ł

¥

SILICON SHEET N85-32441 SILICON SHEET SURFACE STUDIES

UNIVERSITY OF ILLINOIS AT CHICAGO

S. Danyluk

Relative Magnitudes of Residual Stresses in Web and Mobil Silicon Sheet

TECHNOLOGY	REPORT DATE October 2, 1984		
APPROACH Residual stresses in sheet silicon by interfero- metry. Simulation of abrasion of silicon by diamond by scratching and indentation tests.	STATUS Developed an interferometry technique for measuring residual stresses in short, thin silicon sheet. Measured the residual stresses in WEB and Mobil sheet. Correlated experimental wear rate with a wear model.		
	Determined the residual stresses due to scratching. Showed that dislocations are associated with		
GOALS Develop non-destructive residual stress measure- ment technique.	scratching and indentations performed at room temperature.		
Determine wear mechanism in silicon.			

 $\overline{\phi}$

di la

SILICON SHEET

ORIGINAL PAGE IS

SEM MICROGRAPH OF (111) P-TYPE SILICON INDENTED UNDER A LOAD OF 0.49N IN 10³ M/L NaI; ANNEALED AT 1373 K-2HRS AND ETCHED IN DILUTE SIRTL SOLUTION.

SILICON SHEET

- *

Part IN A MARKEN CALL

12

- `` - ``

÷.

. *

-

.

· > - (

,

;

,

and a factor of the state of th

SILICON SHEET

SILICON SHEET

.

2

.

Ţ

i.

(4)

「「「「「」」」

K

SILICON SHEET

ORIGINAL PAGE 'IS OF POOR QUALITY

	Sample No.	Magnitude of Maximum Residual Stress (MPa)	Growth Speed (cm/mm)
WEB	} J515-2.3a	2.5	
	J460-2.5a	0.4	
Mobil	47R1-1	9.0	2.00
	-2	5.0	2.00
	-3	7.3	1.75
	L -4	6.5	2.25

Ŷ,

Problems and Concerns

- 1. Do the residual stress measurements correlate with strain gauge measurements or dislocation distributions?
- 2. Is the fluid chemistry changed as a result of microcrack or dislocation generation?
- 3. Does the abrasion mechanism change when abrasion speeds are high? What is the contact temperature.