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ABSTRACT 

In a previous paper Schaechter proposes using an extended Kalman filter to 

The present paper shows that the time-varying gains for 
estimate adaptively the (slowly varying) frequencies and damping ratios of a 
large space structure. 
estimating the frequencies and damping ratios can be determined in closed-form 
so it is not necessary to integrate the matrix Riccati equatiots. 
tain approximations, the time-varying adaptive gain can be written as the.pro- 
duct of a constant matrix times a matrix derived from the components of the 
estimated state vector. This is an important savings of computer resources and 
allows the adaptive filter to be implemented with approximately the same effort 
as the non-adaptive filter. The success of this new approsch for adaptive 
filtering has been demonstrated using synthetic data from a ."wo node system. 

After cer- 

I. INTRODUCTION 

Adaptive esthation and control techniques are being studied for their 
future application to the real-time control of large space structures, where 
uncertain or changing parameters may destabilize standard control system 
designs. In a recent paper Schaechter €11 proposes using an extended Kalman 
filter to estimate adaptively the (slow y varying) frequencies and damping 
ratios of a large space structure. For a system with N states and M (slowlyvar- 
ying) parameters the extended Kalman filter requires integration of 3n N+M by N-W 
nonlinear matrix Riccati equation to determine the covariacce and gain for the 
fllter. 
the nonlinear matrix Riccati equation to be replaced by integration of a smaller 
set of linear matrix equations. The N states of the system are estimated using 
constmt gains determined off-line. The time-varying gains for estimating the 
(slowly varying) s? of M parameters are determined on-line by integrating an 
M by N set of linear matrix equations. 

Schaechter introduces approximations which allow the integration of 

The contribut2on of the work presented here is to show that the time- 
varying gains for estimating the (slowly varying) frequencies and damfing 
ratios can be determined in closed-form so it is not necessary to integrate 
the M by N set of linear matrix equations. This is an important savings of 
cmputer resources and allows the adaptive filter to be -'.mplemented with 
approximately the same effort as the non-adaptive filter. In particular, 
after certain approximations the time-varying adaptive gain can be written 
as the product of a constant matrix times a matrix derived from the components 
of the estimated state vector. The constant matrix ?.s determined off-line 
just as the constant gains for estimating the state are determined off-line. 
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The success of this new approach for adaptive filtering has been demon- 
strated on a computer simulation usicg synthetic data from a two mode system. 
Work in progress is applying the new approach to a much larger system using 
experimental data. 
resillts are presented in the paper. 

The theoretical development and preliminary experimental 

11. FORMULATION WITHOUT ADAPTIVE FILTERING 

The standard state variable formulation of the dynamic equations of motion 
are shown below where the dot indicates derivative, x is the state vector, u is 
the control vector, z is the measurement vector, and w and v are dynamic noise 
and measurement noise. [ 2 ]  

0 

x = FX + GU + r w  (1 1 

When'the dynamic system is pregisely known, a state estimator of the following 
form may be constructed where x indicates the estimate of the state x and K is 
the gain matrix. 

* * A 

x 0 FX + GU + K ( z  - Hx) A ( 2 )  
The differential equation for the estimation error ;= x - x ie obtained by 
subtracting Eq. (2 )  from Eq. (1). 

The differentia: matrix equation for the covariance of the estimation error P 
follows where R and Q are from the covariance of thz measurement noise v an 
the dynamic noise v. 

P o E E T )  
T + = (F - KH)P + P(F - KH) 

+ rqrT + K R K ~  

The optimal gain matrix K is chosen to minimize t,he trace of the estimate 
error covariance to give the usual result 

T -1 K = P P H R  ( 5 )  

Notice that €or a precisely known dynamic system, the estimatlon gains may be 
precomputed, even in the event of a time varying system. The analysie used 
with the adaptive filter cloecly parallels the development without adaptive 
filtering. 

111. ADAPTIVE FORMULATION AND SOLUTION 

Adaptive control may be required when ;he model in Eq. (1) is unknown, 
uncertain, or dependent upon a changing eystem configuration. The modifica- 
tions that need to be made in Eq. (1) in order to include the effect8 of an 
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uncertair. parameter are given below where the vector parameter a has a dynamics 
matrix C with dynamic noise w a' 

x = F(a)x + Gu -t rw 
a =  C a + w  a 
z = H x + v  (6) 

As can be seen from Eq. (61, the system dynamics are now a function cf  the vec- 
tor parameter a. In this formulation, the vector parameter a represents small 
changes from a nominal value r o  the average value of a is zero. These param- 
eters are assumed to be slowly varying so that they may be adjoined to the 
state vector. An adaptive state estimator may be written so both the st'ate 
vector and the vector of Faraaeters are updated using the measurements. 

1 A m 

x = F(a)x + Gu + Kx(z - Hx) 
I A 

s. = Ca + Ka(z - Hx) 

Let the symmetric matrices P, and Pa represent the covariance of C t . 1  mror in 
the estirates f o r  x and a, respecttvely, and let the rectangular matrAr. Pax 
represent the cross-covariance of the errors in the estimates of x and a. 
It is necessary to calculate these covariance matrices in order to determine 
t h e  optimal gains K, and Ka. The optimal gains are selected t o  minimize the 
trace of the covariance of the estimation error and have the following values, 

T -1 Kx = PxH R 

r -1 K = PaxH R a 

N 
n 

Proceeding as before, and assuming the esiimation error a = a - .  a is small, 
gives the vector differential equation for the error, 

k = - KaH + C z  + wa - Kav 

The n:s,rix differential equatio.18 for the covariance are: 
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dP /dt = 
X 

+ 
+ 

dPax/dt = 

+ 
+ 

dPa/dt - 
where. Fa = 

Pa(Fa;lT- KaHPx 
T 

K,iRKx 
m 

CPa + P$’ + Qa 
KaHpax * - Pax(KaH)T + Ka RK,T 

aF/ aa 

and R, Q, and Qa are covariances of v, rw, and w 

(without delta function). 
a 

The remaiader of this analysts will show approximations which can be used to 
reduce the coniputational effort needed to calculate the covariance matrices 
and the optimal gains when the covariance mal-rix P, is very sm.11 (of 
order c l  and the covariance matrix Pax I s  also very small (of urddr e). 
gain K, w i l l  be very small (of order c) because it is calculated frog Pax. 

The differential equaiion €or the covariance matrix P, will. involve somf  mall 
terms, but most of the terns are larger and constant. If the last two t a m s  
in the differential equation for P, are neglmted (beczuse they are small te:ms 
of order E ) ,  it is possible to calculate the steady-state constant valde of the 
covariance P,. From the cons’,ant value sf th? covariance P, the constant gain 
K, can be determined. As one might suspect, the constant gain 5 hias ,he saae 
value as it would have if there were no errors in estimating the paramecers e. 

The 

Becmse the covariance matrices Pax and P, are of order e, many of the tei 
in the differential equation for Pa : + ?  of order e squared. 
terms in the differential equation for Pa are neElectci? (because they ate v ’ I  

small cerms of order 5 squared), it is pc -sible to calculate the steady.-state 
value of the covariance P, (to order e) .  
steady-state value obtained for Pa is the S i l m e  valuc which’ would have heru 
obtained if K, were zero. 

If the last 

As one might suSpect, the constant 

All that remains is to calculate the time-varying covariance E a  si- st the 
needed gain Ka can be determined. Because the gain hss been ‘ 1  .: A tu 
equal P,HTR-I, the last two terme i:: the differential equation foi Pax cancel 
out. For the remaining analysis i t  will be aacumed there Are N btaie varj- 
ables so the first N/2 variables (designated he N / 2  length 1 vtor x*) cor- 



respond to mode position, ani the last N/2 variables (designated by the N/2 
length vect r x**) correa+ocd to velocity of mode position. 
equatioirs 'or the dynamics of the mode variabies without any forcing or dis- 
turbing terms are presented below where A* correspond9 to the damping terms 
(-2.90) and A** corresponds to the frequency terms (-w-). Notice both A* and 
A** are diagonal N/2 by N/2 matrices. 

The differential 

dx/&t = Fx 

dx*/dt = x** 

dr:**/dt - A*x*+A**x** 

Let there be LJ parameters in the vector a and arrange the order of the param- 
eters a so that the first N/2 garmeters axe the same as the elements of the 
dicgcnal matrix A* and the last N/2 parameters are the same as the elements 
of the diagonal matrix A**. Fu:;thermore, assume the N-by-N symmetric co- 
variance htrix Pa aSbvCidted with these. parameters is diagonal and composed 
of diagor.al sub-matri-as Pa* and Pa**, With these assusptions, the partial 
derivative can be w I in a partLcularly simple way where x* and xx* 
represent diagonal G ~ - . ~ L ~ ~ s  with the di3gonal elements equal to the vectors 
X* and x** 
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One further assumption is that che dynamzcs matric C (for the parameters a) is 
diagonal and equal to the scalar co times the identity matrix I. 
assumptions, the differential equation for the cross covariance Pax can be 
written as follows where 

With those 

x is a diagonal matrix made UF of the elements of x. 

dPax/dt = Pax(F-KxH+C) T 

- 

+ (Pa***[X3 IT 

where 

and 

c = coI 

The remai.rder of the analysis will deal with the cross-covariance matrix P, 
which is the transpose of the covariance matrix Pax. The differential equa- 
tion for the cross-covariance Pxa cag be written as follows: 

dPxa/dt = F* Pxa + P a *** ['I 
where F* = F - Kx H + C (14) 

The linear matrix differential equation for Pxa has particularly desirablc char- 
acteristics. All the terms in the differential equation are known constants 
(because the gain Kx and the covariance Pa arf known and constant) except for 
driving terms due to estimates of the stat_e If the approximation is made 
that the derivative of the forcing terns x is equal to the dynamics matrix F 
times G, then, except for trmsieut terms, the solution to the linear matrix 
differential equation for Pxa can be written in closed form as a linear com- 
. ;pa;ion of the torcing terms 2. This is similar to the result in elementary 
iinear differential equations where the general solution is composed of the 
sum of the homogeneous solutfofi due to the unforced different,al !quation and 
the particular solv'.ion due to the forcing function. 

Because the forcing funct'ion [;I is a diagonal matrix, the first element $1 is 
the forciig te? for the firs; column of the solution for the matrix P 
second element x2 is the forcing term for ?he second column of the matrix Pax, 
and so on. 
P2X. The linear matrix-vector differential equation for the i-th column can 
be wrltten as follows where Pairis a scalar which is the i-th element of the 
dipqonal matrix Pa and ;1 's, a scalar which is the i-th element of 2 and Pf is 
is the i-th col-nn of the matrix Pa*** which is all zeroes except for entries 
eqiial to tne diagonal tlements of Pa 

x. 

the 

L e t  Pi be a vector which represents the i-th column of the matrix 
av' 
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A 

dPi/dt = F* Pi + Pi* xi (15) 

The solution for the vector Pi is assumed to be composed of the sum of-two 
vectors. 
(corresponding to the estimate of the position of the mode) and the second 
vector is the constant vector Gi times the scalar & 
estimate of the velocity of the appropriate mode). 

The first vector is the constant vector Ei times the scalar xj 

(corresponding to the 

where for i 5N/2 then j = i and k = i + N / 2  

for i >N;2 then j = i-N/2 and K = i 

The derivative of the vecfor Pi can be ca!culated direct1 

and 
derivative of the vector x is equal to F x with A: 
represent the j-th element of the representative aiagona 
up F. 

if it assumed the *' being scalars which 
matrices which make 

dPi/dt = E i 1  ds /dt + Gidjik/dt 

= Fi< + G i A*< j j + GiAj**< 

Substituting the expression for the assumed form of the vector Pi and the 
expression for the derivative of the vector Pi into the differential equation, 
g i v e s  the following equations where 6ij i s  a discrete delta function which is 
unity if i equals j and zero otherwise. 

* 1 

= F* E x + F*Gi% + 6 P *X + dikPk* xk i j  i j j  1 
A 

Collecting all terms which multiply the scalar x 

equation. 

gives one vector equation 
and cglleccing all terms which multiply the scal a r Gk gives a second vector 

The- 2 are two vector equations and two unknown vectors Ei and Gi. 

G i J  A . *  = F*Ei A SijPj* 

Ei + G A ** = F* Gi + 6ikPk* 
i j  

(19)  
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The expression for Ei obtained fiom the second equation is substituted into the 
first equations to give a single equation with the unknown vector Gi 

Since n * and A ** are both scalars, it is possible to solve directly for the 
unknown vector 'Gi where I is the identity. j 

In the same way, the expression for Gi obtained from the first equation is siib- 
stituted into the second equation to give a single equation with the unknown 
vector Ei. 

It is again possible to solve directly 

Thus the cvo unknown vector quantities 
quantities so the covariance vector Pi 
matrix P can be determined. ax 

[-15 (F*-IA.**)P.*+6. A *Pk* ij J J ik j (23) 

Ei and Gi can be determined from known 
and the approximation for the covariance 
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IV. SIPJUTION RESULTS WITH TWO MODES 

The new, simplified adaptive formulation was first tested vith a single 
After encouraging results were obtained with one mode, a tgo-mode mode system. 

system was examined. 
shown in Figure 1. 

The two-mode system used in the simulation studies is 

FIG. 1 TWO-MODE SYSTEP- 

The system consists of two masses, M, three springs, K, and three viscous 
dampers, B. For this study, M=l, K = l ,  and B10.10. Control forces may be 
applied to both masses, random external forces disturb both masses, and noisy 
measurements of the position of both masses are available. 
are used for estimating the state vector, and for estimating the parameter 
vector. The differential equations representing this system are: 

The'measurements 

z1  = x1 + v1 

z2 * x2 + v2 

The natural frequencies and damping ratios of this system are: 

w1 = 1 c1 = 0.05 

w2 - 1.732 c2 = 0.0869 

where the low frequency mode is the common mode motion of the two masses. 
spectral densities of both the process and measurement disturbances (Q and R) 
are 0,0163. 
during a sixty second computer simulation. 

The 

Tw43 hundred position measurements of both the rnames were made 
This sixty second duration was 
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selected to assure about ten oscillations of the lowest frequency mode. 
sample rate was selected to give about ten samples per cycle of the highest 
frequency mode. 
that are to be estimated was 250 seconds (so Co is 1/250). 
larger than the time constants of the system. 
value is important in order to allow the adaptive filter to average values 
over several cycles of the system. The fol' )wicg table gives a summary of 
the test cases. In each case, both the standard, non-linear extended Kalman 
filter, and the siuiplified extended Kalman filter described in this paper 
were run in order to make comparisons. In all of the cases studied thus 
far, these two cases were indistinguishable, except for a small, initial 
transient. This transient effect is attributed to beginning the standard 
extended Kalman filter covariance integration with values slightly different 
from the steady state values. 

The 

The value of the correlation time constant for the parameters 
This value is much 

The selection of a "large" 

r 

CASE 1 w 1  unknown 5 known no noise 1 

w2 unknown c2  known 

CASE 2 W 1  unknown Cl unknown no noise 

w2 unknown c2 unknown 

CASE 3 unknown C1 unknown 

5 unknown 

-. ~ L 

r.oise 

2 
7- -. 

The results are shown i the following figures and are discussed below. 
In Case I the starting estimates for the natural frequencies were chosen 
to be 10% in error with w 1  estimated to be 0.9 (rather than 1.0, and 9 
estimated to be 1.559 rather than 1.732). The damping parameters were 
exact, and no noise was present in the system. The results for the estimate 
of W 1  (Fig. 2) show that the modal frequency is very readily identified from 
the measurements, inspite of the 10% initial error in the estimate. 
system response diminishes, less information is available for updating the 
parameters. Consequently, with no new information coming into the system, 
the parameter estimate begins to return to its nominal value (0.9) with the 
selected time constant of 250 sec. 

As the 

The estimate of 9 behaves similarly. 

In Case 11, the objective was the same as in Case I with the additional 
problem of simultaneously estimating the damping parameters. 
estimates of the damping parameters were zero. The results of :hc poor ini- 
tial guess of the damping parameter are evidept in Fig. 3 .  
of the modal frequency tends to be lightly damped, but in all other aspects, 
the estimate of W1 appears to have the 
Case I. As has been found in past 

The initial 

The estimate 

that were present ~ I I  

estimate of the dampii; 
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parameter itself is quite poor. 
measux emen t contains very 1 it t 1 e damping info nuat ion. 

This is due to the fact that the position 

Cast! I11 is identical to Case I1 with the addition of both process and 
measurement disturbances. Surprisingly, this case yielded the best results, 
as is evident in Figures 4 and 5 .  
visible in the figures. However, in contrast with the previous two cases, 
the process noise continues to excite the system after the transient effect 
of the initial conditions have subsided. The result is that the measurements 
continue to provide informatj.on on the parameters for the duration of the 
simulation. 
less perturbed by the external disturbance, the improvement in the natural 
frequercy estimate of mode two is not as dramatic. 

The effects of the .ioise are clearly 

Since the higher frequency mode is more heavily damped, and is 

CONCLUSIONS 

This paper has developed approximations which allow dramatic reductions 
in the on-line computational requirements of the extended Kalman filter. 
Numerical simulations of this technique have validated the approach for two 
simple spring-mass systems. It was found that the full non-linear extended 
Kalman filter and the closed-form adaptive filter developed in this paper gave 
virtually identical results. Work is currently in progress to apply this 
ipproach to a much larger system using experimental data, rather than simulated 
data. 
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TI 
FIGURE 2 Estimate of o1 (CASE I) 

FIGURE 3 Zstimiite of w1 (CASE 11) 
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TIME 
FIGURE 4 Estimate of w1 (CASE 111) 

TRUE w2 

TIME 

FIGURE 5 Estimate of w2 (CASE 111) 
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