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ABSTRACT

This paper describes an on-going simple laboratory experiment, referred to
as the Beam Control Experiment (BCE), which has the essential features of a
large ficxible structure. The experiment is used to develop and evaluate iden-
tification and control algorithms which look promising in the active control of
high performance large space structures. Some results on the maximum likeli-
hood identification of the parameters of the beam-actuator-sensor assembly from
experimental data is presented in the paper.

I. INTRODUCTION

One of the major problems in the design of control systems which operate
in the presence of a flexible structure is obtaining accurate information about
the plant dynamics. 1In particular, knowledge of the frequencies, damping ratios
and mode shapes ¢ the flexible modes is critical to the successful design of
a high performance system. Syster identification is an iterative process, the
success of which depends upon the choice of algorithm and system model, the
choice of inputs to excite the system, and the quality of output data. A cere-
ful integration of these items is especially critical in the case of large
flexile structures.

In this paper we describe the development and performa.ce testing of a
simple laborat>ry model of a jitter control sys 'm designed to provide a stable
image with optical components mounted on a flexible structure, The study will
be carried out in three stages: (a) identification with simulated data, (b)
identification with real data, and (c) comparison of closed loop performance
with simulated results. Results from the first two stages are reported in
this paper.

This paper is organized as follows: Section 2 describes the experimental
set-up and a mathematical model for the BCE is developed in Section 3. A brief
description of the maximum likelihood estimation (MLE) algorithm is presented
in Section 4. Results on the identification of the parameters of the BCE usiag
both simulated and experimental data are discussed in Section 5. A summary
and future work 1is described in Section 6.

II. BEAM CONTROL EXPERIMENT

The idea behind this experiment (Fig. 1) is to demonstrate the inter-
action between the control of an optical system, symbolized by a laser beam,
and control of a flexible structure, represented by a flexible aluminum beam
to which passive and active mirrors are attached. These mirrors bounce the
laser beam toward a desired target. The interesting control problem stems
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from the fact that the active mirror is in fact part of a proof-mass actuator.
Thus, any attempt to control the laser beam will tend to disturb the aluminum
beam, thereby also disturbing the laser beam. This intricate coupling is

quite a challenge for a classical design but more amenable to modern techniques.
The other aspect of the experiment is the use of a commercially available

cated microprocessor (ISI MCP-100) canable of handling at maximum a 32--- e
Kalman filter at a3 2000-Fz sampling rate. Such implementation, aside f 1 its
laboratory usefulness, bring control technology one step further toward rzal
space implementation, and the experience gained is valuable.

The schematic of the experiment is shown in Figs, 2 and 3. The laser bteam
bounces first on a mirror situated near the middle point of the vertical alumi-
num beam, then on a mirror attached to the tip of a pivoted proof-mass actua-
tor (PPM). The laser beam finally reaches a photodetector, which measures the
laser beam position. A beam splitter provides a visual display of the jitter
by projecting the spot on a remote screen, )

Two sensors are used in the experiment: the photodetector measuring the
liae-of-sight (LOS) error, and the FPM rate sensor measuring the relative velo-
city of the proof-mass.

A preliminary experiment had been performed earlier (Ref. 1) ueing com-
mercially available software for identification and control synthesis. Only
one sensor was used (position) end the control system was able to signifi-
cantly damp out the beam vibrations; thus stabilizing the line-of-sight.
However, in order to eliminate the static error and achieve a higher perform-
ance, a better model is needed and thus more sophisticated identification
techniques are sought to that end.

For purposes of identification, a known control force is applied to the
beam ucing the proof-mass actuator. The control force time-history and the
beam position and relative rate outputs are recorded on a Nicolet 4094 digital
oscilloscope. Special software transfers the input and output data from the
Nicolet 4094 to a Harris 800 computer where the identification aigorithms
were exercized. Thus an efficient link between hardware ter~s and sophisticated
computer analyses (Yig. 4) was established.

IIT. MATHEMATICAL MODEL

In this Section, a state space model of the system is developed. The
mathematical form of this model will be used both for simulation and identifi-
cation of the parameters of the BCE.

The angular displacement, 6,, of the proof-mass actuator is limited to
to a few degrees., For small angles the force and torque applied by the actua-
tor are given by the equations (Reference 2)

T = Ib'a (1)

fa = mbb’a (2)

284



where m is the mass of the proof-mass actuator, b is the distance from the cen-
ter of mass to the proof-mass pivot and I is the centroid inertia of the proof-
mass actuator. The dynamics of tte aiuminum beam will be defined in terms of

the principal modes and mode shapes. Let qi be the modal ampliiude of the ith
mode and define:

w, = angular velocity of the ith mode
. th
§; = damping of the i~ mode
¢i = translational mode shape of the ith mode at the

beam tip (where the PPM is mounted)

and ¢§ = rotational mode shape of the ith mode'at this tip. Let ¢, and ¢§m
be the corresponding values for the mode shapes where the mirror is mounted
on the flexible beam. The moda. equations for the beam are:

R

.o . 2 .
4y + ZCi w; 9 tojq = - ¢i fa - ¢ T i=1,2,..M (3)

where M is the number of modes represented in the model. Due to the actuator

dynamics, the control force fC applied to the actuator is related to fa by the
equation

rf, =rf_ - (K+mgb) (6, -6) - D (éa - ét) (%)

where r = lever arm of the actuator
g = acceleration due to gravity
K = spring constant of the actuator
D = damping constant of the actuator
and Gt = rotation of the beam tip

The rotation of the beam tip can be expressed in terms of the modal amplitudes
by
M

R
8, = § ¢l a - (5)
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Equations (1) - (5) can be reduced to the set of equations

e . R R . r
= - \ - [ —_
Ba (K + mgb)/1 ea D/1 ea + K/1 L ¢y q; + D/1 ¢ Qi q + T fC (6)
and
G = -A 0 -C 6 -2 w 4 -woq +A o8 q, +C o1t
i i’a i°a 19 9 i 1@ Gy T hy L6y qy
+Bifc @)
where
A, = K (I 6" + mbo,)/I (8
i ¢y 1 )
B, = A r/K 9)
and C, = A, D/K (10)

Let y; be the displacement of the laser beam from the reference point .i.e.,
this is a measurement of the L.0.S. error). Let y; be the relative angular
rate between the actuator and the beam tip. Then,

R
yy =2 [Z bim Gy~ (B F L) L6y qy ¢ "2"a] (11)

and

. . R
y,= 8, -8 = 8, - ¢, q (12)

where &, is the distance between the mirror on the beam and the mirror on the
proof-mass actuator and 22 is the distance between the photodetector and the
mirror on the proof-mass actuator (See Fig. 3),

Equations 6, 7, 11, and 12 give a state space representation nf the
input /output behavior of the BCE with [Pa 0, q1 91 - - - Ay d@] as the
state vector. - )

For a single mode model the equations are given by

X = Fx + Gu (13)

y = hx (14)



where

p _—y
0 1 0 0
2

-wa -D/1 wzj ¢l; D/1 ¢R1

F= ‘ (15)
0 0 0 1
2 R R

AL 6 meptAey Ty -2

b -

(]
1]

(=]

)

~

L}

o

[+ ]
[

-

u

(i6)
and R
2 -
- 20 2t Byt e O (17)
0 1 0 -¢
1
2 .
where w, = (K + mgb)/1 . (18,
D
Also, define ;a = . (19)
2/1(K+mgb)

The F, G and H matri:es depend on the unknown parameters ( ma,D,wl,c1,¢1,¢§,
¢$1m: ¢}, ) and the ka~wn parameters (I,m,b,r,%; and 42 ). The values of the
known parameters are tabulated in Table 1. In this model the number of unknown
patameters is equal to (6M+2) where M is the numoer of modes.

I 4X10-4 Kg-m2
m 0.07895 Kg
b 0.06985 m
r 0.021 m
El 0.165 m
22 0.217 m
Table 1. Known Parameters of the BCE
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IV. MAXIMUM LIKELIHOOD ESTIMATION (MLE)

There are several methods available for the estimation/identification of
parameters Figure 6 shows the main components of an identification method.
The system to be identified and a mathematical model, M(p), of the system
is excited by a known input u. An error function, L(p,e), is formed from the
outputs of the system and the model, Identification is the process of
adjusting the model parameters p to minimize the error functior. The choice
of M(p), L(p,e) and the adjusting mechanism for p lead to different identifi-
cation algorithms. In this paper, we shall restrict our attention to the
maximum likelihood estimation of parameters.

The MLE can be applied to a large class of problems and has good statis-
tical convergence and accuracy properties. In addition, MLE is well suited
for identifying physical parameters of the system. This is a drawback with
most recursive algorithms. The main disadvantage of MLE is the amount of
computation. However, the amount of computation can be reduced significantly

by taking into account the special features of the dynamics ot the large space
structures.

The flow of computation in the MLE is shown in Fig. 7. The mathematical
model for the system is assumed to be

b
[

F(p) x + G(p)u + w (20)

H(p) x + v (21)

«
1]

where x is the n-dimensional state vector, y the p-dimensional output vector
and u the m-dimensional input vector. w and represent the process and
measurement noise respectively. The matrices F, G and H depend on p, the vector
of unknown system parameters. An input signal Ju(t), o < t < ty] has been
applied t> the system and the output y of the system has been observed at dis-
crete times tg, tj, . . . ty. Further, it is assumed that x(o) and w are
zero-mean gaussian random variables with

cov (x(0)) = P(o) (22)
cov (w) = Q (23)
and cov (V) = R . (24)

The identification problem consists of estimating the parameters p from the
experimental data u(ty), y(ty) , i ~1,2,...N. Let x be the state estimate,
$ the output estimate, and e(tg) be the output error

where e(tk) = y(tk) - §(tk). (25)
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The negative log likelihood function, v(p,e), can be written as

N - -1
V(p,e) = - log L(p,e) = & &(i) B(i) e(i) + log |B(i)! (26)
i=1

The maximum likelihocd estimate of the parameters p is obtained by maxi-
mizing the likelihood function L(p,e) (or by minimizing V(p,e)). This non-
linear minimization protlem has to be solved by numerical methods and makes the
MLE computationally intensive. The computational aspects of MLE are discussed
in Reference 4.

V. IDENTIFICATION RESULTS

Numerical results on the identitication of the parameters will be pre-
sented in two steps. First results from the identification of simulated data
will be shown. This will be followed by results from experirental data.

a. Simulation Results: Identificaticn with simulated data was done
to get a better understanding of the dynamics of the BCE, to pro-
vide guidelines to set up the experiment and to test the MLE
software. The system was simulated using 4 modes and was excited
by a "bang-bang" type input with ar amplitude of #0.1 Newton.
Figure 8 shows the laser beam position and relative velocity
output from the simulation. This input/output simulated data
was used to identify a single mode beam model of the system
(see equations 13-17). The negative log likelihood function
V(p,e) was probed at a few points to see its variation with param-
ater p. Figure 9 shows the variation of the likelihood surface
with w, and w;. The surface is well-behaved in these two variables.
The damping terms L5 and [y were set to the simulatior values and
only parameters (wa. wj, ¢, ¢§, ¢im and ¢jy,) were allowed to
vary. Table 2 shows the results based on simulated daca. There
is good agreement between simulated and estimated values. Now we
are ready to try the identificationwith experimental data.

b. Experimental Results: The aluminum beam was excited by applying
to the proof-mass actuator a sinusoidal force with a lirearly
varving frequency (so-called "chirp' excitation). Figure 10 shows
the control force f.. The position and rate measurements are shown
in Figure 11. As before, the single mode model will be used as a
starting point_for the identification of parameters (ma, D, wy, &1»
$1, 41> $im» ¢§m). Initially, the MLE had convergence problems.
These were related to one or more of the following causes: 1) large
differences between the values of some of the actual BCE parameters
and those of the original simulation, 2) bias in the input force
and position measurements, and 3) error in rate measurement cali-
bration.
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The bias was accounted for simply by subtracting a constant from
the force input and position output. The error in rate calibra-
tion was taken into account by defining a scale factor a. This
results in a new H matrix where

R
29.2 0 2(¢im - (¢im - (21+12) ¢im) 0
@n
H =
0 a 0 —¢§ a
The scale factc. was estimated along with the other 8 parame-

ters. The estimated values are shown in Table 3. The model
parameters shown in Table 3 for "simulation values'" were obtained
from an extremely simplified model of the aluminium beam (canti-
levered with a point mass at tip). Thus, it is not surprising
that some of the values obtained from the identification are very
different. In particular, values of rotational mode shapes are
quite sensitive to local inertias and masses.

I Simulated Estimate Estimate
Data (Simulation {Experimental
Data) Dats)
w, 46.36 45.5 37.18
w, 554.63 54 .58 40.32
%a 0.005 .005* 2S5E-4
Cl 0.005 .005% 0.01
¢1 3.328 3.49 7.48
¢] -13.51 -13.61 -110.0
9. 1.068 0.98 21.0
im
o} -10.6 -10.3 2.49
im
a 1.0 1.0% J.80
T

*These parameters were set to their simulation values.

Table 3 Results with Experimental Data
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Figure lls! "ws a comparison between the measured and escimated values of the

ontputs. The estimated values were generated for the prameter set which

resulted from identification using experimental data (Table 3). Figure lla

+hows the measured and estimated values of the position. Figure llbis a

t .ow-up of the same curve to show the difference between measured and estimated
:lues. Figures llc and 11d show curvessimilar to lla and 11b for the rate
easurement. There is very good agreement between the model output and the
:xperimental data.

This model will be validated by taking the direct approach. 1In the third
stage of the experiment, a control system will be designed using the identi-
fied model. The predicted behavior of the control system will be compared
with its experimental behavior.

VI. CONCLUSIONS AND SUMMARY

In this paper, we have described a laboratory experiment which has the
salient features of controlling an optical system located on a flexible struc-
ture. The experiment will be used as a test bed for designing control and
identification algorithms for large space structures. The parameters of a
nodel suitable for designing a contrel system were identified using maximum
likelihood estimation, The real test of a model is of course how well ic
satisfies r1ne goal of modelling. Currently, we are designing a control
svstem based on this model and the results of this final stage will be
reported in another paper.
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