N85-32421

COMPREHENSIVE SILICON SOLAR-CELL COMPUTER MODELING

RESEARCH TRIANGLE INSTITUTE

M.F. Lamorte

Synupsis of Significant Progress

- Model and analysis of the net charge distribution in quasineutral regions (investigation continuing in collaboration with Professor F A. Lindholm, University of Florida)
- Experimentally determined temperature behavior of Spire Corp. n+pp+ solar cells where n+-emitter is formed t. / ion implantation of ⁷⁵As or ³¹P (Acknowledgments: M. B. Spitzer, Spire Corp.; and Ward J. Collis, North Carolina A&T State University, Greensboro, N.C.)
- 3. Initial validation results of computer sinulation program using Spire Corp. n+pp+ cells.

Model and analysis of the net charge distribution in quasineutral regions: a model and a corresponding analysis has been developed that describes the net charge distribution which gives rise to built-in electric fields. Conclusions derived from analysis are:

- a. only the redistribution of majority carriers, from their charge neutrality distribution, may affect the establishment of high-intensity built-in electric fields
- b. charge neutrality exits in quasineutral regions only for position-independent and exponential doping concentration profiles
- c. all other doping profiles produce a net charge concentration distribution
- d. new mass action law is developed that applies to quasineutral regions in which charge neutrality is not present.

PRECEDING PAGE LLANK NOT FILMED

الم توجه المراجع

and the second sec

Application to n+-region:

Electron concentration distribution:

$$n_n(x) = p_n(x) + N_D(x) - N_A(x) - \Delta N_n(x)$$

Net positive charge concentration:

$$\Delta n_n = \frac{E}{q} \frac{dE_n}{dx}$$

Mass action law:

$$p_{n} = \frac{N_{D} - N_{A} - \Delta n_{n}}{2} \left[\sqrt{1 + \left(\frac{2n_{ie}}{N_{D} - N_{A} - \Delta n_{n}}\right)^{2}} - 1 \right]$$

4

ý

i.

for charge neutrality $\Delta n_n = 0$, and $p_n = \frac{n_{ie}^2}{N_D - N_A}$

Substitute p_n into n_n:

$$n_{n} = \frac{N_{D} - N_{A} - \Delta n_{n}}{2} \left[\sqrt{1 + \left(\frac{2n_{ie}}{N_{D} - N_{A} - \Delta n_{n}}\right)^{2}} + 1 \right]$$

for charge neutrality $\Delta n_n = 0$, and $n_n = N_D - N_A + p_n$

Application to n+-region with Gaussian Donor Distribution:

Built-in electric field: $E_n = \zeta \frac{kT}{q} \frac{x}{2Dt}$

$$\zeta = \frac{1}{1 - \frac{N_A - \Delta n_n}{N_D}}$$

Far removed from the depletion region edge: 5 1

$$E_n = \frac{kT}{q} \frac{x}{2Dt}$$

 $\frac{dE_n}{dx} = \frac{kT}{q} \frac{1}{2Dt} = position independent$

 $\Delta n_n - position independent (see Figure 1).$

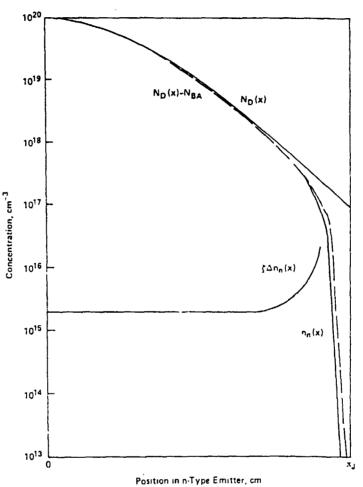


Figure 1. Representation of the Charge Distribution in the Quasi-Neutral n-Type Emitter Region of a Solar Cell that Establishes a Built-In Electric Field Attributed to a Gaussian Donor Concentration Profile.

1

-

The second s

-

Experimental Data Obtained from n+pp	+
Spire Corp. Solar Cells at 28°C	

Cell # 4408-	lon (As/P)	Dose (lons/cm ²)	LD (µm)	QE (@ 350 μm)	VOL (mV)	JSC (mA/cm ²)	FF (%)	EFF (%)
18	Р	1 × 10 ¹⁴	48	.18	541	20.1	77.1	8.39
4C	Р	2×10 ¹⁴	46	.31	577	20.7	77.9	9.28
6F	P	4 × 10 ¹⁴	46	.44	603	20.5	79.4	9.81
8C	P	8 x 10 ¹⁴	56	.43	608	21.0	80.1	10.2
10F	P	1 × 10 ¹⁵	78	.42	610	21.7	81.0	10.7
12C	Р	2.5×10^{15}	94	.37	610	22.4	80.3	11.0
14C	As	1 x 10 ¹⁴	37	.31	559	20.1	71.3	8.03
16B	As	2 × 10 ¹⁴	41	.42	590	20.6	77.0	9.37
17F	As	4×10^{14}	3/	.44	603	20.6	77.5	9.61
20C	As	8 x 10 ¹⁴	38	.47	605	20.6	79.5	9.91
22F	As	1 × 10 ¹⁵	40	.46	603	20.8	80.7	10.1
24C	As	2.5×10^{15}	59	.44	595	22.8	74.1	10.1

Notes: cell area = 4 cm². T = 28°C. Insolation was AMI, 100 mW/cm². No AR coating.

i

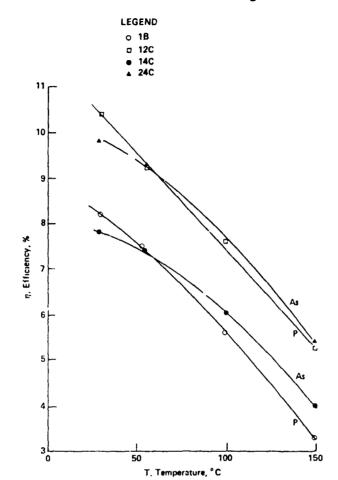
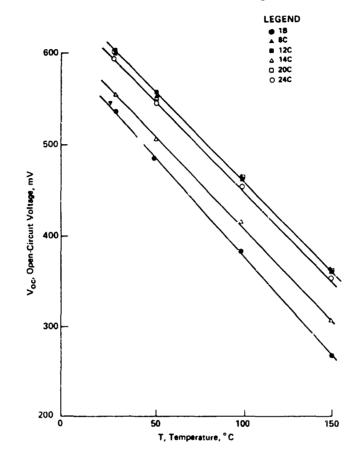


Figure 2. Experimentally Determined Behavior of Efficiency versus Temperature Obtained from n⁺pp⁺ Spire Corp. Solar Cells Which Do Not Have AR Coatings.

5


ţ.

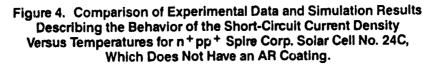
المستعجبة بتجاريه

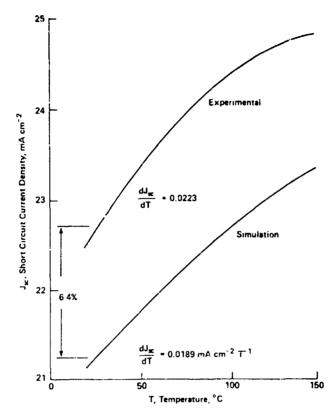
4

1

7

Figure 3. Experimentally Determined Behavior of Open-Circuit Voltage versus Temperature Obtained from n⁺pp⁺ Spire Corp. Solar Cells Which Do Not Have AR Coatings.


· *** .


۰. ۲

the states in

NY TRAINE

.

Calculated Normalized Temperature Coefficients of Efficiency, Open-Circuit Voltage, and Short-Circuit Current Density Obtained from n⁺pp⁺ Spire Corp. Solar Cell Experimental Data Which Do Not Have AR Coatings

	Dos	$a = 1 \times 10^{14}$	cm -2	Dose = $2.5 \times 10^{15} \text{ cm}^{-7}$			
Figure of Merit*	³¹ P(1B)	⁷⁵ As(14C)	Percent Change	³¹ P(12C)	75 A8(24C)	Percent Change	
$\frac{1}{\eta_0} \frac{\eta(150) - \eta_0}{\Delta T}$	-4.9 × 10 ⁻³	- 4.0 × 10 ⁻³	+ 22 5%	-4.1×10^{-3}	-3.71×10^{-3}	+ 10.8%	
$\frac{1}{(V_{cc})_{o}} \frac{V_{cc}(150) - (V_{cc})_{o}}{\Delta T}$	-4.1 × 10 ⁻³	- 3.7 × 10 ⁻³	+ 10.8%	-3.4×10^{-3}	-3.4×10^{-3}	0	
$\frac{i}{(J_{sc})_{o}} \frac{J_{sc}(150) - (J_{sc})_{o}}{\Delta T}$	0.9 × 10 ⁻³	1.1 × 10 ⁻³	- 18.2%	+ 0 63 × 10 ⁻³	0 7F × 10 ⁻³	- 17.1%	
η _ο (Spire Corp)	8.39	8.03	4.5%	11 0	10.1	5.9%	
η ₀ (NC A&T)	8.2	7.8	5.1%	10.4	98	6.196	

*No AR costing

4

ł

۰,

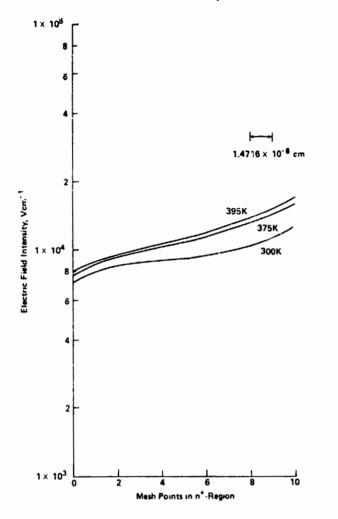
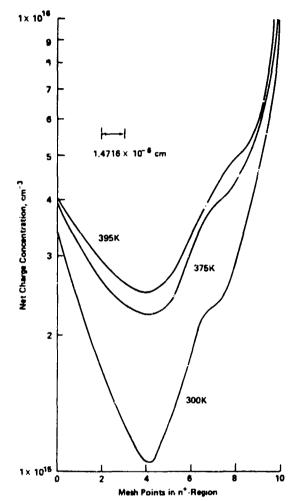
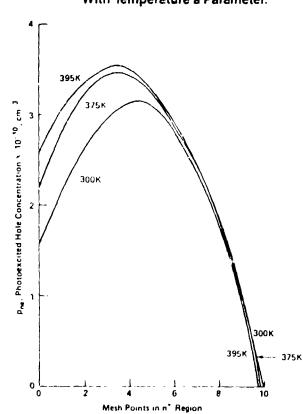


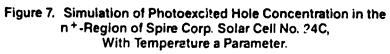
Figure 5. Simulation of Electric Field Distribution in n⁺ of Spire Corp. Solar Cell No. 24C With Temperature a Parameter.

A State A Stat

A REAL AND A CAL

1


Figure 6. Net Charge Distribution in the n⁺-Region of Spire Corp. Solar Cell No. 24C With Temperature a Parameter. 4

í

ļ

ž

ц i

• --- -

1. 1

.

2

F

ς.

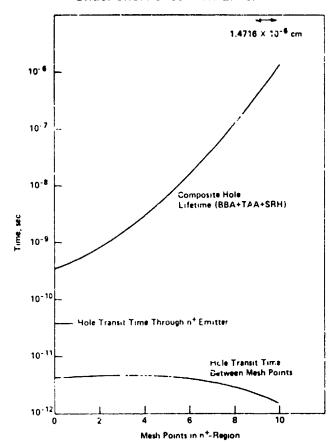
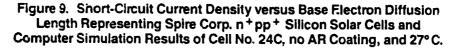
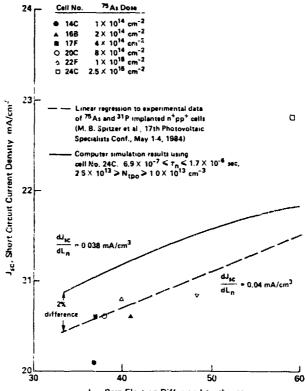



Figure 8. Lifetime and Transit Time Simulations of Holes in the n+-Region of a n+pp+ Spire Corp. Solar Cell, No. 24C, Under Short-Circuit and 27°C.

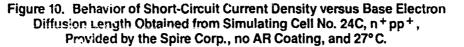
te is

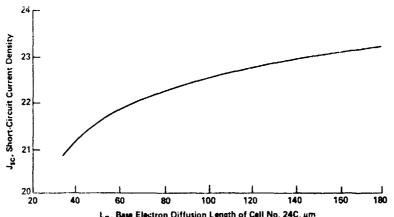
ş

3


4

يە:


ŝ 17 - 12 F


> į

162 - 20 M 1 1 1 1

Ln, Base Electron Diffusion Length, µm

