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PARAMETERIZATION IN GRID GENERATION*
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The mathematical description of a physical object is an absolute necessity in
solving nearly any problem in computational fluid dynamics or related fields where
one must compute the numerical solution of partial differential equations. The
selection of points on which to compute a numerical simulation differs from the
geometry definition procedures in computer-aided design. Whereas in the Tatter case
decisions are often based on aesthetics, the distribution of grid points for
calculating the solution of partial differential equations must be chosen so as to
include consideration of truncation error, stability, and the resolution of the
solution near boundary layers and shocks (ref. 1). It is therefore important to be
able to specify the distribution of points along a grid line.

The problem of distributing points along a curve will now be considered. It
will be assumed that the curve is defined parametrically. The objective is to
select a set of parameter values so that the corresponding points on the curves are
properly distributed. The distribution may be based on some intrinsic property of
the curve such as arc length or curvature.

Suppose a curve is given parametrically by the equation

r=r(n), 0<n<l

where r = (x,y,z). The desired set of values for n will be defined by introducing
a reparameterization of the curve

r=r(n(t)), 0 <t<l
For each value of t, the arc length derivative d(t) will be defined so that

[dt)P = r, - v

t t

The function d(t) cannot be completely arbitrary since it must satisfy

J
f d(t)dt = L (1)
0

where L is the length of the curve. Since r is a composite function of t, we also
have

r, -r.=(r -r )n2
t n n 't
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Therefore, when d(t) is given, the function n(t) is the solution of the initial
value problem

e f“t))w = F(tn), n(0) =0 (2)

n n

This problem can be solved accurately and efficiently by various numerical
algorithms. It can be further noted that stability will be enhanced if
rn . rn is an increasing function of n, that is, grid spacing increases with

uniform increments of n. The numerical solution of this initial value problem may
not exactly satisfy the condition n(1) = 1. This may be due to error in the
numerical solution or the fact that d(t) is not exactly normalized by the above
integral condition (1). In either case, the solution is computed until the value
n = 1 is reached, and then the independent variable t is scaled so that, as a
function of the new variable, n(1) = 1. This scaling process will alter the grid
spacing, but the ratio of the grid spacing at any two points will be unchanged.
Thus, if only the relative spacings at points along the curve are to be prescribed,
no normalization of d(t) is necessary. An example would be the case when equal
spacing of grid points along the curve is desired. Any constant value for d(t)
would suffice.

The parameterization algorithm has been used to distribute points along various
plane curves. For the first example, consider the curve defined by

y = tanh(5x) , -2 < x< 2

The parameter n is introduced, with x = 45 - 2, and the initial value problem (2)
is solved using a fourth-order Runge-Kutta scheme with variable step length. The
following figures illustrate the effect of reparameterization. Figure 1(a) is the
point distribution resulting from equal spacing of the parameter n. Figure 1(b)
has points uniformly spaced relative to arc length while 1(c) concentrates points
where the curvature is large.

(a) (b) (c)

Figure 1. Grid point distributions for (a) uniform n, (b) d(t) = c, c = constant,
and (c) d(t) = c¢/(1 + 5|«]|), « = curvature.

The above example was selected because the graph is typical of solutions for

problems with shocks. In such cases a grid as in 1(c) will minimize smearing or
oscillations in the solution.
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The second example applies to the construction of a two-dimensional grid
between an ellipse and a circle. On each grid line connecting the boundary
components, a function of the form
et + pet

d(t) = a
is used with the constants a and b selected so that (1) holds and also the grid
spacing at the elliptical t = 0 boundary component is some specified value. An
example of such a grid, with a small uniform spacing at the ellipse, is indicated
in Figure 2. In this example a curvature-based reparameterization was also used
to redistribute grid points along the ellipse. Finally, Figure 3 contains the
plot of the same region with a grid having uniform spacing along every grid line.

This was accomplished in an iterative process with the reparameterization performed

in alternating coordinate directions.

/[\

Figure 2. Grid concentration near inner Figure 3. Uniform spacing in
boundary. both directions.

Many of the potential applications of reparameterization in grid generation
have not been addressed. One particularly attractive possibility would be to
derive a method for generating adaptive grids by selecting d(t) to be a solution
dependent function. Of course, with this or any grid redistribution scheme the
skewness of the grid lines and the overall smoothness of the grid should be
examined. A detailed study of the effect of grid properties on the numerical

solution of partial differential equations may be found in the following reference.
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