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INTRODUCTION

Tne control design problex for the class of future spacecraft referred to as
large space structures (LSS) is by now well known [1-3]. The issue is the re-
duced order control of a very high-order, lightly damped system with uncertain
systen parameters, particularly in the high frequency modes. This paper pre-
sents a design methodology which incorporates robustness considerations as
part of the design process. Combining pertinent results from multivariable
systems theory and optimal control and estimation, LQG eigenstructure assign-
ment [#4] and LQG frequency-shaping, [5-7] were used to improve singular value

robustness measures in the presence of control and observation spillover.

Tne design technique is summarized as follows. A low order LQG compensator is
synthesized using the technique of recursive eigenstructure assignment to
place closed-loop eigenvalues where desired. This design is evaluated for
Singular value performance margin and for singular value.gain margin with
respect to plant uncertainties (e.g., modeled dynamics). The compensator is
then resynthesized using frequency-shaping concepts to improve the singular
value robustness measures. The recursive eigenstructure assi{gnment technique
allows regulator close-loop eigenvalue placement at the desired locations for

the plant and as required for frequency-shaping. Furthermore, the frequency-
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Shaped compensalor elgenvalues can also be assigned, thus assuring LQG com-

pensator stability, as well as estimator stability.

This procedure using robust frequency-shaped compensation was applied to the
design of the controller for a representative large space structure. Results
are presented as singular value Bode Llots. Comparisons are made to a recent

study8 utilizing the same large space structure model.
LQG CONTROL DESIGN FOR LSS

Control design plant modelling for LSS utilizes a high-order structural model,
typically obtaiuned by finite-element programs such as NASTRAN. The limita-
tions of computer implementation require that the finite-element model be
reduced to a design model. One approach is to truncate the high-order model
into primary and residual modes, where the primary modes are to be used for
control design. The modal truncation can be based on engineering judgement or

on a selection criterion such as modal cost analysis [9].

The system model has the form
i
xp = Ap Xp + Bpu

"‘R = AR Xg + BRu (M

y = Cp xp + CR xR
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where Xp are the primary modes and xg are the residual modes. An ob-

server-based control design for *he primary modes then has the form

A A

Xp = Ap Xp + Bpu *+ G(y - Cp Qb) (2)
u = —Ki‘p

Using LQG design, the gains (K, G) are selected to minimize quadratic perform-

ance indices. The terms BRy and CR xR were identified by Balas [3] as control

spillover and observation spillover respectiQely. These terms have the poten-

tial fur interacting through the observer (2) to produce instability.

LQG theory guarantees that the reduced-order closed loop system is stable with

eigenvalues of (Ap-Bpk) and (Ap~GCp). However, no such guarantee holds for

the compensator,
u = Hy (3)

which has the eigenvalues of (Ap-BpKk-GCp). This fact can be fatal for LSS

reduced-order control, unless measures are taken to ensure system robustnass.
ROBUSTNESS MEASURES FOR LSS

For multivariable feedback systems the emerging singular valt * robustness
theory can be used to develop measures for stability and performance. Kosut,

et al,8 applied this theory to the large space structure control design prob-

lem, treating the residual dynamics as a perturbation. For a system with a
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stable nominal feedback system (based on the reduced model) and stable pertur-
botions (due to the residual dynamics), sufficient conditions for stability
are obtained when the singular value stability measures exceed the maximum
per.urbation due to model uncertainty. Fig. 1 defines the terminology for a
large space structure control systen. For an additive perturbation, rig. 2a,

the sufficient conditions for stability are

SM1 = o [I + H(Jw) Ge (yw)] > T [H(jw) GR (Jw)]

(4)

o~

-.)M2

!}

o [I+ Ge (juw) H{je)] > 7 [GR (Ju) H(jw)]

where T (+) indicates the maximum singular value and o (<) indicates the mini-
mum singular value. (Singular values of the complex mat.ix i are the positive
square roots of the eigenvalues of A*A, where (-)* indicii"s conjugate
tran-spose.) If Go(s) 18 minimum phase and invertible, a multiplicative per-
turbation can be formed, Fig. 2b, and the sufficient conditions for stability

are then

SMy = o [I + (HG)™11 > G [Ge™'GRl

(5)

\n

N
[}
<

o [I+ (GeH)™1] > & [GgGe™')
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where the jw arguments have been supressed. Good performance within the oper-

ating frequency region (i.e., the "control bandwidth") is provided when the

performance measure
PM = o [I + GgH] (3)

is large. The stability measures (4) are generalizations of Nyquist polar
plot analysis; the measures (5) are generalizations of Nyquist inverse polar
plot analysis. The need for large performance measure (6) ‘s a generalization

of the desirability of large loop gains.
ROBUST COMPLNSATION DESIGN

The stability and performance measures presented above raequire stac lity of
the nominal feedback system. In a previous work [4], the authors presented a
recursive design procedure which assigns the closed-loop eligenstructure in
linear quadratic regulators. At each stage, the requirad solution for the
steady state kiccati matrix which shifts a pole or pc.e pair to specified
values is obtained. For pole pair placement, a free parameter in tie solution
rermits selection of closed-loop eigenvectors. This design procedure is sum-

marized in Appendix 1.

Jsing duality, the procedure also applies to estimator design. By extension,
the procedure can be used to design stable compensators by considering the
closed-loop rzgulator dynamics matrix (A-BK) as the open-loop system and pick-

ing the estimator gain to place the compensator eigerstrurcture of (A-BK-GC).
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Compensator robustness can be enhanced through the use of frequency-staped
control and estimation [5,6]. In frequency-sihaped estimation, a fre-

quency-domain performance index is considered,

4

Jet 3 S [WRGWM ¢ vt RGWV] de (7)

where w is the disturbance and v (s the sensor noise. Sensor roise fre-
gquency-shaping is realized by treating v as an auto correlited noise source of

the form

/
vGw) = R 8w vi(iw) (8)

where v'(jw) is a white noise process. In the approach used here, Q(juw) is
determined by pcle placement, equivalent to iajecting fictitiou: process
nois:. R'/2(jw) must be proper (not strictly proper) to maintain sensor noise

weighting over the entire spectrum. Then define a pseudo-measurement

z' = R™1/2 (juw) z = R-1/2(Ju) Cx(Juw) + v' (jw) (9)
R-1/2 (ju) can »e realized in state space as

L/

Xy = AV Xy + Bvi

Yy = Cy xy + DyCx (10)

z' = CVXV + DVCX + v!

68



This dynamic model is appended to the system dynamices to form the frequency-

shaped estimator,

X = AX + G(z' - CV’X\V - Dy cX) + Beu
(11)

.

;(‘v = Av.;(\v + BvC? + Gy (z' - CV/X\V - Dvc,)?)

where z' is obtained from (10). The gains G.and Gy «an be ,icked to pla.: the

cigenvalues of (11) at those of the frequency-shaping filter (10) and the oth-
ers as required for performance. A dual result can be used to develop fre-

quency-shaped gains for the regulator.

Because frequency-shaping ada. states to the compensator, an efficient choice
of the loops to be shaped is cesirable. Kim [7] has developed a procedure for
loop selection based on the singular vectors or the return ratic mairices G,H
or HG,. He conjectured that ar input vector y in the direction of q;, the
singular vector corresponding to 0(A) will get the largest amplificavion by A.
Similarly, a vector in the direction of q,, the singular vector correspcnding
to g(A) will get smallest amplification. Therefore, if the component of y in
thc direction which is closest to qq, is reduced by a filter before it enters
A, 9(A) is effectively reduced. o(A) increased by increasing the compor-
of y nloset to qm vefora it enters A. It ..n be shown that frequency-shaping

introduces transmission zeros into the compensatce transfer function.
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DESICN METHODGLOGY

The discussion which niz been presented above suggests the following design

methodoiog: :

-b

Compensator design for performance of the recuced order system.

2. Eva..ation of the stability margins (4,5) against the perturbation due to

the residual dynamics.

3. Selectiocn of frequency-shaping filters to enhance stability robustness.

4, Synthesis ¢ . equen.cy-shaped ccmpensator to incorporate performance and

stability margins.

The recursive eigenstructure design algorithm can bo used for the designs.

EXAMPLE.

Tne design methodology was applied to a contrcl design for the ACOSS-1 model,
als.> used in the comparis~n study [9]. The model is illustrated and the
state-space data are listed in Appendix 2. As in the comparison study *he
first eignt structural modes were retained. A regulator was designed with
ciosed-loop poles at 20% dumping; a compensator was designed with poles at
ritical damping. Fig. 3 illustrates stability measure (5) for the loocp
broken at the ~uunut. Perfcrmance s adequate at low frequencies but stabil-
ity robustrne: .8 inadequate above 1 Hz.

70



To improve stability robustness, frequency-shapea estimation was incorporated
in all three output loops using second-order low-pass filters. Fig. 4 illus-

trates the recovery of stability robustness while still retaining good low

frequency performance, Fig. 5.

DISCUSSION

In the comparative study by Kosut, et al [8], both LQG modal control and a
frequency-shaped control were investigated (along with others). LQG control
was found to have pcor periormance as well as poor stability robustness. Fre-

quency-shaped control was found to have adequate stability robustness, but

poor low frequency performance.

The methodology presented here addresses both of these issues. Performance is
achieved by pole placemenL design of the compensator, achieving good loop
gains at low frequency. Stability robustness is achieved by adding fre-
quency-shaping without sacrificing low frequency performance, since the gain

of the frequency-shaping filters is one at low frequencies.

CONCLUSIONS

A design meth dology for control systems for large space structures has been

proposed which incorporates both performance and stability robustness concerns



as an integral part of the design process. Performance was achieved by plac-
ing the poles of the compensator. Stability robustness was achieved by fre-

quency-slaping the compensator to satisfy a frequency domain stability

robustness test.

An example was [! :sented which applied the methodclgy to a system with the
loop broken at the output. A full design study wculd also require examination
of the system with the loop broker at the input, using regulator fre-

quency-shaping to enhance robustness.
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APPENDIX 1

Recursive Eigenstructure Design

The steady-state optimal control law for the linear, time-invariant,

controllable system:

= Ax + Bu

e

which minimizes the quadratic performance index,

J =1/2 J7 1xT Qx + uT Ru] dt

is linear state feedback

u = Kx = - R-1 BT gx

where S is the solution of the steady-state Riccati equation,

-SA - ATS + SBR-1 BTS - Q = ¢

(A.1)

(A.2)

(A.3)

(A. W)

In this appendix we summarize an interaccive design technique which solves

(A.U4) to provide specified eigenvalues of the closed-loop system dynamics

matrix A+BK and which also permits some freedom in selecting closed-loop
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eigenvectors. The method is reported elsewhere [4] in detail. It extends the
procedure of Soiheim [1G] in which, for fixed R, the elements of Q providing

the required pole placement are calculated directly.

The desigr. technique is recursive; at each stage, the system dynamics matrix A

in (A.1) incorporates previous state feedback. We then implement the follow-

ing eigenstructure calculation:
X"1A - HSIX = & (A.5)

where A = T™1 AT is block diagonal, T is the real eigenvector matrix of A, and
A = T71BR™IBTT-T is symmetric and positive semi-definite. X is identical to A
except for a block of shifted poles. X is the transformation from open-loop
eigenvectors to closed-loop eigenvectors; it is defined as the "stage"
eigenvector matrix. & is the Riccati matrix in the open-loop diagoralized
coordinate system; S is chosen Lo shift a single poie or a pair of poles. The
corresponding gain matrices, K, de .ermined for each stage are subsequently

added to cbtain a final gain which achieves the same closed-loop pole loca-

tions.

To provide the required pole shift, the only non-zero elements of S correspond
to the entries of A which are to be shifted. With this ghoice of S, the char-
acteristic equation factors into the product cf terms for the unshifted poles

and a term for the desired shifted poles. Thu-,

ls1 - al = D(s) 1 (s - ap) (4.6)
iel
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where I is the index set for the unshifted poles, and D(s) contains explicit
elements of S, H, and the block of A which is to be shifted. Matching the
coefficients of powers of s in D(s) to the equivalent terms in the clcsed-loop
characteristic equation provides a set of equations in the required elements

of S. For the single pole shift Ajj = A to x, the only non-zero element of s

satisfies

3 .=
PRy
For double pole placement it can be shown that the three required elements of
lie on the intersection of two quadric surface in a mathematical space hav-
ing the three S elements as coordinates. (It can also shown that a direct
solution for Q has & similar geometric interpretation.) If the corresponding
submatrix of H is positive definite, the surfaces are a plane and a hyper-
boloid of one or two sheets; the inters2/ ..nn, if it exists, is always an el-
lipse. If the relevant submatrix of & is singular, the surfaces are planes,
and the intersection is a line. The different points comprising the solution

all provide the desired eigenvalu- placement, but with different eigenvectors.

In ref. 4 a solution for S is presented which takes advantage of the quadric
surface geometry tvo define a free parameter that allows deaign freedom in the
cholce of closed-loop eigenvectors., The solution for the stage eigenvector X
partitions into two sets of equations. The first is a homogeneous Lyapunov

equation for the submatrix corresponding to the shifted pole block in A. For

> rnle pair shift, the submatrix is 2x2. Hence, depending upon the nature of

76



the closed-loop poles (real or complex), one or two elemeats of the submatrix
may be chosen arbitrarily; the remaining elements then depend =n the choice of
elements of S. The other equation {s a non-homogeneous Lyapuncov equation in
the remaining elements of the columns of X containing the 2x2 submatrix; its

solution depends upon the 2x2 submatrix, the elements of S and T. and certain

elements of H.

The closed-loop system eigenvector matrix is then Tg¢p, = TX. The sclution of X
depends upon §, which varies with the choice of the free parameter. There-
fore, by recursively shifting pole pairs, design freedom exists to select

closed-loop eigenvectors while providing required pole placements.

The procedure outlined above lends itself to a recursive procedure for prac.i-
cal multivariable regulator design. The steps in the procedure are as fol-

lows:

1. System (A.1) is placed in modal formf

2. The designer seiects the control weighting matrix R, Fhen H is calculated.

3. The designer selecta a real pole or pair of poles to be shifted and their
des.red location; - a pair, he also selects the frée parameter which

determines the cloused~loop eigenvectors.

4, The stage gain is calculated and the closed-loop system is placed in modal

form.
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5. Steps 3 and U are repeated for other poles until the designer is satis-

fied.

Z

6. The total system gain is obtained by adding the stage gains.

Clearly by duality, the same process can be applied to estimator design, per-

mitting the development of multivariable compensators.
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APPENDIX 2.

The ACOSS-1 flexible spacecraft model was developed by the Charles Stark
Draper Laboratory.l0 It is representative of many radar and optlcal control
problems, but is small enough to be tenable for research studies. The struc-
ture is a tetrahedral truss supported by three right-angl= bipcds. The truss
members are flexible in the axial direction only. The mocel has 12 modes; for

control design, only eight are assumed to be known.

CSOL SPACE STRUCTURE I
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Residual Dynamics

Gp(2)

+

Controiled Dynam..

H(a)

Compensator

Fig. 1 - LSS Control System
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~

Fig. 2a - Additive Perturbation
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Fig. 2b - Multiplicative Perturbatir
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