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The mathematical description of a physical object  i s  an absolute necessi ty i n  
solving nearly any problem in computational f l u i d  dynamics o r  re la ted  f i e l d s  where 
one must compute the  numerical solution of pa r t i a l  d i f f e r en t i a l  equations. The 
se lect ion of points on which t o  compute a numerical simulation d i f f e r s  from the  
geometry def ini t ion procedures in computer-aided design. Whereas in  the  l a t t e r  case 
decisions a re  often based on aes the t ics ,  the  d i s t r ibu t ion  of g r id  points f o r  
calculat ing the  solution of par t i a l  d i f f e r en t i a l  equations must be chosen so a s  t o  
include consideration of truncation e r ro r ,  s t a b i l i t y ,  and the  resolution of t h e  
solution near boundary layers  and shocks ( ref .  I ) .  I t  is there fore  important t o  be 
able t o  specify the  d i s t r ibu t ion  of points along a grid l i ne .  

The problem of d i s t r ibu t ing  points along a curve will  now be considered. I t  
wil l  be assumed t h a t  the  curve i s  defined parametrically. The object ive  i s  t o  
s e l ec t  a s e t  of parameter values so t ha t  the  corresponding points on the  curves a r e  
properly dis t r ibuted.  The d i s t r ibu t ion  may be based on some i n t r i n s i c  property of 
the  curve such as  a rc  length o r  curvature. 

Suppose a curve i s  given parametrically by the  equation 

where r = (x ,y ,z) .  The desired s e t  of values f o r  n wi 11 be defined by introducing 
a reparameterization of the  curve 

For each value of t ,  the  a r c  length der ivat ive  d ( t )  wil l  be defined so t h a t  
n 

The function d ( t )  cannot be completely a rb i t r a ry  since i t  must s a t i s f y  

where L i s  the length of the  curve. Since r i s  a composite function of t ,  we a l s o  
have 
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Therefore, when d ( t )  i s  given, the  function n ( t )  i s  the  solut ion of t he  i n i t i a l  
value problem 

This problem can be solved accurately and e f f i c i e n t l y  by various numerical 
algorithms. I t  can be fur ther  noted t h a t  s t a b i l i t y  wil l  be enhanced i f  
r . r i s  an increasing function of n ,  t h a t  i s ,  gr id  spacing increases w i t h  
n n 

uniform increments of n .  The numerical solut ion of t h i s  i n i t i a l  value problem may 
not exactly s a t i s f y  the  condition n(1) = 1. This may be due t o  e r r o r  in t he  
numerical solution o r  the f a c t  t h a t  d ( t )  i s  not exactly normalized by the  above 
in tegral  condition (1 ) .  In e i t h e r  case, t he  solution i s  computed un t i l  the  value 
n = 1 i s  reached, and then the  independent variable t i s  scaled so  t h a t ,  a s  a 
function of the new variable,  n(1) = 1 .  This scaling process wil l  a l t e r  the  g r id  
spacing, b u t  the  r a t i o  of the gr id  spacing a t  any two points wil l  be unchanged. 
Thus, i f  only the r e l a t i ve  spacings a t  points along the  curve a r e  t o  be prescribed, 
no normalization of d ( t )  i s  necessary. An example would be t he  case when equal 
spacing of g r id  points along the  curve i s  desired.  Any constant  value f o r  d ( t )  
would suf f ice .  

The parameterization algorithm has been used t o  d i s t r i b u t e  points along various 
plane curves. For the  f i r s t  example, consider the  curve defined by 

The parameter q i s  introduced, w i t h  x = 4n - 2, and the  i n i t i a l  value problem (2 )  
i s  solved using a fourth-order Runge-Kutta scheme with var iab le  s t e p  length.  The 
following f igures  i l l u s t r a t e  the  e f f ec t  of reparameterization. Figure l ( a )  i s  the  
point d i s t r ibu t ion  resul t ing from equal spacing of the  parameter TI. Figure l ( b )  
has points uniformly spaced r e l a t i ve  t o  a r c  length while l ( c )  concentrates points 
where the  curvature i s  large.  

Figure 1. Grid point d i s t r ibu t ions  f o r  ( a )  uniform n ,  ( b )  d ( t )  = c ,  c = constant ,  
and ( c )  d ( t )  = c / ( l  + 5 1 ~ 1 ) ~  K = curvature. 

The above example was selected because t h e  graph i s  typical  of solut ions  f o r  
problems w i t h  shocks. In such cases a g r id  a s  in 1 ( c )  wi l l  minimize smearing o r  
o sc i l l a t i ons  i n  the  solution.  



The second example applies to the construction of a two-dimensional grid 
between an ellipse and a circle. On each grid line connecting the boundary 
components, a function of the form 

is used with the constants a and b selected so that (1) holds and also the grid 
spacing at the elliptical t = 0 boundary component is some specified value. An 
example of such a grid, with a small uniform spacing at the ellipse, is indicated 
in Figure 2. In this example a curvature-based reparameterization was also used 
to redistribute grid points along the ellipse. Finally, Figure 3 contains the 
plot of the same region with a grid having uniform spacing along every grid line. 
This was accomplished in an iterative process with the reparameterization performed 
in alternating coordinate directions. 

Figure 2. Grid concentration near inner Figure 3. Uniform spacing in 
boundary. both directions. 

Many of the potential applications of reparameterization in grid generation 
have not been addressed. One particularly attractive possibility would be to 
derive a method for generating adaptive grids by selecting d(t) to be a solution 
dependent function. Of course, with this or any grid redistribution scheme the 
skewness of the grid lines and the overall smoothness of the grid should be 
examined. A detailed study of the effect of grid properties on the numerical 
solution of partial differential equations may be found in the following reference. 
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