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5.1.1 AN ANALYSIS AT MESOSPHERIC COHER_T-SCATTER POWER

_qHANCEMENTS DURING SOLAR FLARE EVENTS

ABSTRACT

J. Parker and S. A. Buwhill

Department of Electrical and Computer Engineering .....) \w/_'__/J-

University of Illinois _ _\_!Urbana, IL 61801 '

/

Solar flares produce increases in coherent-scatter power from the

mesoaphere due to the increase in free electrons produced by X-ray photo-

ionization. Thirteen such power enhancements have been observed at Urbana.

When such an enhancement occurs at an altitude containing a turbulent layer

with constant strength, we may estimate the relative enhancement of electron

density from the enhancement in power. Such estimates of enhanced electron

density are compared with estimates of the X-ray photoion/zat/on at that

altitude, deduced from geostationary satellite measurements. It is found that

possible types ion-chemical reaction scheme may be distinguished, and the non-

flare ion-pair production function may be estimated. The type of ion-chemical

scheme and the nonflare ion-production function are shown to depend on the

solar zenith angle.

INTRODUCTION

It has, of course, been known for some time that solar flares produce an

increase in ionization in the D region. This flare-time enhancement in

ionization results in an increase in coherent scattered power which has bee_

assT-,ed to account for an exceptionally full set of good mesospheric velocity

measurements during the event of April 11, 1978, 0800 CST at Urbana (MILLER et

al., 1978), and also measured directly for the event of January 5, 1981, at

1218 AST at Arecibo (ROTTGER, 1983).

However, the processes linking the solar X-ray enhancement to the co-

herent-scatter power increase involve many unknowns. Photoionization by X-rays

may be considered as the driving function of a set of ion-chemical reactions

which finally determines the electron-density profile; this profile must then

be advected by turbulence to produce the scattered power. Many details of

these processes can only be deduced indirectly.

This paper describes how models of these processes may be constructed

which account for some of the features of the power enhancements observed

during solar flares, Early work along these lines may be found in PARKER and

BOWHILL (1984).

COHER_T SCATTER DEPENDENCE ON ELECTRON DENSITY

The radar scattering cross section is proportioned to the mean-square

fluctuation of the retraetive index _. At VHF:

2 2
n = i - Ne2/¢ m_

o

where N is the electron concentration, e and m the charge and mass of the

electron, e the permitivity of free space, and _ the angular frequency of the
O

impinging wave. The right-hand term is small compared to unity, eo fluctua-

tions in _ and N are proportional. Further, if the electron concentration

increases in a scattering volume by a constant factor, the mean-square fluctua-
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tion in electron density A_

<AN2> = (N,) 2 _ N 2

due to turbulence will be

where N' is the vertical gradient _f the electron density N. Thus, the scat-

tered power P is proportional to N- within tlme-scales where the turbulence

is characterized by constant mean-squared statistics. (This assumes no time-

lag due to turbulent advection; we shall demonstrate below that this holds at

least some of the time.

Finally, when we divide the flare-time scattered power P at a given

altitude by the pre-flare power P we obtain
0

P/Po = (No + AN)2/No 2

which implies

AN/N o = _TF ° - i

D-REGION FLARE EFFECTS OBSERVED AT URBANA

Table 1 displays features of 13 solar flare events which produced enhanced

scatter, the enhancement shown for the altitude range 60-75 kin. The sizes of

the peak X-ray fluxes from two detectors on the GOES II satellite are shown for

comparison. No correlation of X-ray event size and coherent-scatter power

enhancement is evident. This is probably due to the wide variability of tur-

bulant strength and the nonflare ion-production rate from one flare event to

another. This suggests the need for a more sophisticated analysis.

MODELS RE_ATING SOLAR X-RAYS AND ELECTRON DENSITY

Given the GOES II X-ray measurements, we may calculate the X-ray ion-pair

production rate qx at a given altitude as follows. First, we must estimate

the X-ray spectrum from the two data points provided by the GOES detectors at

each time. This may be done by assuming a power law spectral form:

@ = AX B

(see for example ROWE et al., 1970) and solving for A and B based on the wave-

length response characteristics of the X-ray detectors (published in DONNELLY,
1977).

This form of the X-ray intensity @ (k) is used to calculate the desired

ion-palr production function qx according to Chapman theory. Constants

necessary for this calculation are the average air absorption cross sections

o=(l) and the ionization efficlencies for X-rays n (l)from BANKS and KOf_IERTS

(_973), and the scale height H and average air density M from the US STANDARD

ATMOSPHERE (1976).

The relationship between q (= q + o) and N is perticularly unclear
O iX

in the lower D region. If we assume over_ll charge neutrallty, an unchanged

ratio of negative ions and positive ions, and unchanged proportions of the re-

combining species, we may derive the followlng (MITRA, 1974):

q = _N 2

where the constant of proportionality_ is called the effective recombination

coezficient (call this Case A). MITRA (1974) also proposes (Case B)

q = BN
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Table i. X-ray flare events producing measurable coherent-scatter radar

power enhancements at Urbana between April 1978 and December 1983.

61.5-75 km

pk flux x 10-5w/m2 pk CS power

yr mo da cst SID Ha 0.1-0.8r4n 0.05-0.4nm dB above P o

78 04 ii 0820 3+ NA 20 3.5 7.7

80 05 21 1510 3 3B 14 3.2 29.8

80 05 28 1354 2+ 2B 12 2.0 3.5

80 11 13 1324 2+ 1N 4.2 0.7 11.2

80 11 14 1239 2+ 1B 2.4 0.4 13.8

81 01 27 0947 2 1B 4.6 1.3 6.1

81 05 05 0809 3 3B 12 3.3 2.8

81 08 03 1425 2+ 1N 7.1 1.8 10.1

81 i0 14 IIII 2+ 1B 30 11 7.4

82 03 31 1626 2+ NA 7.5 1.7 4.9

82 06 02 0953 3+ NA 10 2.9 17.4

83 08 13 1215 1 2B 5.2 0.9 3.7

83 08 21 1159 1 2B 2.2 0.3 6.8

as a possible relationship, given other conditions. Both relationships require

chemical equilibrium, which may or may not hold during a flare. If not, the

relationship is far more complicated, but a model by THOMAS et al. (1973) pre-

dicts delays in the lower D region between peak q and peak N of up to 14 min-

utes, increasin 8 with decreasing altitude (Case D).

DISTINGUISHING CHEMICAL SCHEME TYPES AND ESTIMATING NONFLARE ION-PAIR FRO-

DU CT ION

To distinguish between these three possibilities (and possibly others) at

a given altitude we may assume each possiblity in turn, compare qx at each
time with AN/NO from the coherent-scatter data, and find the best fit. To

simplify this comparison, note that Case A implies P=q, so that we may

estimate qx/qo as

qx/qo = P/Po - 1

For Case B, q and N are proportional, so that

qx/qo = _- i

If we make two plots, one for each of these estimates of qx/qo against the

same values at q from the satellite data, the result woul_ be a line of

unit slope only _or that case which is correct. If the points of the initial
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part of the flare (ascendin 8) do not lie alon 8 the same path as those of the

decay phase of the flare, we may have Case D, or possibly a time la& due to

turbulent advection.

The result of this technique is shown in _igure i, for the flare of Nov-

ember 14. 1980, end the scattered power from 70.5 kin. The plot of upper left

shows a close fit to a line, but not of unit slope. The plot of upper right

shows a fairly close fit to a line of slope 1. We may conclude q = BN, and

more: note that the intercept of this llne with the log (qx/qo) = 0 line

implies _th,_t when q_ = qo" log (qx) = 0.3. Thus we may estimateqn =
0.5 cm-_s -_. The l%wer plot shows the log scattered power anti,he estimate

of qx based on the satellite data. The coincidence of the peaks of these
curves validates the chemical equilibrium hypothesis, and demonstrates that

there is no lag due to turbulent advection.

COMBINED RESULTS FOR SEVERAL FLARES

Figure 2 shows the type of power enhancement found for each altitude for

each of seven flare e_ents, arranged in order of decreasin 8 solar zenith engle.

The symbol E represents extremely large enhencements (some as much as 30 dB)

which cannot be accounted for by this model. Als0, note that the altitudes

showing no response seem to proliferate downward with increasing solar zenith

angle. This is not what Chapman theory predicts for ionization, and so pos-

sibly indicates a variability in existence of turbulent layers. Some events,

particularly at high zenith angles, show delays (Case D), with delay increasin S

with decreasing altitude. Note, however, that a delay may be either a chemical

or turbulent mixin 8 effect.
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Figure I. Flare-time scattered power enhancement and estimated

electron production rate qx due to flare X-rays at 70.5 km
for the November 14, 1980 event.
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Figure 2. Types of response at each mesospheric altitude for each

flare: A) q = _N 2. B) q = 8N. AB?) Probably A or B, but plots

are ambiguous. D#) Delayed effect, with peak power following q

by # minutes. E) Extreme response, power increase greater than

cases A or B. CN) Coincident flare-time power response, but

unable to fit to A or B model due to comparable nonflare

fluctuations in power at that altitude. CR) Coincident response

well above nonflare base power, but unable to fit to A or B

models due to large fluctuations on the order of the one minute

sample time. --) no detectable response.

Figure 3 shows estimates of qo made by this technique. When the

interpretation was unclear between Case A and Case B, but equilibrium seems to

hold, a dashed horizontal line indicates the range of possible q_ estimates.

Note that the estimates for qo fall into two clusters, correspoUnding to small

and large zenith angles. Also, the values of qo for large zenith angle are

smaller, as expected. Also, q generally increases with altitude for a given
O

flare eZfect, also as expected. We may conclude that the estlmate of qo has

some degree of reliability, although its absolute accuracy is not estimated

hers.

DISCUSSION AND CONCLUSION

By using models for the uncertain links between the causal X-ray emissions

and the coherent-scatter power enhancements, we have gained insights into fea-

tures which are not otherwise clear. Often one model fits the data better than

others, and so we are able to choose between some features of ion-chemical

schemes. When no existing model fits the data, as with the extreme power

enhancements shown in Figure 3, it is unclear which part of the analysis should

be modified: an extreme enhancement may be due to an unknown ion-chemical

scheme, or may be due instead to some unknown condition which allows P to

increase faster than N 2. This suggests further research.
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Figure 3. Estimates of q_ made by finding intercept of log (qx) vs

log (qx/qo) plots with line log (_)_ 0 for each altitude and

flare event which shows type A (q =aN _) or type B (q =BN)

response. Horizontal dashed lines represent the span between the

type A estimate at q and type B estimate at q at altitudes
• O . O

where the cholce between type A and type B _s ambiguous. The

estimate of qo by RATNASIRI and SECHRIST (1975) is reproduced for
comparison.

Only altitudes with steady turbulent layers produce useful data, so

altitude gaps are inevitable. However, the coherent-scatter radar technique

compares favorably with earlier methods of observing changes in N during solar

flare, such as partial reflection and wave interaction. The temporal and

spatial resolution are excellent for the coherent-scatter technique, and the

relative changes in N may be measured accurately.
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