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An experiment was carried out at the Arecibo Observatory in Puerto Rico in

August 1985 to study Doppler velocities in a thunderstorm environment with a

beam pointed 2.5 ° off-vertical. We have detected two types of echoes

associated with lightnin 8. The first is associated with scattering from the

llghtnlng channel itself and has characteristics similar to those observed

previously with meteorological radars. The second appears to be due to

scattering from the turbulence organized by phase fronts of an acoustic wave

generated by lightnin 8. The observation described here isconslstent with a

wave traveling at a velocity near the speed of sound and having a vertical

phase velocity component of 40 m/s.

INTRODU CT ION

A number of investigators, including LIGDA (1950), ATLAS (1958), HOLP_S

et al. (1980) and MAZUR et al. (1984), have observed transient echoes

associated with lightning at shorter wavelengths typical of meteorological

radars (e.g., S band). These transient echoes are generally attributed to

scattering from the plasma in the lightning channel itself, as described by

DAWSON (1972). The plasma is expected to move with the surrounding air, and,

indeed, the transient echoes at S band (MAZUR st al., 1984) and our

observations at UHF have mean Doppler shifts typical of the air motions inside

a cloud and the spectral widths are in agreement with the broadening expected

due to the effects of atmospheric turbulence.

ROTTGER (1981), GAGE et al. (1978), and FUKAO et al. (1985) have already

shown that both the precipitation echoes and the "clear air" echoes due to

scattering by turbulent variations in the refractive index can be detected at

wavelengths near 6 m. The relative contributions of the two scattering

mechanisms depend on the radar wavelength, the intensity of the turbulence, and

the intensity of the precipitation, but usually it is not difficult to separate

the effects since the precipitation and air motions will be different, except

for the smallest droplets.

There have been very few observations of Doppler velocities in a

thunderstorm environment at wavelengths longer than a few tens of centimeters.

Exceptions include the experiments of LARSEN et al. (1982) at UHF and those of

ROTTGER (1981), GAGE et al. (1978), and FUKAO et 81. (1985) at VHF. In most of

the experiments, the coherent integration has been sufficiently long to exclude

the observation of effects on a time scale comparable to the scale of lightning

or acoustic waves. In August 1985, we carried out an experiment with the new

VHF radar located at the Areciho Observatory in Puerto Rico in which the raw

pulse-to-pulse data were recorded for later analysis. The observations show

what we believe is the first detection of acoustic waves generated by

lightning.

DESCRIPTION OF THE DATA

The VHF radar with a frequency of 46.8 MHz and UHF radar with a frequency

of 430 _z were operated on five separate afternoons in August 1985. We will

focus on the VHF radar data for the afternoons of August 4th and August 7th.
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The VHF transmitter operates at 50 kW peak power. The system uses the 300-m

diameter dish, of which the Yagi feed at the focus illuminates 200 m for an

effective beamwidth of less than 2 ° . The beam was pointed at 2.5 ° zenith angle

in this experiment and operated in one of two data-taking modes. The first

used a l-_sec pulse length and coherent integration online to give an effec-

tive sampling time of 92 msec. The second mode used a 2-_sec pulse length and

an interpulse period of 750 usec. The raw data were then recorded on magnetic

tape in this mode, so that the IPP and sampling interval were the same, or we

could coherently integrate off line to produce a smaller Nyquist frequency if

desired.

An electric field change meter and two tipping-bucket rain gauges were

also installed at the site and operated in conjunction with the radar

measurements. The field change meter was used to determine the time of

occurrence of lightning, as well as a qualitative estimate of the distance of

the discharge from the radar.

DOPPLER SPECTRA

Figure 1 shows an example of Doppler spectra over a range of heights

obtained with Mode I when a thunderstorm was overhead. The heights in range

gates 48 through 81 show a contribution primarily from the "clear air" scatter.

These spectra are wider than the spectra observed in a nonconvective

environment. The upper heights, e.g., gates 82 to 95, show spectra that are

broadened to such an extent that it is difficult to discern a peak. The power

profile at the right of Figure I shows that these heights are characterized by

high rather than low power levels.

The maximum unambiguous velocity using Mode I was +8.7 m/s. The

lightning-associated spectra have widths which are of t_e order of the spectral

window since the power is essentially constant across the window. A possible

explanation is that the mean Doppler velocity is much greater than the maximum

resolvable velocity. We expect that the spectral width would scale in same way

with the mean velocity and would account for these observations. Although a

large velocity would cause aliasing, the aliasing itself would not account for

the increase in the width of the spectra. We infer that lightning was present

in the beam when only same of the range gates show the broad spectra, as in

Figure 1.

An example of the spectra obtained using Mode II is shown in Figure 2.

The increased time resolution made it possible to attain much larger

unambiguous velocity determinations. We found no evidence of lightning in the

beam on the days when data were taken with Mode II. However, the electric

field change data did show evidence of more distant lightning discharges.

Figure 2 shows such spectra recorded at the same time as a more distant dis-

charge. Of particular interest are the features with velocities near +_30 m/s

in gates 19 to 23 which appear only for the time required to produce the

spectra (less than 4 sec). The change in sign of the vertical Doppler shift

between gates 20 and 21 could be attributable to vertical phase variation in

the wave or to the geometrical relation between the observing angle of the

radar and the location of the source, as we will show in the next section.

INTERPRETATION OF MEASURED VELOCITIES

The signals measured at VHF will have a component due to the scattering

from the lightning channel itself, a component due to the backscatter from

refractive index variations, and a component due to the scatter from liquid or

frozen droplets. The first does not appear to affect the observations on

August 4th, based both on the characteristics of the spectra and the electric

field change records which did not indicate any lightning nearby. It is
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Figure 1. VHF Doppler spectra integrated for nine seconds, with spectra plotted

for gates 44 through 91 and a height profile of mean velocity, total power,

and noise level for 256 gates. Positive Doppler velocity (toward the radar)

is to the right of center, each spectra is scaled to its own peak.

Note the large variance in the upper gates (above 90) as compared with the

lower ones.

unreasonable to expect that either solid or liquid precipitation will travel at

velocities close to 40 m/s since terminal velocities, even for hail, are less

than 20 m/s (PRUPPACHER and KLETT, 1980) and would be only downward directed;

further, no precipitation was recorded by the rain gauges.

Vertical motions of 40 m/s inside the cloud cannot be excluded absolutely

but appear unlikely. It would be easier to explain the observed velocities as

being due to the vertical projection of a near-horizontal acoustic phase

velocity. However, it cannot be that we are scattering from 3-m acoustic

waves, because in that case only waves propagating parallel to the radar be_,

contribute to the backscatter. Also, a wavelength of 3 m is not consistent

with the wave properties derived below. A possible explanation is that 3-m

irregularities are acting as a tracer of the motion of the acoustic front.

The observations can be interpreted in terms of the dispersion relation

for acoustic-gravity waves (YEH and LIU, 1974).

2 (1 _a2/_ 2)kh2 (I - _b2/_) + kz2 = k ° - •

The behavior will be complicated by the background temperature gradients and
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Figure 2. VHF Doppler spectra taken in mode II (see text). Note the large

Doppler shift in gates 19 through 23. The spectra are integrated for 3.8

seconds, the anomalous echoes did not appear in the previous spectra nor in

the next. The time of these spectra is coincident with a lightning

discharge as indicated by an electric field change meter.

other effects not accounted for in this simple form of the dispersion relation.

Here, k =_/c , _ = Co/2H is the acoustic cut-off frequency, and_0 .O a

is the Brunt-Vazsala frequency. The local speed of sound is c , the scale
O

height is H, and k and k are the horizontal and vertical wave number
• Z

components, respectively. The background parameters were calculated from the

San Juan radiosonde data closest to the time of the observations.

We can only look at the behavior of the wave solutions in certain limits

since we do not know the horizontal wave number. The first limit corresponds

to a horizontal wave number that is much smaller than the vertical wave number

which we calculate from the power profile to be k = 2w/2400 m. The solution

for the wave period then gives a value of T = 7.9 s z which is on the acoustic

branch of the dispersion relation. The total phase velocity is close to the

speed of sound as determined from the sounding and has a large horizontal

componen t.

If we assume that the horizontal and vertical wave numbers are comparable

in magnitude, one solution corresponds to a period of 7.3 rain which is in the

gravity regime, the other solution corresponds to a period of 5.6 s which is

also on the acoustic branch. However, the phase velocity of the gravity wave

is much less than the observed velocity, and the observation could only be
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explained if the mean air motion over the pulse volume was of the order of

30-40 m/s.

A point source at some distance laterally will produce an acoustic wave

that is propagating more or less horizontally above the vertically pointing

radar. A wave traveling at the speed of sound (%300 m/s) can produce a

vertical component of the phase velocity of _30-40 m/s if it enters the pulse

volume at a large zenith angle, say 85 ° . Also, there would be upward and down-

ward velocity components above and below the height corresponding to the height

of the source. Figure 3 shows the geometry of a single source, displaced

horizontally 6 km and downward 0.2 kin. The downward displacement accounts for

the larger upward velocities observed in the upper range gates. The

temperature profile to the right indicates an inversion at an altitude of

around ii kin. The inversion may have provided some ducting of the acoustic

wave which would explain the appearance of the anomalous echoes in only a few

ga tes.

OONCLUS ION

Experiments carried out with the 46.8-MHz Arecibo radar during August

1985, have shown that there is a component in backscattered signals produced in

connection with lightning events that are not observed at shorter wavelengths,

e.g., S band. There are many unknowns in the analysis of these new echoes, as

detailed above, but is plausible that the echoes are due to scattering from

refractive index variations associated with acoustic waves generated by
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Figure 3. Schematic representation of lightning produced acoustic wave

as measured by vertically pointing VHF Doppler radar. The distance

from the source is estimated to be 6 kilometers, horizontally, where

the angles have been enlarged for the sake of clarity. The tempera-

ture profile on the right is taken from the San Juan radiosonde.

Note the inversion that occurs at approximately 11 km msl.
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lishtnin 8. The data taken when lightning was some distance from the radar

shows a pattern of positive and nesative velo¢itles with amplitudes on the

order of 20-40 m/s. The obse_vatlons can be explained if the velocity is the

line-of-sight component of the acoustic phase velocity traced by 3-m

irregularitles and the source was some 6 fun _ay. The data taken when

lishtnin 8 is in the beam are more difficult to interpret, partly because in

that particular data-takin 8 mode, a smaller value for the maximum unambisuous

velocity resulted in aliaslng of the Doppler spectra. We cannot rule out that

acoustic waves were responsible for these echoes, as well.
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