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ABSTRACT 

Parametric spline curves and surfaces are typically constructed so that some number 
of derivatives match where the curve segments or surface patches abut. If derivatives of up 
to order n are continuous, the segments or patches are said to meet with Cm, or nth order 
parametric coniinritp I t  has been shown previously that parametric continuity is sufficient, 
but not necessary, for geometric smoothness. 

The geometric measures of unit tangent and crraatare vectors for curves, and tangent 
plane and Drpin indicatrit for surfaces, have been used to define first and second order 
geometric continritg(. In this work, we extend the notion of geometric continuity to arbitrary 
order n (G") for cunres and surfaces, and present an intuitive development of constraints 
equations that are necessary and suf5cient for it. The constraints result from a direct 
application of the univariate chain rule for curves, and the bivariate chain rule for surfaces. 
The constraints provide for the introduction of quantities known as d a p e  parameterr. 

The approach we take is important for several reawns: First, it generalizes geometric 
continuity to arbitrary order for both curves and surfaces. Second, it shows the fundamental 
connection between geometric continuity of curves and geometric continuity of surfaces. 
Third, due to the chain rule derivation, constraints of say order can be determined more 
easily than derivations based exclusively on geometric measures. 

In recent years, computer-aided geometric design (CAGD) has relied heavily on mathematical descrip- 
tions of objects b d  on parametric rplinct. Spline curves are typically constructed by stitching together 
nnivariate parametric functions, requiring that some number of derivatives match a t  each joint (the points 
where the curve segments meet). If n derivatives agree at a given joint, the parametrizations there are said 
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to meet with nth order parametric coftt i~ait# (C" continuity for short). I t  hm been previously demonstrated 
(see for instance) that parametric continuity can be overly restrictive for many applications. To 
remedy this situation, another notion of continuity must be developed, one based on the geometry of the 
resulting curve or surface. We shall refer to this m geometric eonthai t~ .  

I t  has recently come to our attention that many authors have independently defined this kind of conti- 
nuity of first and second order (which we denote by G' and @, respectively) for curves and/or surfaces using 
geometric means. For curves, Fowler & Wilson9, Sabinls, Manning", Faux & Pratt8, and Barsky' each 
independently defined first order continuity by requiring that the anit tangent oectorr agree at the joints. 
To achieve second order continuity, both the unit tangent and caroatarc vectors were required to match. 
Nielson's v-spline" possesses a similar kind of continuity. For surfaces, it is common to require matching 
of tangent planer for first order continuity (cf. Sabin" and Veron et dl5). For surfaces of second order 
continuity, Veron et a1 and KahmannIo require continuity of normal caroafrrc in every direction, a t  every 
point on the boundary shared by the constituent surface patches. As Veron et al and Kahmann each show, 
this is equivalent to requiring that the Dapim indicaftirc of each patch agree a t  the boundary curve. 

Although the geometric approaches described above are convenient and intuitive for flrst and second 
order continuity, a more algebraic development is better suited to the extension to  continuity of higher order. 
The approach we take is based on the following simple idea: 

PI: Don't base continuity on the patsmetricstions at hand; repanunetrice, if necessary, to ob- 
tain parametrizations that meet with parametric continuity. If this can be done, the original 
parametrhtims must also meet smoothly, a t  least h a geometric sense. 

The above concept is not a new one; similar principles have been discussed by Farin7 and Veron et all5. 
What is new is the use of the principle to construct constraint equations (to be known as the Beta conrtraintr) 
that are necessary and sufficient for geometric continuity of arbitrary order for both curves and surfaces. $ 

In this paper, we extend the notion of geometric continuity to arbitrary order n (G") and show (in 
a nonrigorous way) that the derivation of the Beta constraints results from a straightforward use of the 
univariate chain rule for curves and the bivariste chain rule for surfaces. This approach therefore provides 
new insight into the nature of geometric continuity and shows that geometric continuity of curves and surfaces 
need not be treated separately; the same basic principle of reparametrization applies to both. We also argue 
that, for 5rst and second order continuity, the Beta constraints are equivalent to the geometric measures 
described above. However, due to chain rule derivation, the constraints are obtained with less effort using 
our method. For a more complete treatment, the reader is referred to Barsky & D e R o ~ e ~ - ~  

2. Geometric Continuity for Curves 

We begin the study of geometric continuity for curves by examining the reparametrization process. 
Two parametrizations are said to be GO-eqsiodent if they have the same geometr~ (shape) and orientation 
(direction of tangent vector) at each point. Given a particular parametrization, all GO-equivalent parame- 
trization~ may be obtained by fanctionrl comporition More specifically, if q(u) and G(ii) are GO-equivalent, 
then they are related by G(Z) = q(u(Z)), for some appropriately chosen donge  of parameter u(Q). Since 
q and 4 must have the same orientation, u must be an increasing function of 5, implying that u must 
satisfj the orientation prereroing condition ull) > 8 (in general, superscript ( i )  denotes the ith derivative). 
A univariate parametrization is regular if the first derivative vector does not vanish. I t  is well known from 
diierential geometry6 that regularity is, in general, essential for the smoothness of the resulting curve. We 
will therefore restrict the discussion to regular parametrizartiorns. We now give a more precise deflnilion of 
G" con t inuity: 

T. Goodman and L. Ramshaw have independently derived the univariate Beta constraints from the 
univariate chain iule. 
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Deflnitlon 1: Let r(t), t E [to, tl] and q(u), u E [uo, 111 be two parametritstions such that r(tl) = q(uo) 
(see Figure 1). Tbese parametricstions meet witb P continuity a t  J if and only if there exist GO-eqnident 
parametritstions P('i) and t(G) that meet with Cn continuity. 

Definition 1 is simply a restatement of principle PI, but in practice one cannot examine all GO-equivalent 
parametrizations in cm egort to find two that meet with parametric continuity. However, it is possible to find 
conditions on r and q that are necessary and suscient for the ezirtcna of GO-equivalent parametrizations 
that meet with parametric continuity. 

Due to the compositional structure d equivalent parametrizations, the derivation of the Beta constraints 
essentially reduces to an application of the chain rule. In particular, the chain rule is used to express 
derivatives d 6 in terms of derivatives of q. For example, the Beta constraints for G4 continuity for the 
situation shown in Figure 1 are: 

where > 0, &, P3, /34 are arbitrary real numbers. 

The right side of the first equation of (2.1) represents the derivative of written in terms of the derivative 
of q, where the substitution u(') = B1 has been made. Thus, B1 determines, to  first order, the function 
u(G) in the neighborhood of the joint. Similarly, the right side of the second equation of (2.1) represents the 
second derivative of expressed in terms of derivatives of q, where u(') has been given the value h at the 
joint. This process is continued for the higher order constraints. 

Although the first two equations of (2.1) were derived using the chain rule, they are identical to the con- 
straints resulting from a geometric derivation of unit tangent and curvature vector continuity, respecti~ely '~~~. 
Thus, our approach reduces to previous definitions of C1 and G' continuity. 

In general, a property of the chain rule can be used to easily show that for nth order geometric continuity 
for curves, n rhape parameterr B1, ..., B, are introduced3. The quantities PI, ..., /?,, are called shape parameters 
because they can be made available to a designer in a CAGD environment to change the shape of curves and 
surfaces. Since geometric continuity provides for the introduction ot shape parameters, it may be desirable 
to generalize existing spline techniques to obtain their geometrically continuous analogues. For instance, the 
Beta-spliiel~' is an approeimotiag technique that possesses shape parameters; sn interpolating technique is 
described in DeRose & Barsky4. Faux & Pratt8 and Farin7 use the extra freedom allowed by geometric 
continuity to place Btaer  contrd oerticer. 

3. Geometric Contiuuity for Surfaces 

A parametric surface patch b defined by a b i i i a t e  function such as G(u, u) = (z(u, u), ~ ( u ,  v), z(u, u)), 
where u and v are allowed to range over some region of the uv plane. Such a parametrization is r q d a r  if 
the first order partial derimtives are linearly independent. Nth order parametric continuity of two surface 
patches requires that all like partial derivatives of order up to n agree for each point of the boundary curve. 
Superscript (i, j) will be used to denote the I * ~  partial with respect to the first variable, and the f partial 
with respect to the second. Just as for curves, parametric continuity is aufftcient for geometric smoothness, 
but can be overly restrictive. 

The notion of reparametrization aa a basis for the determination of continuity can readily be extended 
to surlsces by making a definition analogous to Definition 1. The biuariate chain rde  can then be used to  
determine constraint equations. However, instead of shape parameters being introduced, a property of the 
bivariate chain a l e  shows that n(n+3) l a p  ffinctiow are introduced when two surface patches are stitched 



together with Gn continuity. Referring to the situation of Figure 2 and using the bivnriate chain rule, one 
can show that F(u, v )  and G(r, t )  meet with G1 continuity if and only if 

holds for each point P of 7 where the Jape  f r n c t i o ~ ~  ,801,@10, &I satisfy the orientation preserving 
condition /900B11 -PloPol > 0. The shape functions determine how derivatives of G are related to derivatives 
of a GO-equivalent parametrization (6) that meets P with flrst order parametric continuity. Although 
equations (3.1) were derived from the bivarhte chain rule, they also have geometric significance. Mote 
speciftcally, they are necessary and sufficient conditions for tangent plane cantinaity between F and G. Thus, 
the abstract algebraic approach of reparametrization and the chain rule agrees with geometric intuition for 
i rs t  order continuity of surfaces. 

It can be shown that the constraints resulting from the chain rule approach are equivalent to requiring 
that the Dupin indicatrix of the patches match dong the boundary curve. Thus, the chain rule approach 
agrees with geometric intuition for both G1 and (=1 continuity. Moreover, the chain rule approach yields the 
second order constraints with less effort than the geometric approach. For higher order continuity, geometric 
intuition becomes more feeble, but the chain rule approach still applies. 

4. Conclueion 

We have deined nth order geometric continuity for parametric curves and surfaces, and derived the 
Beta constraints that are necessary and sufecient for it. The derivation of the Bets constraiats is based 
on a simple principle of reparametrization in conjunction with the u n i d a t e  chain rule for curves, and 
the bivariate chain rule for surfaces. This approach therefore uncovers the connection between geometric 
continuity for curves and geometric continuity for surfaces, provides new insight into the nature of geometric 
continuity in general, and allows the determination of the Beta constraints with less effort than previously 
required. 

The use of the Beta constraints allows the introduction of n shape parameters for curves, and n(n + 3) 
shape functions for surfaces. The shape parameters and shape functions may be used to modify the shape of 
a geometrically continuous curve or surface, respectively. However, geometric continuity is only appropriate 
for applications where the particular parametrization used is unimportant since parametric discontinuities 
are allowed. 

Figure 1: The panmetrizutionr r and q meet at Flgun 2: The rurface patdeo created by F and 
the common p in t  r( t1)  = q(uo). G meet Qt the boundary carve 7 .  
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