N85-32426

SIMULTANEOUS JUNCTION FORMATION

WESTINGHOUSE ELECTRIC CORP.

R.B. Campbell

Contract Information

OBJECTIVE:

INVESTIGATE HIGH-RISK; HIGH-PAYOFF IMPROVEMENTS

TO WESTINGHOUSE BASELINE PROCESS SEQUENCE

TIME PERIOD: MARCH, 1984 - OCTOBER, 1984

Contract Tasks

- EVALUATE FEASIBILITY OF SIMULTANEOUSLY FORMING BACK & FRONT
 JUNCTIONS OF SOLAR CELLS USING LIQUID DOPANTS ON DENDRITIC
 WEB SILICON
- COMPARE SIMULTANEOUS DIFFUSION TO SEQUENTIAL DIFFUSION
- TEST OF BELT FURNACE FOR DIFFUSION PROCESS

WHEN SHOWN FEASIBLE:

- DEVELOP PROCESS CONTROL PARAMETERS AND SENSITIVITIES
- PERFORM COST ANALYSES

Potential Benefits

- FEWER PROCESSING STEPS
- LESS OPPORTUNITY FOR CONTAMINATION AND BREAKAGE DURING PROCESSING DUE TO HANDLING
- LESS COSTLY PROCESS

HOWEVER

 PROCESS WILL REQUIRE CAREFUL SELECTION OF DOPANTS, DIFFUSION MASKS, AND WEB CONDUCTIVITY TYPE

PRECEDING PAGE BLANK NOT FILMED

The state of the s

Approaches

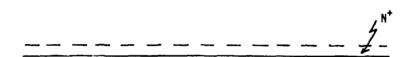
DIFFUSION

N-TYPE DENDRITIC WEB

- PHOSPHORUS OF ARSENIC FOR BACK N⁺N JUNCTION
- BORON OR ALUMINUM FOR FRONT PTN JUNCTION

P-TYPE DENDRITIC WEB 'LOW RESISTIVITY)

- PHOSPHORUS FOR FRONT N⁺P JUNCTION
- BORON OR ALUMINUM FOR BACK P*P JUNCTION
- BACK SURFACE DAMAGE
- BASELINE PROCESS EXCEPT FOR DIFFUSION
- TEST OF VARIOUS VENDORS' DOPANTS AND DIFFUSION MASKS
- EXCIMER LASER DRIVE IN
 - PHOSPHORUS, BORON, AND ALUMINUM DOPANTS


Results: n-Type Web

- LIQUID SOURCE SEQUENTIAL DIFFUSION OF B (FRONT) AND P (BACK)
 PRODUCED CELLS WITH TAV >13%
- LIQUID SOURCE SIMULTANEOUS DIFFUSION USING B & P PRODUCED JUNCTION
 DEPTHS OF 0.25 μm (P⁺N) AND 0.6 μm (N⁺N)
- SUITABLE JUNCTIONS ALSO OBTAINED USING BORON (FRONT) AND ARSENIC (BACK)
- IN ANY EXPERIMENT WHERE TWO DOPANT SPECIES WERE PRESENT, CELL
 PROPERTIES WERE DEGRADED DUE TO CROSS DOPING OF THE FRONT JUNCTION
- CELL EFFICIENCIES VARIED FROM <1% TO 6-7% WITH A FEW CELLS >10%
- CROSS DOPING ALSO OCCURRED WHEN SIO₂ DIFFUSION MASKS (LIQUID OR THERMAL) WERE USED
- EFFECT ALSO OCCURRED AT LOWER DIFFUSION TEMPERATURES
- PROBLEM DUE TO HIGH MOBILITY OF P AT DIFFUSION TEMPERATURES
 REQUIRED
- EFFECT STUDIED USING DARK IV AND CONDUCTIVITY MEASUREMENTS

Shorting Paths in Front p + n Junction Due to Contamination With Back-Surface Dopant

N BASE

Results: p-Type Web

- SHALLOW B-DOPED BSF DUE TO LOW TEMPERATURE DIFFUSION (REQUIRED FOR
 FRONT P-DOPED JUNCTION); HIGH RESISTIVE CONTACT PROBABLY SCHOTTKY
 BARRIER. Fmax = 7%
- AL BSF ALSO GAVE HIGH RESISTANCE CONTACT WITH η_{max} = 8%
- CELLS OF >12% EFFICIENCY FABRICATED USING PHOSPHORUS FRONT DOPING ONLY WITH THE BACK SURFACE DAMAGED (0.5 acm - 1.5 acm)
- NO NOTICEABLE CROSS DOPING IN CELLS

Belt Furnace Test

- TEST CARRIED OUT AT RADIANT TECHNOLOGY CORPORATION
- PROPER TEMPERATURE AND TEMPERATURE GRADIENTS OBTAINED
- SUITABLE JUNCTION DEPTHS OBTAINED
- CELLS SHOWED EFFECT OF CROSS-DOPING

ORIGINAL PAGE ST

Junction Formation Using an Excimer Laser

APPROACH

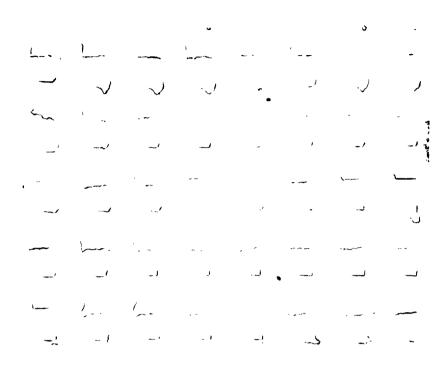
HEAT SURFACES OF WEB WITH LASER TO DRIVE IN LIQUID DOPANTS

CONDITIONS

WAVELENGTH - 3080 nM

POWER INPUT TO WEB 1 + 2 J/cm²

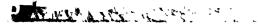
EXPERIMENT


DRIVE IN B, P, AND AL INTO BOTH N-TYPE AND P-TYPE WEB

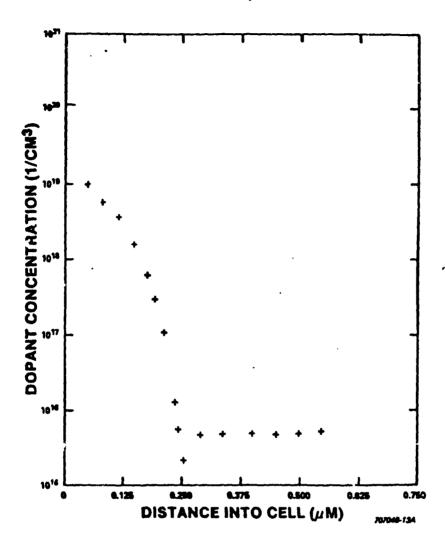
INITIAL STUDY CARRIED OUT AT MATHEMATICAL SCIENCES NORTHWEST, INC.

Sample 17B, p-Base Web, Phosphorus Emitter 1.15 J/cm²

Sample 17B, p-Base Web, Boron BSF 1.15 J/cm²

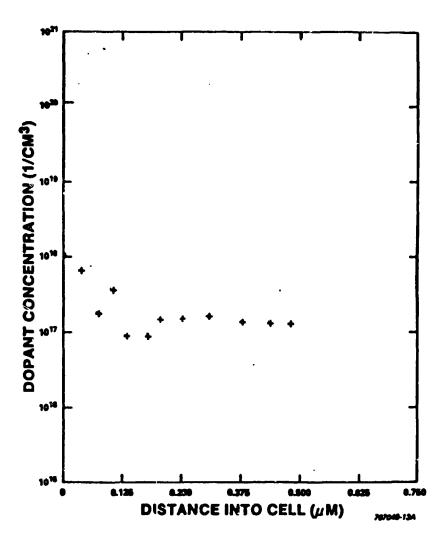


Results: Excimer Laser


- JUNCTION CHARACTERISTICS $N^{+}N \text{ OR } N^{+}P \text{ (PHOS. DOPED)} \quad \text{Co} = 10^{19}/\text{cm}^2 \quad \text{X}_{j} = 0.2 0.25 \ \text{\mu m}$ $P^{+}N \text{ OR } P^{+}P \text{ (B DOPED)} \quad \text{ESSENTIALLY NO JUNCTION}$ $P^{+}P \text{ (AL DOPED)} \quad \text{SHALLOW JUNCTION}$
- P TYPE WEB, $n_{\text{max}} = 9\%$ DUF TO HIGH RESISTANCE BACK CONTACT (BOTH B & AL BSF)

 N TYPE WEB, $n_{\text{max}} < 1\%$ POOR B DOPED EMITTER
- LOW DIFFUSION CONSTANT OF BORON WILL REQUIRE HIGHER POWER INPUT
- NO CROSS CONTAMINATION NOTED
- CRYSTAL PAIRS PROCESSED BASELINE SEQUENCE ♠= 13.7%

DE POOR QUALITY



n+p Front Junction by Laser Drive-in

Conclusions

- <u>SEQUENTIAL DIFFUSION OF N-TYPE WEB</u> USING LIQUID R & P SOURCES,
 CELLS WITH AVERAGE EFFICIENCIES >13% PRODUCED
- SIMULTANEOUS DIFFUSION N TYPE WEB WITH PRESENT DOPANTS AND
 DIFFUSION MASKS, A SUITABLE PROCESS HAS NOT BEEN DEFINED. PROBLEM
 DUE TO HIGH MOBILITY OF PHOSPHORUS AT TEMPERATURES REQUIRED FOR
 BORON DIFFUSION WHICH CAUSES FRONT JUNCTION CONTAMINATION.
- SIMULTANEOUS DIFFUSION P TYPE WEB AL BSF WITH PHOSPHORUS DOPED EMITTER GAVE BEST RESULTS. FURTHER STUDY REQUIRED TO OBTAIN LOW RESISTANCE BACK CONTACT AND OPERATIONAL BSF.
- EXCIMER LASER DRIVE IN

BURELLE BARRET AL MERCHANIC TO THE PARTY OF THE PARTY OF

- EXCELLENT PHOSPHORUS DOPED JUNCTIONS FABRICATED BOTH N°P AND N°N
- FURTHER STUDY REQUIRED TO PRODUCE BORON DOPED LAYERS FOR P*N AND P*P JUNCTIONS
- NO CROSS-CONTAMINATION PROBLEM OBSERVED

