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KALMAN FILTER MODELING

R. Grover Brown
Electrical and Computer Engineering Department
Iowa State University
Anmes, Iowa 50010

A CTRACT

The main emphasis »f this tutorial paper 1is on the formulation of
appropriate stata-space models for Kalmar filtering
applications. The so-called "model” is completely specified by
four matrix parameters and the 1initi.l conditions of the
recursive equations. Once these are determined, the die is cast,
and the way in which the measurements are weighted is determined
foreverafter. Thus, finding a model that fits the physical
situation at hand 1is all important. Also, it 18 often the most
difficult aspect of designing a Kalman filter. Formulation of
discrete sgtate models from the spectral density and ARMA random
nrocess descriptions 1s discussed. Finally, it is pointed out
that many common processes encountered in applied work (such as
band-limited white noise) simply do not lend themselves very well
to Kalman filter modeling.

INTRODUCTION

Kalman filtering is uwow well known, and tutorial discussions of the tech-
nique are given in a number of standard references [1,2,3]., The filter
recursive equations are summarized in Figure 1 for ref .ence purposes here.
It should be noted that once the initZlal conditions and the ¢k’ Hk' Rk’ Qk'
parameters are specified, the die 1s cast and the way 1in which the
measurement Sequence 1s processed 1s completely determined. Thus, the
gpecification of these parameters is especlally important -- they are, in
effect, the filter "model”. The emphasis in this tutorial paper will b: on
+he modeiing aspe.t of Kalman filtering. To see where these parameters come

from, we will now review the basic process and measurement equations.
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: Figure ' Kalman filter loop
. THE DISCRETE PROCESS AND MEASUREMENT EQUATIONS
* The starting point for discrete Kalman fiiter theory begins with the process
and measurement equations. The random process under consideration is

assumed to satisfy the following recursive equation

X, +w 1)

el - P Y

where k refers to the k~.h step in time, Xy is a vector random process,

¢k is the transition matrix, and Wi is a Gaussian white sequence with a

covariance structure given by
T
Elx ] = Q (2)
The measurement relationship is assumed to be of the form

z = Hkxk + Vi (3)

where v, 1s also a Gaussian white sequence, uncorrelated with Vi and

described by the covariance
Elv vT] = (4)
1k T R

In words, then, the key parameters of a Kalman filter model can be described

as follows:
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(1) ¢k is the transition matrix that describes the natural dynamics of
the process in going rfrom step k to k+l,

(2) Hk is8 the linear connection matrix that gives the ideal
(noiseless) relaiionship between the measurement z), and the
process to be estimated x,.

(3) Q describes the additional noise that comes 1into the ¥, Process
in the At interval between step k and k+l.

(4) Rk describes additive measurement nolse,

It is 1important to note that the discrete model described by Eqs. (1)
through (4) stands In its own right. It is not an approximation of some
continuous system, nor does it have to be related to another continuous
linear dynamical system in any way. Once the discrete model is assumned, the

recursive estimation process given in Fig. 1 follows directly.
IMPORTANCE OF THE GAUSS5IAN ASSYMPTION

We will digress for a moment and look at the Gaussian assumption used in
Egqs. (1) through (4)., If w, and v, are Gaussian white sequences, then x.
and z, will be Gaussian processes. Even though the Gaussian assumption is
often omitted in discussions of least-squares filtering, we make here with
no apology. The reason for this 1s that minimizing the mean square error
really does not make very good sense for non—-Gaussian processes. To
illustrate chis, consider the two processes shown in Fig. 2. The first is a
scalar Gauss—Markov process which has the general appearance of typical
noise. The secona process 18 the random telegraph wave which switches
between +1 and -1 at random points 1n time. If the parameters of the two
processes are adjusted appropriately, they can be made to have identical
power spectral density functions. Yet, they are radically different
processes! The least-squares prediction far out into the future 1is zero for
both cases. This makes good sense in the Gauss-Markov case because zevo is
the mean and most likely value., On the other haznd, it 18 ridiculous to
predict zero in the random telegraph wave case. We know a priori that this
Javeform 1s never zero. We would be better off to predict either +1 or -1
and be correct half the time than to predict zero and be wrong all the time!
Thus, the Gaussian assumption 18 a reasonable one 1in the least squares

estimation theory, and to stray from it leads us 1into dangerous territory.
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Figure 2 Gauss-Markov and random telegraph waves

TRANSITION FROM A SPECTRAL DESCRIPTION TO A DISCRETE STAILE MGDEL

In Kalman filter applications, we frequently begin with a spectral deszrip—
tion of the various random processes Involved. The problem then 1is to
convert this information to a wmodel of the form specified by Egs. (1)
through (4). The general procedure for making the traasicion to the
discrete model is as follows
(1) Look for a continuous dynamical system that ylelds the desired
process when driven by white noise. (The white noise input
assures that w will be a white sequence.)

(2) Then write the dynamical equations in state-space rorm:
X = Ax + Bu (5
(3) Solve the state equations for step size At ~nd obtain

X, +w (6)

Xl T ¥k t Yk

(4) Determine the measurement equation from the particular situation

at hand.

To illustrate the procedure further, suppose the y process power spectral

density function S_(8) can be written as a ratio of polynomials in 82 (or

y
wz, where wz = -32). The spectral function can then always be factored into
two symmetric parts, one with 1its poles and zeros in the left-half s plane,
the othe: with mirror-image poles and zeros in the right-half plane. This

is called spectral factorization and is vepresented mathematically as
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Sy(s) Sy(s) Sy(s) (7)

where S+ and S; are the left- and right-half plane parts respectively.
S;(s) then becomes the shaping filter that will shape unity white noise into
a process y(t) with a spectral function Sy(s). (See Ref. [l] for further
details,)

Now suppose that the shaping filter is of the fcrm shown in Fig. 3. We seek

a state-space model for that dynamical system. One way of achlieving this 1s

w(t) >| = > y(t)
(Unity White Noise) s +a

Figure 3 Shaping filter

shown in block diagram form in Fig. 4. The state—-space equations are then

—> bo
1 r(t) —>| b,s
w(c) > I >— 1 y
" +a 8% 4 eeea > y(t)
n—1 o )
°
Define state variables as ¢
r, t, r,’** where r is an .
intermediate variable. —D bms
Figure 4 Shaping filter redrawn
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Control system engineers refer to this as the controllable canonical form,
and it can always be achieved for the dynamical system as shown in Fig. 2.

If y is the process that 1s actually measured, then the H matrix is just the

row matrix of b's given in Eq. (9).
EXAMPLE

Suppose we have a scalar Gauss-Markov process y(t) whose power spectrat

density function is

2 )2
s(s) = —22E— (or 22 (10)
Y + 8 w +8

We first factor Sy as follows:

_Vao’s | Jasls
s +8

~s + 83

S (s) (11)
y

The shaping filter is then JZOZB/(s+6) which corresponds to the dynamical

equation
y + 8y = JZOZB w(t) (i12)

This 1s a simple first order differential equation, so we only have one
state variable., Call it X{e Our state equation Is then

k| = -Bx) + 2% \t) (i3)

The solution of this equat..n for a step size At is

_ =BAt
xk+1 = e xk + wk (14)

At

and e can be seen to be the transition matrix ¢, . The mean square value
K q

of w, can be determined from random process theory [1], and it works cut to
be
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q = Elwl] = o%(1-e 2#4%) (15)

The process model is now complete,

UNIQUENESS

We might pose a question at this point:
Are Kalman filter models unique?

The answer is an emphatiz NO. We know from linear system theory that any
nonsingular 1linear transformatioan on the state vector lecads to another
equally legitimate state vector. The choice of coordinate frame for
performing the estimation process 1s purely a wmatter of convenience.
Optimal estimates can be transformed freely from oune coordinate frame to
another (through a linear transformation) and still remain optimal estimates

in the new frame of reference.
ARMA MODEL

Sometimes the random process model comes to us in the form of a difference
equation rather than a continuous differential equation. For example,
consider the auto-regressive moving average (ARMA) model that relates a

digcrete process y(k) to an input white sequence u(k).

y(kt+n) + aly(k+n-1) + oo uny(k) = Blu(k+n~l) + oo Bnu(k) (16)
There is a close analogy between difference and differential equations, and
it works out that this nth-order difference equation cen be converted to
vector form in much the same manner as for a differential equation. 1If we

define an intermediate variable y (k) as the solution to Eq. (16) with just

u{k) as the driving function, and then define our state variables as

xl(k) = y'(k), xz(k) = y"(k+1), etc. (17)

then the system of Eq. (16) translates into state-space form as
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x, (kt1) [ o 1 0 0 « o o] Fxl(k) [0
xz(k+l) 0 0 1 0 L xz(k) 0
£y - ° ° + . u(k)
i xn(k+1) 1L T ~ Il xn(k) 1L 1 (18)
= e e e r y
y(k) [Bn Bn—l Bl] xl(k)
xz(k)
. (19)
- xn(k) -

Note that our cholce of state variables leads to the controllable canounical
form, just as 1in the continuous dynamical case. Of course, we could have
defined our state variables differently and arrived at a form different from
Eqs. (18) and (19). We will not pursue this further other than to say the
cholce of state variables 1s (within limits) a matter of convenience for the

gsituation at hand.
PROC™3SES DERIVED FROM IRRATIONAL SHAFING FILTERS

The random process modeling procedures discussed thus far have been
straightforward. They may be tedinus for higher-order processes, but they
do not call for much imagination. Ther2 exists, however, a whole class of
processes where this is not the case. These are the processes that cannot
be thought of as the result of passing vector white noise through a linear
dynamical system of finite order. Such processes are comronplace in
engineering literature. For example, bandlimited Gaussian white noise is a
very useful abstraction 1in communication theory. It is Gaussian noise that
has a flat spectrum in the baseband and then is zero out beyond the cutoff
frequency. It can be thought of as the result of passing pure white noise
through an idealized lowpass filter, but no such filter can be represented
as a ratis of polyaomials in s of finite order. (Note that a Butterworth
filter can be made to approximate the ideal case, but not equal it.) The

268

e — - e r e - e
SRR . @RTLS-L F

v s g e

*
. 4
/f [



A ey s

s
»

_!’-mmtmw-- - had .
- . . - e T~

A

idealizations of bandlimited white noise are often a convenieace in communi-

cation theory; however, they are an obstruction in Kalman filter theory.

There is a theorem from linear systems theory that is useful at this point.
Chen [4] gives us the following criterion for the realization of 1linear
dynamical models.
A linear dynamical model of the form
X = Ax + Bu
(20)
y =Cx + Du
will exigst for a system with an input-output impulsive response G(t,T1),

if and only 1if, G(t,T) 1s factorable in the form

G(t,1) = M(t)N(1) (21)

M and N are finite-order matrices, so 1f G(t,t) is scalar (i.e., single-
input, single-output), M(t) is a row vector and N(t) is a column vector,
This theorem can then be used as a test to see if a dyramical system will
exist for a corresponding impulsive response function. Furthermore, the
factorization provides the necessary 1information for realization of the
model. (See Chen [4] for further details.) We will use flicker noise to
illustrate the use of Chen's theorem. Flicker noise is of special interest
to the PTTI community because of 1its presence 1n precision frequency
standards. It 18 chrracterized by a power spectral density function of the
form of 1/f at the frequency level, or 1/£3 when referred to the phase level
[5,6]. A block diagram showing the relationship between flicker noise and
white noise i3 given in Fig. 5.

White 1 1
Noise > 173 > Py ————> phase (time)
w(t) 8 Frequency

Figure 5 Block diagrams relating flicker noise to white noise

Clearly, the transfer function relating input white noise tc the output

phase x(t)} is 1/33/2. The inverse transform of 1/93/2 gives the impulsive
response to an 1impulse applied at t=0. This 1is 2/t//n. Thus, for an

impulse applied at t=1, we have (in Chen's notation)
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Gle,1) =2V/ET, >t (22)
n

The question 1is, "Is G(t,T) factorable in the form M(t)N(t)?" It appears
that it 1is not, although this 1s difficult to show in a rigorous sense.
This being the case, Chen's theorem says that no linear dynamical system
will exist that corresponds to the G(t,t) of Eq. (22). This 1s to say thit
no finite-order state model will exactly represent flicker noise! of
course, the state model is essential for Kalman filtering, so this leads to
a dilema when one attempts to Include flicker noise in a Kalman filter clock
model. This is the subject of a companion paper in these Proceedings (6],

so we will not pursue this further here,
SUMMARY

Various aspects of Kalman filtering wmodellng have been discussed briefly in
this paper. Perhaps the most important thing to remember is that the random
processes under c¢onsideration must be modeled in vector state-space form,
This can oftea be done with exact methods. If the exact methods discussed
here cannot be used, as 1in the case of flicker noise, then one must seek
approximate finite-order vector nodels in order to form a workable Kalman
filter., The measu.ement model usually does not cause difficulty, because it

simply depends on what state variables are beine observed.
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QUESTIONS AND ANSWERS

VICTOR REINHARDT, HUGHES AIRCRAFT COMPANY: I think you are right
about that not being able to be factored, and I think that I have
a reason for that. You can show that flicker noise can be
mathematically generated by the sum of an infinite number of
gaussian processes where the beta term goes from zerc to
infinity. Therefore, there are infinite time constants in the
process. So, you can't give a state vector at any one time,
because the beta term goes from zero to infinity.

MR. BROWN: I agree with what you say. I think that it fits my
intuition to think the same thing, and I have read that paper
that you wrote on it. I think that it's a very nice paper, and a
nice way to look at it.

Other people have also approximated flicker noise with a
cascaded sequence of what we, in control system engincering, call
lead or lag networks, which gives kind of a staircase sort of
frequency response function, which, to a certain degree of
approximaticn, drops off at ten dB per decade rather than twenty
dB.

If you take any rational transfer function, or one that is
written out in integer powers, and look at the Bode plot, the
slopes go in multiples of twenty dB per decade, There are no
thirty dB per decade, or fifty dB per decade slorpes.

In the case of flicker noise, and consider the filter that
shapes white noise into flicker noise, it requires an s to the
negative one-half power in the transfer function. That would give
a Bode plot that drops off at ten dB per decade instead of
twenty. Winat you would do is approximate that ten J¢B rer decade
slope with a whole sequence of filters with alternating zeros and
poles. You then end up with a staircase shape response which, on
the average, has a ten dB per de-cade slope.

Incidentally, I think that this 1s a very good way to model
flicker noise. The difficulty is that every time you put a newu
pole in the system you have a new state model. If you want get a
v+ .sonably accurate approximation of flicker noise that way, it

5 involve escalating the order o the Kalman filter
cuneiderably. There 1is nothing wrong with doing it of’f-liae for
analssis purposes, I think that there are some on-line cases
where it would not be accepted.

MR. REINHARDT: I think that some people have reported on a
sim ar method where they used a finite number of filters and it
worked very well in an operational case. If you try to limit that
process though, what happens is that all the poles run together,
and ycu end up with a branch line.

MR. BROWN: I guess my answer to that would be that, in any c¢f
these processes, in the case of flicker noise for example, at
zero frequency and out at infinity, there are singular conditions
for either case. If it drops off as one over f, the area under
the curve out at infinity is not finite. You are talking about a
process with infinite variance, which is physically ridiculous.
The same thing happens at the other end of the spectrum, the
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area under the curve doesn't converge there, either. Physically
it makes sens~a, if you want to be careful and talk about
processes of finite variance, that you have to bound the power
spectral density at the low frequency end ana at the high
frequeicy end. It has to roll off at least twenty dB per decade
in order to have a process of finite variance.

It doesn't bother me to tnink of putting in a filter at the
origin which will bound the frequency content at zero fregquency,
and also put one in at the high end and make it roll of at least
twenty dB per decade.

Incidentally, that impulse response function is not original
with me. Other pecple have .ritten about chat before, including
yourself, I think.

JIM BARNES, AUSTRON, INC.: I have done a fair amount of
simulation of flicker noise with polynomials, the lead-lag
netwerks you mentioned, and have one comment in their defense:
Three or four stages ccn do an amazing amcunt. You can ¢>ver as
much as three Lo four decades of frequency with only ft.oree or
four stages.

MR. BROWN: Oh, is that right? It isn't as tad as it r . . appear
at first glance then. I haven't used 1it, but would have .magined
that you would need a fairly large number.

MR. REINHARDT: As another comment, even a single filter, which
grnerates a random telegraph, will gener=te a flat Allan variance
of about two orders of magnitude in tau, right around the peak.
Then you really have to put a pole every c¢rder of magnitude or
even every two orders of magnitude.

MR. BROWN: All of these are, of course, apprc.imate models fo»
the reasons which I just cited.

MR. ALLAN: I think, in practice, the problem with flicker noise
is not a serious one, because it's only at the extreuaes, as you
pointed out, at zero and at infin.ty that you have difficulcies
with uvne over f integration. In prac%.ce, that's not where the
Fourier frequencies are. Ir reality, u few stages of the filter
will work very nicely in describing, precdicting or simuiating 2
flicker process.

MR. BROWN: You nee! something like that though as far as the
Kalman rilter 1is conceried. You can't afford to have these
fractional powers of s is you are going to do the ztate model.
You have to have something where yor cniy need to worry about
integer powers of s, and if you can do thaet vy cnly addirng two or
three poles, that would be a very feasible way to appr-—.ximate it
certainly.
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