|
View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by NASA Technical Reports Server

t N85-31206

ADAPTIVE FILTERING FOR LARGE SPACE
STRUCTURES—A CLOSED-FORM SOLUTION

H. E. Rauch azdi D. B. Schaechter
Lockheed Palo Alto Research Laboratory
Palo Alto, CA 94304

ABSTRACT

In a previous paper Schaechter proposes using an extended Kalman filter to
estimate adaptively the (slowly varying) frequencies and damping ratios of a
large space structure. The present paper slioys that the time-varying gains for
estimating the frequencies and damping ratios can be determined in closed-form
so it is not necessary to integrate the matrix Riccati equations. After cer-~
tain approximations, the time-varying adaptive gain can be written as the. pro-
duct of a constant matrix times a matrix derived from the components of the
estimated state vector. This is an important savings of computer resources and
allows the adaptive filter to be implemented with approximately the same effort
as the non-adaptive filter. The success of this new approach for adaptive
filtering has been demonstrated using synthatic data from a wo mode system.

I. INTRODUCTION

Adaptive est*mation and control techniques are being studied for their
future application to the real-time control of large space structures, where
uncertain or changing parameters may destabilize standard control system
designs. In a recent paper Schaechter 1] proposes using an extended Kalman
filter to estimate adaptively the (slowly varying) frequencies and damping
ratios of a large space structure. For a system with N states and M (slowly var-
ying) parameters the extended Kalman filter requires integration of an N+M by N#t
nonlinear matrix Riccati equation to determine the covariance and gain for the
filter. Schaechter introduces approximations which allow the integration of
the nonlinear matrix Riccati equation to be replaced by integration of a smaller
set of linear matrix equations. The N states of the system are estimated using
constant gains determined off-line. The time-varying gains for estimating the
(slowly varying) s-+t of M parameters are determined on-line by integrating an
M by N set of linear matrix equations.

The contribution of the work presented here is to show that the time-
varying gains for estimating the (slowly varying) frequencies and damfing
ratios can be determined in closed-form so it 1s not necessary to integrate
the M by N set of linear matrix equations. This is an important savings of
computer resources and allows the adaptive filter to be “mplemented with
approximately the same effort as the non-adaptive filter. In particular,
after certain approximations the time-varying adaptive gain can be written
as the product of a constant matrix times a matrix derived from the components
of the estimated state vector. The constant matrix is determined off-line
just as the constant gains for estimating the state are determined off-line.

161


https://core.ac.uk/display/10381359?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The success of this new approach for adaptive filtering has been demon-
strated on a computer simulation usirg synthetic data from a two mode system.
Work in progress is applying the new approach to a much larger system using
experimental data. The theoretical development and preliminary experimental
results are presented in the paper.

I1. FORMULATION WITHOUT ADAPTIVE FILTERING

The standard state variable formulation of the dynamic equations of motion
are shown below where the dot indicates derivative, x is the state vector, u is

the control vector, z is the measurement vector, and w and v are dynamic noise
and measurement noise. [2]

X=Fx + Gu+Tw (1)
z=Hx + v

When the dynamic system is precisely known, a state estimator of the following
form may be constructed where x indicates the estimate of the state x and K is
the gain matrix.

3

x = Fx + Gu +K(z - Hx) A (2)
The differential equation for the estimation error X = x - x 18 obtained by
subtracting Eq. (2) from Eq. (1).

X = (F - KH)X + Pw - Kv (3)
The differential matrix equation for the covariance of the estimation error P

follows where R and Q are from the covariance of th: measurement noise v an
the dynamic noise w.

P = EGED
B = (F - KH)P + P(F - KH)T
+ TGIT + KRKY (4)

The optimal gain matrix K is chosen to minimize the trace of the estimate
error covariance to give the usual result

K = PH Tp-1 (5)

Notice that for a precisely known dynamic system, the estimation gains may be
precomputecd, even in the event of a time varying system. The analysis used
with the adaptive filter closely parallels the development without adaptive
filtering.

II1. ADAPTIVE FORMULATION AND SOLUTION
Adaptive control may be required when the model in Eq. (1) is unknown,

uncertain, or dependent upon a changing system configuration. The modifica-
tions that need to be made in Eq. (1) in order to include the effects of an
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uncertair parameter are given below where the vector parameter a has a dynamics
matrix C with dynamic noise W

= F(la)x + Gu + Tw

e e

= Ca + w
a

z = Hx + v (6)

As can be seen from Eq. (6), the system dynamics are now a function c¢f the vec~
tor parameter a. In this formulation, the vector parameter a represents small
changes from a nominal value co the average value of a is zero. These param-
eters are assumed to be slowly varying so that they may be adjoined to the
state vector. An adaptive state estimator may be written so both the state
vector and the vector of parameters are updated using the measurements.

® .

= F(a)x + Gu + K (2 - Hx)
7)

[

= Ca + Ka(z - Hx)

Let the symmetric matrices Py and Py represent the covariance of th= error in
the estimates for x and a, respectively, and let the rectangular matr.x Pyy
represent the cross-covariance of the errors in the estimates of x and a.

It is necessary to calculate these covariance matrices in order to determine
the optimal gains Ky and K;. The optimal gains are selected to minimize the
trace of the covariance of the estimation error and have the following values,

K = PxHTR_l
(8)

-1

K =P H'R
a ax

Proceeding as before, and assuming the estimation error am=a-ais small,
gives *he vector differential equation for the error,

X = (F—Kxﬂ)x+-a-Ex a+r’w-va
a4 (9)

«=-KH X+ d: +w ~-Kv
a a a

The ma.rix differencial equatious for the covariance are:
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. T
dP /dt = (F- X K
x/ (F xxu) P, +P (F K_H)
+Q+KRKT
X X

o T ~ T
+ (Fax) Pax *Pay (Fax)

T

dPax/d‘ Crpy + Pax(F“KxB)
. T

+ Pa(F;x) - KaHPx

+ K RK T
a X

T
dPa/dt cp_ + PaC +q
- T . T T
KaHPax Pax(Kha) K, K (10)

where. Fa = 3F/oa
and R, Q, and Qa are covariances of v, Tw, and w

(without delta function).

The remainder of this analysis will show approximations which can b~ used to
reduce the computational effort needed to calculate the covariance matrices
and the optimal gains when the covariance ma“rix P, is very sm>1l (of

order ¢} and the covariance matrix P,y is also very small (of urder €). The
gain K, will be very small (of order €) because it is calculated from Pg,4.

The differential equaiion for the covariance matrix P, will involve somf cmall

terms, but most of the terms are larger and constant. If the last two terms

in the differential equation for Py are neglacted (because they are small te:ms
of order €), it is possible to calculate the steady-state constant va_ae of the
covariance Py. From the constaut value eof th2 covariance P, the constant gain

Ky, can be determined. As one might suspect, the constant gain Ky has .he same

value as it would have if there were no errors in estimating the parameters =.

Beceuse the covariance matrices P,, and P, are of order €, many of the te

in the differential equation for P, :.-» of order ¢ squared. If the last °
terms in the differential equation for P, are neslecte¢ (because they are v -,
small verms of order = squared), it is p. .sible to calculate the steady-state
value of the rovariance P, (to order €). As one might suspect, the constant
steady-state value obtained for P, is the same valu2 which would have been
obtained 1if K; were zero.

All that remains is to calculate the time-varying covariance ¥, sc iat the
needed gain Kz can be determined. Because the gain K, has been ' ~r.a to
equal PxHTR‘l, the last twe terms in: the differential equation for ., cancel
out. For the remaining analysis it wil) be a=~umed there sre N staie vari-
ables so the first N/2 variables (designated he N/2 length v ~ctor x¥) cor-
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respond to mode position, anc the last N/2 variables (designated by the N/2
length vect- r x**) corre.pord to velocity of mode position. The differential
equatious ‘or the dynamics of the mode variabies without any forcing or dis-
turbing terms are presented below where A* correspondg to the damping terms
(-2tw) and A** corresponds to the frequency terms (-w®). Notice both A* and
A** are diagonal N/2 by N/2 matrices.

dx/dt Fx

L]

dx*/dt

#

x** (11)

du¥t/dt - AkxkAkkyxkk

Let there be W parameters in the vector a and arrange the order of the param-
eters a so that the first N/2 parameters are the same as the elements of the
dirgenal matrix A* and the last N/2 parameters are the same as the elements
of the diagonal matrix A**, Furthermore, assume the N-by~N symmetric co-
variance mutrix P, assuciated with these parameters is diagonal and composed
of diagoral sub-matri‘:es Pg* and Py**, With these assuaptions, the partial
derivative can be w in a particularly simple way where x* and xx»*

\
represent diagonal u. ..ic2s with the diigonal elements equal to the vectors
Xx* and x**

. [0 1 x*
Fx =
LA*A** x**
Fx = 3(FR1/3,
_fo o
[x*] [x**]
—Pa* 0
P =
a 0O P k%
| a
r- -l ]
Fxp= |° © [x*] O & p aax 5] (12)
a 4 A Pa**] I Gl 2
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One further assumption is that che dynamlcs matric C (for the parameters a) is
diagonal and equal to the scalar ¢g times the identity matrix I. With those
assumptions, the differential equation for the cross covariance P,x can be
written as follows where x is a diagonal matrix made up of the elements of x.

_ T
dPax/dt = Pax(F KxH+C)

+ (pa***[x] )T

where C = cOI
0 o0 (13)
and P kkk =
a P *x P k*
a a

The remairder of the analysis will deal with the cross-covariance matrix Py,
which is the transpose of the covariance matrix P,,. The differential equa-
tion for the cross-covariance P, can be written as follows:

dp__/dt = Fx P +9***[§]
Xa Xa a

[}

where Fx = F - Kx H+ C (14)

The linear matrix differential equation for P,, has particularly desirable char-
acteristics. All the terms in the differential equation are known constants
(because the gain Ky and the covariance P, are known and constant) except for
driving terms due to estimates of the state x. If the approximation is made
that the derivative of the forcing terus x is equal to the dynamics matrix F
times x, then, except for tronsient terms, the solution to the linear matrix
differential equation for Px can be written in closed form as a linear com-
“ipa:ion of the torcing terms x. This is similar to the result in elementary
linear differential equations where the general solution is composed of the
sum of the homogeneous solution due to the unforced different.al :quation and
the particular solu*ion due to the forcing function.

Because the forcing function [i] is a diagonal matrix, the first element X is
the forcig term for the first column of the solution for the matrix P the
second element x2 is the forcing term for the second column of the matr;x Paxs
and so on. Ler Py be a vector which represents the i-th column of the matrix
P.y. The linear matrix-vector differential equation for the i-th column can
be written as follows where Paiiis a scalar which is the i-th element of the
disgonal matrix P, and xl 's a scalar which is the i-th element of X and PI is
is the i-th col. nn of the matrix Pa*** which is all zeroes except for entries
equal to the diagonal elements of Py

166



= F*% *A
dP./dt = F* P, + P.* x, (15)

The solution for the vector P; is assumed to be composed of the sum of two
vectors. The first vector is the constant vector Ej times the scalar xj
(rorresponding to the estimate of the position of the mode) and the second

vector is the constant vector Gj times the scalar x; (corresponding to the
estimate of the velocity of the appropriate mode).

Py =By X+ 6% (16)

where for i <N/2 then j i and k = i + N/2

for i >N/2 then j i-N/2 and K = i

The derivative of the vector Pj can be calculated directly if it assumed the
derivative of the vector x is equal to F x with A% and A} being scalars which

represent the j-th element of the representative diagonal matrices which make
up F.

dPi/dt = Eidxj/dt + Gidxk/dt

17
= FE.x, + *2 0+ Kk
XK Giijj GiAj X

Substituting the expression for the assumed form of the vector P; and the
expression for the derivative of the vector P;j into the differential equation,

gives the following equations where 8;; is a discrete delta function which is
unity if i equals j and zero otherwise.

* *k) 3
GiAj xj + (Ei + GiAj )xk

(18)

= F* Eixj + F*Gixk + Giij xj + 3§ Pk k

Collecting all terms which multiply the scalar x gives one veccor equation
and collecting all terms which multiply the scalgr XK 8ives a second vector
equation. The : are two vector equations and two unknown vectors Ej and Gj.

GiAj F Ei 5iij

k% = F* *
E1 + GiAj F Gi + 6ikPk

(19)

167



The expression for Ej obtained fiom the second equation is substituted into the
first equations to give a single equation with the unknown vector Gj

* = * - ki * *
GiAj F*(F (;i GiAj + aikpk ) + aijpj (20)

Since a;* and A.** are both scalars, it is possible to solve directly for the
unknown vector “Gj where I is the identity.

-1
= k4 FkA kk _ FhFx x4 xp *
G. (IAj F Aj F*F ) (GJPJ GHF Pl ) (21)

In the same way, the expression for Gj obtained from the first equation is sub-
stituted into the second equation to give a single equation with the unknown
vector Ej.

* = *_ *k % ) * * *
Aj Ei (F IAj ) (F Ei + 13 Pj ) + Aj Gikpk (22)
It is again possible to solve directly for E;j.

- - *_ %k * xXpP *
B = (A% + ErA st - FAF4) 1 [éij(F TA %)P %46, A KBy ] (23)

Thus the two unknown vector quantities Ej and G{ can be determined from known
quantities so the covariance vector Pj and the approximation for the covariance
matrix Pax can be determined.
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IV, SIMYLATION RESULTS WITH TWO MODES

The new, simplified adaptive formulation was first tested with a single
mode system. After encouraging results were obtained with one mode, 2 two-mode

system was examined. The two-mode system used in the simulation studies is
shown in Figure 1.

+—A— ., —— ., /R
2-——w~—- - AM— ——-wv——&

FIG. 1 TWO-MODE SYSTEM

The system consists of two masses, M, three springs, K, and three viscous
dampers, B. For this study, M=1, K=1, and B=0.10. Control forces may be
applied to both masses, random external forces disturb both masses, and noisy
measurements of the position of both masses are available. The measurements
are used for estimating the state vector, and for estimating the parameter
vertor. The differential equations representing this system are:

e
E

+

N

i~ -]

“0
—

]

.
Bx2+21(x1 ‘szz f1+V1

L 1Y L ] L]
Mx, + Zsz - Bx1 + 2Kx2 - exy = f2 + w2

zZ, =X, +v
1 1 (24)

V2
The natural frequencies and damping ratios of this system are:

w, =1 8y = 0.05

1

wy = 1.732 = 0.0869

%2
where the low frequency mode is the common mode motion of the two masses. The
spectral dencities of both the process and measurement disturbances (Q and R)

are 0,0163, Tws hundred position measurements of both the masses were made
during a sixty second computer simulation. This sixty secord duration was
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selected to assure about ten oscillations of the lowest frequency mode. The
sample rate was selected to give about ten samples per cycle of the highest
frequency mode. The value of the correlation time constant for the parameters
that are to be estimated was 250 seconds (so C, is 1/250). This value is much
larger than the time constants of the system. The selection of a "large"
value is important in order to allow the adaptive filter to average values
over several cycles of the system. The fol®  wirg table gives a summary of

the test cases. In each case, both the standard, non-linear extended Kalman
filter, and the simplified extended Kalman filter described in this paper

were run in order to make comparisons. In all of the cases studied thus

far, these two cases were indistinguishable, except for a small, initial
transient. This transient effect is attributed to beginning the standard
extended Kalman filter covariance integration with values slightly different
from the steady state values.

CASE 1 Wy unknown ;1 Known no noise
w, unknown ;2 known
CASE 2 W; unknown g unknown no noise
w, unknown C2 unknown
CASE 3 wy unknown Cl unknown r.oise
W, ur.known %, unknown
z 2

The results are shown i the following figures and are discussed below.
In Case I the starting estimates for the natural frequencies were cnosen
to be 10% in error with w; estimated to be 0.9 (rather than 1.0, and ¥
estimated to be 1.559 rather than 1.732), The damping parameters were
exact, and no noise was present in the system. The results for the estimate
of W1 (Fig. 2) show that the modal frequency is very readily identified from
the measurements, inspite of the 10X initial ervor in the estimate. As the
system response diminishes, less information is available for updating the
parameters. Consequently, with no new information coming into the system,
the parameter estimate begins to return to its nominal value (0.9) with the
selected time coustant of 250 sec. The estimate of w; behaves similarly.

In Case II, the objective was the same as in Case I with the additional
problem of simultaneously estimating the damping parameters. The initial
estimates of the damping parameters were zero. The results of “hc poor ini-
tial guess of the damping parameter are evidert in Fig. 3. The estimate
of the modal frequency tends to be lightly damped, but in all other aspec.s,
the estimate of W] appears to have the same features that were present ju
Case I. As has been found in past studieS'[I], the estimate of the dampir 4
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parameter itself is quite poor. This is due to the fact that the position
measurement contains very little damping information.

Case III is identical to Case II with the addition of both process and
measurement disturbances. Surprisingly, this case yielded the best results,
as is evident in Figures 4 and 5. The effects of the aoise are clearly
visible in the figures. However, in contrast with the previous two cases,
the process noise continues to excite the system after the transient effect
of the initial conditions have subsided. The result is that the measurements
continue to provide information on the parameters for the duration of the
simulation. Since the higher frequency mode is more heavily damped, and is
less perturbed by the external disturbance, the improvement in the natural
frequercy estimate of mode two is not as dramatic.

CONCLUSIONS

This paper has developed approximations which allow dramatic reductions
in the on-line computational requirements of the extended Kalman filter.
Numerical simulations of this technique have validated the approach for two
simple spring-mass systems. It was found that the full non-linear extended
Kalman filter and the closed-form adaptive filter developed in this paper gave
virtually identical results. Work is currently in progress to apply this
ipproach to a much larger system using experimental data, rather than simulated
data.
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