is strikingly indicated) AC OX FLOW CT (No change is strikingly indicated) .3 .1 .001 .1 .2 NG OX IN PR (No change is strikingly indicated) .3 .1 .001 .1 .2 POP BALCAV PR .4 .4 .3 .1 .001 .1 .2 POP DS PR .4 .4 .3 .003 .1 .2 POP DS PR .	AC FU FL.96.1.002.1.2400.AC FU FL CT(No change is strikingly indicated).003.1.4400.NG FU FLOW1.47.3.003.1.4400.NG FU FLOW CT(No change is strikingly indicated).2001.2200.POT DS T15.84103.11.1200.POT DS T22.55.7.01.1.8200.POT PSL DR T.9.1.04.1.2200.X BLD INT T(Sensor has not settled adequately to steady state conditAC OX FLOW CT(No change is strikingly indicated)AC OX FLOW CT(No change is strikingly indicated)AC OX FLOW(No change is strikingly indicated)AC OX FLOW(No change is strikingly indicated)NG OX IN PR.3.1.001NG OX IN PR.3.1.002NG OX IN TEMP.3.1.002POP DS PR.47.1.002POP DS PR.47.1.002POP DS PR.47.1.002NO change is strikingly indicated).47PB PC.47.003(No change is strikingly indicated)PB PC.68.1(No change is strikingly indicated)PB PC.69.1(No change is strikingly indicated)C VENT IN PR.1(VENT IN PR.2(VENT IN PR.69(VENT IN PR(AC FU FL .96 .1 .002 .1 .2 400. 1. AC FU FL CT (No change is strikingly indicated) No change is strikingly indicated) No change is strikingly indicated) NG FU FLOW 1.47 .3 .003 .1 .4 400. 1. NG FU FLOW 1.47 .3 .003 .1 .4 400. 1. NG FU FLOW 1.47 .3 .003 .1 .1 200. 1. NG FU FLOW 5.84 1. .03 .1 1.1 200. 1. POT DS T1 5.84 1. .03 .1 1.2 200. 1. POT PRSL DR T .9 .1 .04 .1 .2 200. 1. X BLD INT T (Sensor has not settled adequately to steady state conditions) X X KC OK FLOW CT (No change is strikingly indicated) NG OX FLOW CT (No change is strikingly indicated) NG OX FLOW (No change is strikingly indicated) NG OX IN TEMP .3 .1 .001 .1 .2 300. 1. POP DS PR (No

Data Base for Early Param	Data Base for Early Parameter Indicators of Test Classification: High Pressure Fuel Turbopump (HPFTP) Failure					
- <u>Test 901-362</u> (Power Transfer Failure) conducted 27 March 1982 for Engine 2013.						
Cutoff Time= 500 sec, Program Duration. Early indications occur near 109% PL						
Early 1	indications occur ner HPOTP (1st stage 1	ar 109% PL humbing blode bo	exercise chipped of		old energy her	
Damage:			comera competa on			e growi
Impact	.125 inches) : Unavailable.					
CRITERIA LEGEND: ODers	ating Level Anomaly (Criteria (LC)				
· · · ·	C = (Absolute Change	in Steady State	Value/Steady State	Value) x 100	.	xcursion time
eRate	Criteria (<u>RC</u>) = LC/	(Excursion time i	interval in seconds)		-r-+	大
•Durat	tion Criteria (DC)				Change	
(C = Duration from th	ne point of first	: failure indications	s to c/o tim		
					4	- DC C/O
WEIGHTED LEVEL VALUE ASSIC		1 51 5	1.0.			
LEVEL-A:	LEVEL-B:		<u>:L-C</u> : Je of DC C-Value			
Value of LC A-Value		-Value Valu 1.0	>5sec 1.0			
>3% 1.0 >2%-3%	>5 -10%/sec		-5sec			
1%-2%	1 • 5%/sec		•1sec			
<1%1	<1%/sec		<u>.5sec0.</u>			
					• .•	
()Numbers	s within the parenthe	esis indicate an	earlier and more gra	dual "LC" cf	hange for the p	arameter.
						~
PID NO.(S) PARAMETER		LC LEVEL-A	RC LEVEL-B	<u>A + B</u>	DC LEVEL-	<u> </u>
366-367 (INJ CLNT PR)	- (MCC HG IN PR)	(Sensor does no	t exist)			
366-163 (INJ CLNT PR)	•	(Sensor does no				
367-163 (MCC HG IN PR		6.8 1.	.2 .1	1.1	175. 1.	
395-163 (MCC OX INJ F	R) - (MCC PC)		trikingly indicated))		
	PR)-(MCC HG IN PR)	(Sensor does no				
459-383 (HPFP DS PR)	-(MCC PC)	1.15 .3	.58 .1	.4	262. 1.	•
410-367 (FPB PC)	-(MCC HG IN PR)	2.8 .7	.03 .1	.8	260. 1.	
480-367 (OPB PC)	-(MCC HG IN PR)		trikingly indicated) 2.06 .3	.4	261. 1.	
63, 163 MCC PC		.41 .1 .31 .1	3.1 .3	.4	260. 1.	
200 MCC PC AVG 17 MCC CLNT DS F	DD	.63 .1	6.3 .5	.6	260. 1.	
18 MCC CLNT DS T		2.23 .7	.02 .1	.8	210. 1.	
24 MCC FU INJ PR		(Sensor does no	t exist)			
1921 MCC LN CAV P		(Sensor malfunc	tion)			
595 MCC OX INJ TE	MP		trikingly indicated)			
86 HPFP IN PR		7.1(1.6) 1.(.3)		1.1(.6)	175(261.) 1.	
52 HPFP DS PR		.741	- 1.48 .3	-4	260.5 1.	
659 . HPFP DS T		.53 .1	1.05 .3	-4	260.5 1.	
457 HPFP BAL CAV	PR	(No change is s	trikingly indicated) .65 .1	.2	260.5 1.	
52, 764 HPFP SPD	0	(Sensors do not		•-	20013	
53, 940 HPFP CL LNR P	Υ κ					
650 HPFP CL LNR T		(Sensor does no				
657 HPFP DR PR		(Sensor does no				
658 HPFP DR TEMP		(Sensor does no		.4(.4)	160(266.) 1.	
231 HPFT DS T1 A 232 HPFT DS T1 B		1.7(1.3) .3(.3)		.4(.2)	175(258.5) 1.	
754 LPFP SPD		.63(.6) .1(.1)		.2(.4)	210(261.) 1.	
436 LPFT IN PR		.63(.6) .1(.1)		.2(.4)	200(261.) 1.	
1205, 1206 FAC FU FL			trikingly indicated)			
1207, 1209 FAC FU FL CT		(No change is a	trikingly indicated)			
722 ENG FU FLOW		- · ·	trikingly indicated)			
1722 ENG FU FLOW C	T		trikingly indicated)			
233 HPOT DS T1			trikingly indicated)			
234 HPOT DS T2 1190 HPOT PRSL DR	-		trikingly indicated) trikingly indicated)			
1071 OX BLD INT T	•	(No change is a	trikingly indicated)			
1054, 1056 OX FAC FM DS	T	(Sensor has not	settled adequately	to steady st	ate conditions)
854 FAC OX FM DS			trikingly indicated)			
1210 FAC OX FLOW C	T	(No change is s	trikingly indicated)	1		
1212, 1213 FAC OX FLOW			trikingly indicated)			
858, 860 ENG OX IN PR	_		trikingly indicated)			
1058 ENG OX IN TEM	P		trikingly indicated)		258.5 1.	
90 HPOP DS PR	•	1.07 .3 1.35(.6) .3(.1)	2.14 .3 .01(2.9) .1(.3)	.6 .4(.4)	225(260.2) 1.	
325, 326 HPOP BALCAV P 30, 734 LPOP SPD	ĸ	.3 .1	1.43 .3	.4	260.1 1.	
209 LPOP DS PR			trikingly indicated)			
93, 94 PBP DS TMP		.2 .1	.63 .1	.2	260.1 1.	
59, 159 PBP DS PR		1.06 .3	1.06 .3	.6	260.2 1.	
410 FPB PC		.62 .1	.09 .1	.2	260.2 1.	
480 OPB PC		.76 .1	.38 .1	.2	260.2 1.	
878 HX INT PR		.6 .1	.3 .1	.2	260. 1.	•••
879 HX INT T			settled adequately	to steady st	260. 1.	,
881 HX VENT IN PR		.71 (Sensor has not	.4 .1 settled adequately)
882 HX VENT IN T 883 HX VENT DP		.7 .1	.4 .1	.2	260. 1.	•
40 OPOV ACT POS		1.8 .3	.9 .1	.4	260. 1.	
42 FPOV ACT POS		.99 .1	.5 .1	.2	260. 1.	
				-204 0	01-262 D	

·

Table III-30: 901-362 Data Base

•

Data Base for Early Parameter Indicators of Te	est Classification: High Pressure Fuel Turbopump (HPFTP) Failure			
- <u>Test 901-410</u> (Power Transfer Failure, Turbine Blades) conducted 20 May 1983 for Engine 2014. Cutoff Time= 595. sec, Program Duration. Early indications occur near 104% PL				
···Damage: HPFTP (2nd stage)	turbine damper missing, all locking tabs and pins missing, impact damage			
to 1st stage turbi Impact: Unavailable.	ine blades and tip seals), HPFP has .75in**2 piece of scroll missing.			
CRITERIA LEGEND: Operating Level Anomaly (
LC = (Absolute Change •Rate Criteria (RC) = LC/(e in Steady State Value/Steady State Value) x 100. (Excursion time interval in seconds)			
•Duration Criteria (DC)	he point of first failure indications to c/o time			
WEIGHTED LEVEL VALUE ASSIGNMENT LEGEND:				
LEVEL-A: LEVEL-B: Value of LC A-Value Value of RC B-	-Value Value of DC C-Value			
>3% 1.0 >10%/sec	1.0 >5sec 1.0			
>2%-3%	.5 >1 ·5sec			
<1%	.1 <.Ssec 0. esis indicate an earlier and more gradual "LC" change for the parameter.			
*Parameters prefixed with an	n asterisk indicate a change continues until cutoff time.			
** <u>NOTE</u> : Parameter changes where the fuel tank was vente	e DC ranges between 496 - 575 seconds may or may not be from an anomaly; ed between the equivalent DC ranges.			
PID NO.(S) PARAMETER	LC LEVEL-A RC LEVEL-B LEVELS A+B DC LEVEL-C			
366-367 (INJ CLNT PR) - (MCC HG IN PR)	(Sensor does not exist)			
366-163 (INJ CLNT PR) - (MCC PC) 367-163 (MCC HG IN PR) - (MCC PC)	(Sensor does not exist) 4. 195 .1 1.1 465. 1.			
395-163 (MCC OX INJ PR) + (MCC PC)	(No change is strikingly indicated)			
940-367 (HPFP CL LNR PR)-(MCC HG IN PR) 459-163 (HPFP DS PR) -(MCC PC)	50.(16) 1.(1.) 1.9(2.) .3(.3) 1.3(1.3) 90.(455.) 1. (No change is strikingly indicated)			
410-367 (FPB PC) -(MCC HG IN PR)	.6(5.5) .1(1.) .01(.03) .1(.1) .2(1.1) 185.(495) 1.(1.)			
480-367 (OPB PC) -(MCC HG IN PR) 63, 163 MCC PC	(No change is strikingly indicated) (No change is strikingly indicated)			
200 MCC PC AVG 17 MCC CLNT DS PR	(No change is strikingly indicated) 2.6 .7 .007 .1 .8 527. 1.			
18 MCC CLNT DS T	(No change is strikingly indicated)			
24 MCC FU INJ PR 1951, 1956 MCC LN CAV P	(No change is strikingly indicated) (Sensor malfunction)			
595 MCC OX INJ TEMP	(Sensor malfunction)			
86 **HPFP IN PR 52 HPFP DS PR	3.57 106 .1 1.1 535. 1. (No change is strikingly indicated)			
659 HPFP DS T	1.52 .3 .004 .1 .4 485. 1. (No change is strikingly indicated)			
457 HPFP BAL CAV PR 52, 764 HPFP SPD	.45 .1 .001 .1 .2 485. 1.			
53, 940 HPFP CL LNR PR	4.1(1.2) 1.(.3) .2(.01) .1(.1) 1.1(.4) 90.(455) 1.(1.)			
650 HPFP CL LNR T 657 HPFP DR PR	9.6(9.) 1.(1.) .4(2.5) .1(.3) 1.1(1.3) 80.(430.) 1.(1.) (No change is strikingly indicated)			
658 *HPFP DR TEMP	7.42 1. .02 .1 .8 485. 1. 2.03 .3 .01 .1 .2 495. 1.			
231 HPFT DS T1 A 232 HPFT DS T1 B	.92 .1 .004 .1 .2 345. 1.			
754 LPFP SPD 436 LPFT IN PR	.77 .1 .003 .1 .2 445. 1. .35 .1 .001 .1 .2 485. 1.			
1205, 1206 FAC FU FL	.86 .1 .002 .1 .2 495. 1.			
1207, 1209 FAC FU FL CT 722 ENG FU FLOW	(No change is strikingly indicated) .77 .1 .002 .1 .2 485. 1.			
1722 ENG FU FLOW CT	(No change is strikingly indicated) 1.76 .3 .01 .1 .4 485. 1.			
234 HPOT DS T2	2.28 .7 .02 .1 .8 485. 1.			
1190 HPOT PRSL DR T 1071 OX BLD INT T	(Sensor has not settled adequately to steady state conditions) (No change is strikingly indicated)			
1054, 1056 OX FAC FM DS T	(Sensor has not settled adequately to steady state conditions)			
854 FAC OX FM DS PR 1210 FAC OX FLOW CT	(No change is strikingly indicated) (No change is strikingly indicated)			
1212, 1213 FAC OX FLOW 858, 860 ENG OX IN PR	(No change is strikingly indicated) (No change is strikingly indicated)			
1058 ENG OX IN TEMP	(Sensor has not settled adequately to steady state conditions)			
90 HPOP DS PR 325, 326 HPOP BALCAV PR	(No change is strikingly indicated) (No change is strikingly indicated)			
30, 734 LPOP SPD	(No change is strikingly indicated)			
302 LPOP DS PR 93, 94 PBP DS TMP	(No change is strikingly indicated) (Sensor has not settled adequately to steady state conditions)			
59, 159 PBP DS PR 410 FPB PC	.67 .1 .002 .1 .2 395. 1. 1.79 .3 .009 .1 .4 545. 1.			
480 OPB PC	.24 .1 .001 .1 .2 370. 1.			
878 1HX INT PR 879 HX INT T	(No change is strikingly indicated) (Sensor has not settled adequately to steady state conditions)			
881 HX VENT IN PR	(No change is strikingly indicated) (Sensor has not settled adequately to steady state conditions)			
882 HX VENT IN T 883 HX VENT DP	(No change is strikingly indicated)			
40 OPOV ACT POS 42 FPOV ACT POS	3.17 ·1. 3.17 ·3 1.3 579. 1. .7(.33) ·1(.1) ·004(.03) ·1(.1) ·2(.2) 345.(555) 1.(1.)			

٠

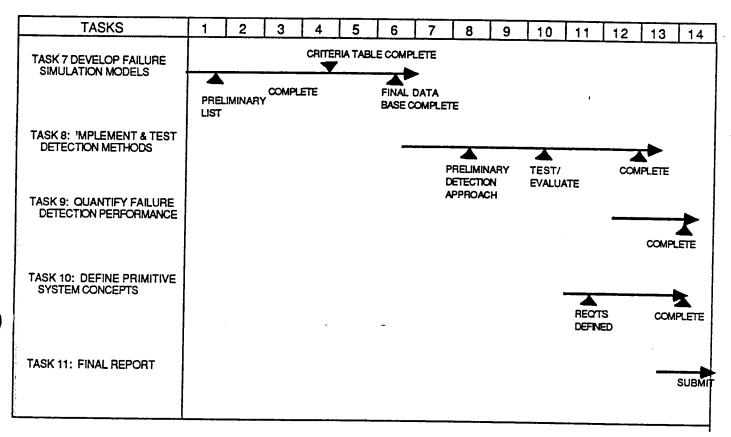
Table III-31: 901-410 Data Base

6.0 PHASE II AND III DESIGN PLANS

6.1 INTRODUCTION

The Phase II and III plans relate directly to the original statement of work submitted to NASA MSFC in the original proposal effort. The efforts in both phases will lead to a preliminary definition of efforts required including added hardware, software, and system integration requirements for a prototype SAFD system.

6.2 PHASE II: DEVELOPMENT


In this phase, chosen failure detection algorithms and the development of failure simulations will be accomplished to quantify system requirements for the proposed failure detection system. Phase II includes five tasks necessary to develop the prototype failure detection algorithm. A schedule is defined in Figure 6-1.

Task 7: Develop Failure Simulation Models

Based on the rating scheme developed in Task 2, the chosen failure detection algorithms will be implemented and tested for their ability to detect the selected failure modes, the robustness to false detection, and for their ability to detect different classes of failures. The process of choosing the methods will be iterative in nature with the goal of choosing the proper combination. of algorithms that best detects the maximum number of failures. Five (5) tests approved by NASA MSFC will be used. These tests are: 901-173, 901-284, 901-364, 901-340, and 901-225.

SYSTEM FOR ANOMALY AND FAILURE DETECTION

PHASE II SCHEDULE

Task 8: Implement Detection Methods

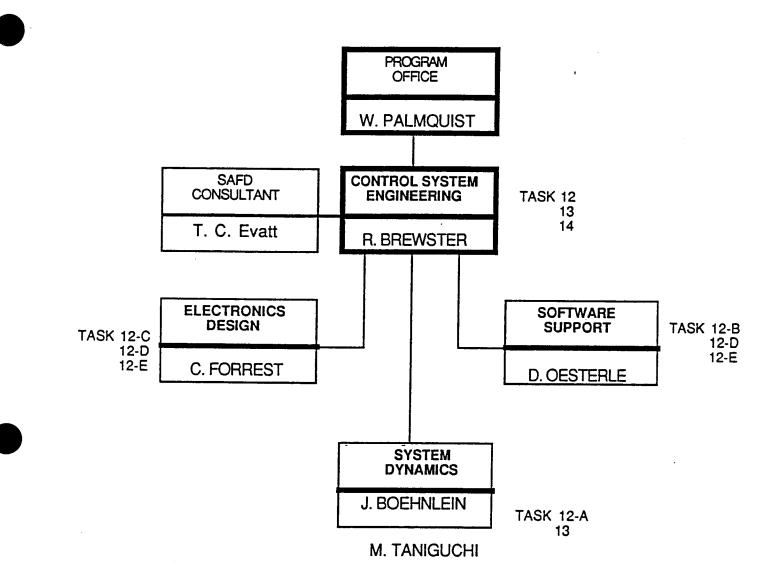
Based on the rating scheme developed in Task 2, the chosen failure detection algorithms will be implemented and tested for their ability to detect the selected failure modes, the robustness to false detection, and for their ability to detect different classes of failures. The process of choosing the methods will be iterative in nature with the goal of choosing the proper combination of algorithms that best detects the maximum number of failures. This task also corresponds to the development of algorithms specifically related to those failure modes selected in Task 7.

Task 9: Quantify Failure Detection Performance

In this task, the proposed failure detection prototype system will be quantified in terms of its performance characteristics, e.g., its ability to detect system anomalies and failure modes. This ability will be quantified in terms of the failure detection robustness, time for the failure to be detected by the software (e.g., failure detection time constant), and other performance parameters that may be derived from this study. The failure detection performance criteria will be limited to the five tests selected in Task 7.

Task 10: Define Primitive System Concepts

In this task, a primitive system functional flow diagram will be derived based on technical results from Tasks 7, 8, and 9. These top-level functional flow diagrams will yield valuable information for the hardware and software design engineers to determine the hardware/software development required for implementation of the SAFD system. This task will be limited to the five specified failure modes listed in Task 7.


Task 11: Final Report

This report will discuss the primitive system design concept, the derived requirements for the design, and component requirements. These requirements will be presented with top-level functional flow diagrams with descriptions and lists. Results of the prototype failure detection system on an analog or digital SSME model will be presented. Currently, only the SSME Digital Transient Model will be used to evaluate algorithm results.

6.3 PHASE III: DESIGN

The revised Phase III option corresponds to a request by NASA MSFC. The Phase I and II efforts will complete the initial work required to anchor the algorithm to estimated statistical parameter variations. However, it is highly recommended that the estimated statistical variations be enhanced and verified by utilization of the NTI Corporation capability to analyze raw data mathematically. This will help to alleviate uncertainty associated with the envelopes developed by Rocketdyne and add further certainty to the developed algorithms. This effort should be initiated during the Phase II effort to support Rocketdyne failure detection algorithm developments.

Figure 6-2 represents the preliminary organization structure at Rocketdyne to accomplish the Phase III efforts. The Control System Engineering Unit will coordinate the development of all the requirements specifications. This unit will develop the overall functional specification to support the hardware and software groups. The Electronics Design unit will be responsible for the development of the hardware specification and integration efforts. The Software Support Unit will develop the software requirements specifications based on the system requirements specification. Based on funding level, selected individuals will be assigned out of each functional area to support the outlined tasks.

Figure 6-2: Phase II/III SAFD Organization

The SAFD detection algorithms will be tested on time histories collected from actual engine tests and also to a limited extent using the SSME Digital Transient Model for simulated criticality | FMEA anomalies related to the five tests selected during the Phase II effort. This effort will not complete the intensive efforts required to review all FMEA criticality | and 2 failure modes needed to adequately address detectable failure modes present on engine test stands. The engine-to-engine parameter variations have also been lightly addressed in the SAFD study because of funding limitations. The Phase III tasks are presented below. A preliminary schedule based on a 14-month Phase III effort is defined in Figure 6-3. Costs for the Phase III effort will remain the same as those defined in the negotiated proposal.

Task 12: Final System Design Specification/Cost Estimates

This task will encompass the definition of subtasks necessary to determine the system components (hardware/software) necessary to implement the SAFD system. This task does not include any actual software/hardware development but defines those tasks necessary for NASA MSFC planning purposes for funding to actually build and test a breadboard system on a testbed. A set of functional diagrams defining requirements, hardware/software functional breakdowns interface and scheduling and cost data will be generated. The output of this task will be the funding and supporting tasks necessary to implement a breadboard SAFD system on a selected test stand system. The list of subtasks to Task 12 are summarized below and represent the bulk of the work necessary to accomplish the efforts required during Phase III. No additional data analysis or algorithm development will be accomplished during the Phase III efforts.

SYSTEM FOR ANOMALY AND FAILURE DETECTION

PHASE III SCHEDULE

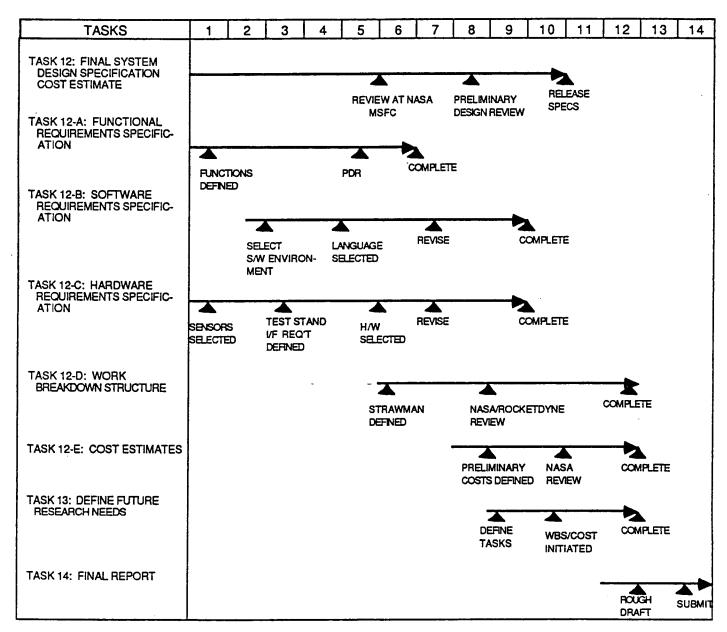


Figure 6-3: Phase III Schedule

Task 12-A: Functional Requirements

A requirements specification will be developed by Control Systems Engineering unit personnel based on Phase II efforts in algorithm definition. A system hierarchy will be defined and a detailed work breakdown structure will be correlated with the development of the system. The specification will include the preliminary interface requirements, performance requirements, and preliminary CPU and memory requirements required to accomplish the goals derived during Phase II.

Task 12-B: Software Requirements

A software requirements specification including required manpower, language selection and test support will be defined by the Rocketdyne Software Systems group. A software specification will be defined based on the Functional Requirements Specification defined in Task 12-A.

<u>Task 12-C: Hardware Requirements</u>

Based on the functional requirements specification, the Electronic Systems organization will define the hardware necessary to implement the SAFD system on a typical test stand including specialized electronic interfaces, computer hardware and support equipment. A computer system will be selected and recommended to NASA MSFC-off-the-shelf components will be selected whenever possible to minimize the costs of developing a breadboard system. It is recommended that a test stand be selected by NASA MSFC so detailed interface requirements can be defined for a breadboard SAFD system. Different implementations are possible for SAFD including additions to the current CADS II design for the SSME Block II controller effort to a totally new system utilizing a VAX class computing installation. Any specialized equipment that will need to be prototyped and developed as part of this program will be defined in this task.

6-8

Task 12-D: Work Breakdown Structure

A detailed work breakdown structure (WBS) will be developed to coincide with the efforts required to implement requirements defined in the above tasks. The WBS will include all tasks including those that relate to added test data analysis or simulation that relate to the definition and selection of elements of the SAFD system including manpower estimates and schedules. The WBS will also define all deliverables required to meet the SAFD functional objectives.

Task 12-E: Cost Estimation

A cost estimate will be developed that correlates to the Task 12 specifications efforts. The definition of the costs will include all required manpower, facility, hardware and special test equipment costs required to integrate a working breadboard of an SAFD system.

Task 13: Define Future Research Needs

During the Phase I/II preliminary design tasks, further research efforts will be defined that should be continued to further enhance the SAFD prototype and concept. A prioritized list will be defined with sample work breakdown structure and cost estimates for NASA MSFC to select. As a further enhancement to SAFD capabilities, new instrumentation involving condition monitoring sensors or specialized failure detection sensors will be defined. Efforts required to implement any new concepts in addition to those outlined in Task 12 will be discussed and sample work breakdown structures generated. The growth of the SAFD system into test beds for new health and condition monitoring areas will be discussed so preliminary planning for the enhanced capability can be defined by NASA MSFC.

Task 14: Final Report

This report will contain preliminary system, hardware and software design specifications. It will define plans for further study, certification, operation, and give cost and manpower estimates correlating directly to a detailed work breakdown structure for the overall goal of implementing a SAFD system on a NASA MSFC selected test facility. The design specification will follow a Rocketdyne approach to the system engineering process, which is designed to include criteria such as adaptability and optimum design concepts in its functions. The adaptability to different testing conditions and test facilities will be discussed in the specifications relating to adding new sensor information and its effect on hardware and software requirements.