EXCIMER LASER ANNEALING FOR FABRICATION OF LOW-COST SOLAR CELLS

SPIRE CORP.

A.C. Greenwald

Program Goal

TO DETERMINE IF PULSED EXCIMER LASER ANNEALING (PELA) IS COST EFFECTIVE COMPARED TO BASELINE PROCESS.

•		10.10	000	000
	ASEL	INE	FRO	UESS
	-		-	

CLEAN DRY

C mineting

DIFFUSE JUNCTION

ALUMINUM BSF

CLEAN

PRIN'I Ag BACK

FRINT Ag FRONT

LASER CUT

TEST AND SORT

LASER PROCESS

CLEAN

DRY

ION IMPLANT LASER ANNEAL

PRINT AC BACK

PRINT Ag FRONT

LASER CUT

TEST AND SORT

in a

447

R. C. S. M. S. L. S. W. C.

1.1

, 1

Objectives

- BUILD AN EXCIMER LASER PULSED
 ANNEAL APPARATUS
- DEVELOP ANNEAL PROCESSING FOR HIGH EFFICIENCY CELLS
- FABRICATE 300 SOLAR CELLS
- PERFORM ECONOMIC ANALYSIS

Fluence Measured Across Beam Width (at Lens)

Fluence Measured Across Beam Length (at Lens)

+

. F

<u>ہ</u>۔

1

¥

•

. 4(r ju) 4)

t

....

Scanning Pattern for Annealing a 100 cm² Wafer (Total Transit Time at 10 cm/s Is 5.5 Seconds)

449

A PARAMENTER

denia dalah

۶,

: ; ;

1

The second

;

Į.

	FRONT (TEXTURED)	FRONT (POLISHED)	BACK (EITHER)
ION	P*	P+	8+
ENERGY	10 keV	10 keV	25 keV
DOSE	4.3x 10 ¹⁵ cm ⁻²	2.5x 10 ¹⁵ cm ⁻²	5x 10 ¹⁵ cm ⁻²

Implantation Parameters

450

ORIGINAL PAGE 15 OF POUR QUALITY

PROCESS DEVELOPMENT

Pulsed Excimer Laser Annealing Polished Surfaces

FURNACE ANNEAL

PELA

C. LERENCE CONTRACT

Sheet Resistance Uniformity of PELA Sample 4520-1b

• •

PELA Junction Depth Profile, Sample 4520-16

and failed and the second second

a the set of the set of the

1.4.2.

, e, **e**, ,

PROCESS DEVELOPMENT

LOT	η (%)	FLUENCE (J/CM ²)	NO. OF PULSES
l	8.9	1.2	1-2
	8.4	1.8	1
λ=248 nm	8.9	1.9	2-3
	9.1	2.0	1-2
	9.1	FURNACE CO	NTROL
	7.3	0.8	1
11	8.1	1.0	4
	9.7	1.4	1
λ=308 nm	10.5	1.8	1
	10.2	1.8	2-3
	7.5	FURNACE CO	NTROL (?)

Efficiency vs Laser Fluence: Polished Wafers, No AR Coating

6.

).

-

ORIGINAL PAGE 'IS OF POOR QUALITY

and the share

Melting of Texture-Etched Surfaces

2 PULSES

5 µm

ALVE!

η LOT (%)	FLUENC	E NO. OF	-
		PULSE	S
	<u> </u>		
I 10.8	3 1.2	1-2	
10.	5 1.8	1	
λ = 248 nm 8.1	2 1.8	2	
9.	2 2.0	1-2	
12.	9 FURNACE	CONTROL	

Efficiency vs Laser Fluence: Texture-Etched Wafers, No AR Coating

.

	9.1	0.8 1
11	8.7	0.8 2
	9.1	0.8 4
λ=308 nm	11.8	1.0 4
	12.4	1.4 2
	8.8	1.8 2
	8.1	FURNACE CONTROL (?)

Best Cell to Date

- IMPLANT: ³¹P⁺ 2.5 x 10¹⁵ ions/cm² 10 keV
- ANNEAL: XeCI LASER, 1.8 J/cm² 1 pulse minimum overlap

 $V_{oc} = J78 \text{ mV}$ $J_{sc} = 23.0 \text{ mA/cm}^2$ FF = 78.6% EFF = 10.5%

WITH AN AR COATING, EFFICIENCY WOULD BE ABOUT 15%

. 20.7

Sec.

.....

x # ...

2

-

457

T 477

1. 9. 3 M. C. S. S.

.

مَلا سوتيا ر

.

Can the Laser Deliver Enough Power to Rapidly Anneal a Large Wafer?

THE 50 WATT LASER ANNEALED A 4" ROUND POLISHED WAFER, A 4" ROUND TEXTURED WAFER, AND A 10 cm x 10 cm SILSO WAFER, EACH IN UNDER 10 SEC.

Laser Parameters

GAS	Kr, F2, and Ne
WAVELENGTH	248 nm
POWER	50 watts
REP. RATE	160 Hz
PULSE WIDTH	20 nanoseconds

Anneal Parameters

FLUENCE	~1.4 J/cm ² at sample
SPOT SIZE	~0.7 mm x 25 mm
TABLE SPEED	10 cm/sec.

Summary of Process Variables

:0

- LASER POWER OF 2J/cm² IS REQUIRED FO WAFERS, LECS FOR TEXTURED WAFERS.
- WAVELENGTH (KrF # , XeCI) IS NOT IMPORTA
- BEAM UNIFORMITY MUST BE BETTER THAN 5% BUT NOT NEED NOT BE BETTER THAN 2%.
- DUST IS NOT TOO IMPORTANT.
- UNANNEALED AREAS REDUCE Jsc BUT DO NOT SHUNT JUNCTION.
- OVERLAP IS IMPORTANT FOR TEXTURED WAFERS.

State State State

V

¢

ς,

1 1

٩,

1

2.4

-

1

ŗ

ę

4

.

Program Schedule

Summary

- AN EXCIMER LASER ANNEALER HAS BEEN BUILT AND TESTED.
- SOLAR CELL EFFICIENCY, WITHOUT AR, OF UP TO 10.5% HAS BEEN ACHIEVED (~15% WITH AR).
- REQUIRED THRCUGHPUT FOR ECONOMICAL OPERATION APPEARS FEASIBLE AT THIS TIME.

.