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A simple method is described for determining the performance of a free space optical
communication link. The method can be used either in the system design (synthesis)
mode or in the performance evaluation (analysis) mode. Although restricted to photo
counting (e.g., photomultiplier tube or equivalent) based detection of pulse position
modulated signals, the method is still sufficiently general to accommodate space-based, as

well as ground-based, reception.

l. Introduction

Experience over the years with the Deep Space Network
has produced a high degree of familiarity and intuitive under-
standing of RF communications, Not only engineers but mana-
gers and scientific users as well generally appreciate that dou-
bling signal power can double the data rates and that a bit
SNR of 10 dB results in quite good, but most likely not over-
designed, performance. This intuition is facilitated by the fact
that an RF communications link is usually limited by the ther-
mal noise of the: communication receiver and the performance
of the link is determined once the received signal-to-noise
power ratio is specified.

For a deep space optical communications link, the domi-
nant performance limitation is usually not related to noise in
the receiver but due to received background noise (light). The
performance of a link depends on the individual values of the
signal and noise powers, not just on their ratio. Furthermore,
there are meaningful examples for which a high “SNR”
(defined here as a ratio of signal and noise powers or counts)
can result in poor performance whereas there are likewise

examples where a poor “SNR” can result in essentially error-
free performance. This latter point deserves explanation.

Consider a very benign optical communication channel
where the background (noise) count rate is 0.001 over some
characteristic decision time whereas the signal count rate over
that time is one count. Such an example is not too unusual for
a high data rate free-space optical channel. Despite the fact
that the “SNR” is 1000 (30 dB), the system performance is
dominated by the weak signal pulse erasure rate which is e~!
or 37%. Now consider a much noisier channel where both the
signal and background count rates are 1000, Here, the “SNR”
is 1 (or O dB). The detector’s job is fo distinguish the absence
of a signal pulse (which is characterized by a mean noise count
rate of 1000) from a signal pulse present condition where the
mean count rate (signal + noise) is 2000. However, the Poisson
statistics that govern the count processes produce RMS varia-
tions around these mean values, which equal the square roots
of those mean values. The RMS spread around the 1000-count
mean is 33 and that of the 2000-count mean is only 45, These
two distributions are clearly distinguishable with very low
probability of error.
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The above results notwithstanding, it is very desirable that
people affected by optical communication technology com-
fortably build intuition about its performance. The purpose of
this article is to provide a simple means by which that intui-
tion can be acquired. It should be emphasized that this is a
first-order design tool useful for scoping an optical link and
illustrating trends therefrom, and does not replace the more
rigorous (and accurate) analysis techniques that have been
developed elsewhere. The information provided should permit
a relatively rich set of cases to be addressed.

In the next section we will describe the procedure and
illustrate its use by analyzing an example. The example will
involve ground-based reception of a spacecraft signal from
Mars with that planet in the background, Following this, the
rules for scaling the results to other parameter values will be
presented. These scaling rules permit a rather wide set of
parameter values and conditions to be accommodated. To
illustrate this we will then use the rules to determine the
required aperture size for a space-based receiver for the above
example. It should be pointed out, however, that these results
only apply to direct detection (not heterodyne) systems which
utilize photomultiplier tube (or equivalent) based detectors.

Il. The Simplified Design and Analysis
Procedure

There are basically three steps to evaluating the perfor-
mance of an optical link:

(1) Determine the number of detected signal photons per
pulse at the detector.

(2) Determine the number of detected background or
noise generated photons per PPM slot at that same
detector.

(3) Compare the number of detected signal photons per
pulse with the number of detected noise photons per
slot.1

The operations may be done in any order and are routinely
done so depending on whether the job is to analyze a given
link or determine requirements on parameters to meet a
specific level of performance. The following example uses the
procedure in the specified (analysis mode) order.

lFrom conventional PPM modulation, the slot width, 7; (in seconds),
is related to the data rate, DR (in bits/s), and the PPM word size M
by 7, = log,M/DR*M. However, for greater noise immunity, one can
decrease the slot time by introducing dead time. Thus, 7 is a free
patameter as long as it is smaller than log,M/DR*M.
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A. Performance Analysis Example

In this example, we have assumed a 10-meter, ground-based
receiver aperture with a rather broad (5 urad) field of view to
account for atmospheric turbulence broadening. This field of
view admits about 100 times more background light into the
detector than a spaceborne 10-meter aperture (assuming both
apertures are non-diffraction limited at 10 times the diffrac-
tion limit), and it admits nearly 10% times more noise than a
spaceborne diffraction limited aperture of the same size. The
example also assumes a 400-milliwatt laser operating at a
wavelength of 0.532 um through a 10-cm transmitter telescope
from Mars with the sunlit planet in the background. We assume
a data rate of 30 kbps and 256-ary PPM modulation. All of
the values used in the example are quite conservative, and will
realistically permit variations on both sides of the parameter
values.

1. Determine number of detected signal photons/pulse. A
diffraction limited (transmit) telescope of diameter D méters
produces a useable beamwidth (diameter) 8, of approximately
1.5 A/D radians, where X is the optical wavelength in meters.?
For D =10 cm and X = 0.532 X 10~6 meters, 8, ~ 8.0 urad.
At an Earth-Mars distance, R, of 2.3 X 108 km, the footprint
diameter at the Earth is 1835 km. If light is collected by a
10-meter-diameter aperture, then the geometric signal level
reduction factor is

2
___M__. = 3¥% 107!
1.84 X 109 m

If 400 milliwatts is transmitted, then (assuming for the moment
no losses other than beam spread), the power at the receiver is
1.2 X 1011 watts. At 30 kbps and PPM word size of 256 (8
bits/pulse), the pulse rate is 3750 pulses/second. Thus, each
signal pulse has 3.2 X 10715 joules of energy. If the energy per
photon is Av = he/A = 3.7 X 1019 joules, then each pulse con-
tains 8.6 X 103 photons. Additionally, one must consider
other (non-space) losses. Let us assume the following effi-
ciencies:

Transmit optics 50%
Receive optic 50%
Atmospheric attenuation 50%
Detector quantum efficiency 30%
Total detected photon efficiency 3.75%

Then, the number of detected photons per pulse is 321.

2The factor of 1.5 takes into account the effects of Gaussian beam
fllumination of the aperture and 20% subreflector blockage. For
details, see the appendix.




2. Determine number of detected noise photons/slot. The
next task is to determine the number of background-generated
noise photons which the detector senses (on the average) per
PPM slot time. Table 1 shows the approximate count rates for
a variety of extended sources (i.e., bigger than the detector
field of view) as well as a number of point sources (those
smaller than the detector field of view). The parameters
assumed in the calculations are shown in the lower portion of
the table.

By referring to this table we see that unless the Sun, or a
very bright star (of which there are very few), is in the field of
view, the background count rate, even with daytime viewing,
will be only about 0.2 counts/slot (0.1 from Mars and 0.1
from daytime sky).

3. Compare detected signal photons per pulse with detected
noise photons per slot. The final step involves assessing the
performance of the link given the appropriate signal and noise
count rates. Figure 1 shows a curve of the number of detected
signal photons per pulse required to achieve an uncoded error
rate of 10~3 as a function of the number of detected noise
photons per slot. The curve was calculated for a PPM word
size, M, of 256, but is “first-order accurate” for word sizes as
small as M = 2 or as large as many thousands. Furthermore, the
error rate can be reduced very substantially by even rudimen-
tary coding. (For example, an 8-bit Reed-Solomon code used
at this uncoded bit error rate would produce a coded error rate
of ~10-22)) From this curve we see that for a detected noise
count rate of 0.2 counts/slot, the required number of signal
photons per pulse is approximately 11. Comparing this with
the available number of detected signal photons from above,
we see that this example link provides a margin of 14.6 dB!

‘B. Design Procedure Example

The above example was calculated based on the number of
geometrically intercepted signal photons at the receiving aper-
ture (reduced by the appropriate set of inefficiencies) and the

_ corresponding background count rates from Table 1. For dif-
ferent situations, the geometry and efficiencies still determine
the signal counts per transmitted pulse. However, the noise
count rates must be scaled to the new set of conditions. Table 2
gives the scaling rules for this operation. To see how these
rules are used, we will now calculate the aperture size required
for spaceborne reception in the above example which will
produce approximately a 3-dB link margin.

We note that moving the receiver outside the Earth’s atmo-
sphere will reduce the background count rate by a factor of
two due to deletion of the daylit sky. However (see Table 2),
the count rate from Mars will double due to the loss of the

Earth’s atmospheric attenuation. Thus, a 10-meter aperture
in space will have the same background count rate as one on
the ground (in this particular example and assuming the same
detector fields of view). Recall that in the previous example
the link was more than 10 dB overdesigned and the detector
field of view (5 urad) was limited by atmospheric seeing. Let
us assume that for spaceborne reception the field of view is
reduced to 2 urad (which is still substantially larger, i.e.,
worse, than diffraction limit). Note from Table 2 that reduc-
ing the field of view to 40% of its original value reduces the
background noise effects by a factor of 0.16, and reducing
the aperture diameter (anticipated due to the overdesign of
the previous example) further reduces noise quadratically.
However, from Fig. 1 we see that reducing the background
count by several orders of magnitude still leaves the required
count rate relatively unchanged at around 8 counts per pulse.
Thus, we can use this count rate to determine the required
aperture size.

Recall that atmospheric attenuation affects both signal as
well as background. Thus, the 321 counts/pulse of the pre-
vious example, which corresponds to 642 counts/pulse outside
the atmosphere, can be reduced to 16 (3-dB margin over the 8)
by reduction of the aperture. This corresponds to a receiver
aperture diameter of 1.6 meters. Using this diameter to further
refine the background count rate estimates we have that

N, = (02ats/slot) (2/5)* (1 6/10)* = 8 X 107 cts/slot
I, s e e’ gttt e

Mars count rate . FOV Aperture
at 10-m and reduction reduction
5-urad FOV

which, from Fig. 1, implies that only 7 detected photons per
pulse are actually required. Note also from Fig. 1 that the
detector field of view could be increased substantially (and
thereby greatly reducing the cost of the receiver aperture)
without requiring more than 8 detected photons per pulse
(16 with a 3-dB margin).

lll. Concluding Remarks

We have shown a simplified procedure for analyzing or
designing a direct detection, photon counting optical link with
background noise. The procedure consists of a simple geometric
calculation of the received signal pulse intensity, a table look-
up method for background noise, and a single curve against
which to compare the two. Additionally, scaling rules for cal-
culating other situations were given and their use illustrated
through an example. This method, will aid those who prefer
not to dig more deeply into the theory of optical communica-
tions to easily build an intuitive understanding of the field.
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Table 1. Background noise counts in ground-based optical

communications

Extended sources

Number of noise

counts/slot

Sun 103
Mercury 0.8
Venus 3.0
Earth (typical) 0.6
Mars 0.1
Jupiter 0.03
Saturn 0.01
Uranus 0.003
Neptune 0.001
Moon 0.2
Clear sky:

Day 0.1

Moonlit night 10-7

Moonless night 10-8
Background noise outside the atmosphere 10-8

Point Sources

Number of noise

counts/slot
Zero magnitude star 6
6th magnitude star 0.02
Pluto 3% 1073

Parameter values assumed for the calculations:

Wavelength: 0.5 um

Slot time: 10 ns

. Receiver diameter: 10 m
Detector field of view: 5 urad

. Receiver optics efficiency: 0.5

. Detector quantum efficiency: 0.3
Optical filter bandwidth: 10 A

. Atmospheric transmission: 0.5

OO_QO\UI-I-\WN)—A

Table 2. Scaling rules for Table 1

The number of noise counts varies according to the following rules:

1. Linearly with the optical filter bandwidth, slot time, detector quan-
tum efficiency, atmospheric transmission, and receiver optics
efficiency.

2. Quadratically with the receiver diameter,

3. Quadratically with the detector field of view (only for noise gen-
erated by extended background sources). Note, however, that for
space-based reception, and assuming constant surface figure require-
ments, the field of view scales inversely with receiver diameter,

4, According to Blackbody radiation law (illumination by Sun at
5900 K) with the wavelength, Typically, noise counts in the 0.8~
1-um region will be 2 to 3 times smaller than in 0.5 um.

Notes:

1. Planets appear as extended sources only for fields of view smaller
than their own angular extent, Thus, the field of view scaling should
be checked for values above 10 urad and below 2 urad.

2. For space-based reception extraterrestrial background sources (as

well as the desired signal source) should be increased by a factor of
two.

3, Noise contributions from planets vary substantially with wavelength,
phase angle, and other factors (e.g., contributions from Saturn’s
rings). Values used are believed to represent the worst case situation,
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Fig. 1. Required signal pulse intensity at detector vs detected

background count rate




Appendix

Equivalent “Uniform Cone’’ Beamwidth

In the first-order analyses of communications links, it is
sometimes desirable to calculate the signal power density at
the receiver by means of a “cone of uniform intensity” approxi-
mation for the transmitted beam. To use this approach, how-
ever, it is necessary to choose the proper beamwidth for a
given transmitter aperture size. The analysis below indicates
that the beam diameter should be assumed to be 1.5 A/D
(radians). Results obtained using this approach should be
accurate to within 1 dB in most cases.

Consider an antenna/telescope which transmits power over
a uniform cone of half-angle 8. The on-axis gain of such an
antenna would be

4mL?
spot area at distance L

g:

(A-1)

Consider now an “ideal” circular antenna of diameter D.
This antenna would have an on-axis gain of

_ 4n(nD?/4)
g T ——————
XZ

72 D?
)\2

(A-2)

Hence, an ideal transmitting antenna (with no pointing
losses) can be modeled exactly via the “uniform cone” method

by choosing the beam half-angle to be

A A

0 = D 0.6373 (A-3)

so that the on-axis gains given by Egs. (A-1) and (A-2) are
equal.

Now note that a real antenna of diamter D has a gain lower
than that given by Eq. (A-2), due to several effects:

(1) Transmission/reflection losses.
(2) Pointing losses.

(3) Beam truncation and aperture obscuration losses.

Losses due to (1) are usually handled explicitly in calculating
the received signal. Losses due to (2) are usually assumed to be
small, for example, less than 1 dB. Losses due to (3) can be
handled easily within the “uniform cone” method by using an
effective aperture size in Eq. (A-3) rather than the actual diam-
eter. For realistic telescopes with Gaussian beams,

Factor
Truncation loss 0.81 (0.9 dB)
Obscuration loss 085  (0.7dB)
Total 0.69 (1.6 dB)

Hence, one typically has D & =4/0.69 D =083 D
Equation (A-3) becomes

0.637 A

Deff

(==~
1t

_ A
= 0.637 083D

A
0.77D

u

Therefore, when using the “uniform cone” method, the
diametrical beamwidth should be 2 X 0.77 A/D ~1.5 A/D.

As a final note, it is important that the telescope be pointed
accurately compared to the width of the central far-field lobe.
This width is typically about 2.4 A/D (diameter), so the
requirement is

pointing error << 2.4 MD

For more information see Ref, 1.
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Maximum Likelihood Estimation of Signal-to-Noise Ratio
and Combiner Weight

S. Kalson and S. J. Dolinar
Communications Systems Research Section

An algorithm for estimating signal-to-noise ratio and combiner weight parameters for
a discrete time series is presented. The algovithm is based upon the joint maximum likeli-
hood estimate of the signal and noise power. The discrete-time series are the sufficient
statistics obtained after matched filtering of a biphase modulated signal in additive white

gaussian noise, before maximum likelihood decoding is performed,

l. Introduction and Problem Model

This article investigates maximum likelihood estimation of
signal-to-noise ratio and combiner weight parameters for a dis-
crete time series. The discrete time series are the sufficient
statistics obtained after matched filtering of a biphase modu-
lated signal (Ref. 1). In order to show the underlying assump-
tions and limitations of the estimation problem, we first
examine the communication system that gives rise to the
discrete time series.

We take as our model that given in Fig. 1. The channel
encoder maps the binary digital source encoder output {7, }
into the binary channel symbols {Ck}, where the channel

symbols are produced with rate 1/7. The modulation is
biphase. That is, the modulator produces the baseband signal

s(1) = D A4,q,(1) (1)
k

where the {4, } are chosen according to

32

— IES , Ck = ‘GO” |
4, = 2
+ V.E‘_> C - “1”
s k
Here, E_ is the channel symbol energy, and the {qk(t)} are
orthonormal basis functions. We assume that the {g, (¢)} are

time-displaced replicas of a single function -of duration T,
namely,

q. (1) = q(t-(k-1)T) (3)
where
q(t) = 0, t<0o0rt>T 4
T

f q(e) dt = 1 )
0

The baseband signal s(z) is transmitted over an additive
white gaussian noise channel with one-sided noise spectral




