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1. In curve fitting problems that arise in science or 

engineering we often demand that our approximating function be 

shape preserving in the sense that the approximation is convex 

when the data are convex or that the approximation is monotone 

and convex when the data are monotone and convex. In this paper 

we construct such shape preserving approximations by interpolating 

the data with polynomial splines of arbitrary degree. We 

formulate a regularity condition on the data which insures the 

existence of such a shape preserving spline, we present an 

algorithm for its construction, and we bound the uniform norm 

of the error which results when the algorithm is used to produce 

an approximation to a given f E C[a,b]. 

2. Let A~ : a = xo < xl < . . .  < x = b denote an arbitrary n 

but fixed partition of the interval [a,b] with knots xi, let 

hi = X i+l - X i ' i = O,l,. .. ,n-1, and let h = max hi. Let 

Sp(k, e ,  A,) denote the space of polynomial splines of degree k 

and deficiency k - R and assume that k = 3 , 4 ,  . . .  and R = 1, ..., 
[ ( k  - 11/21 
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Given r e a l  d a t a  ( x o , f 0 ) ,  . . . , ( x n y f n )  we seek  s E Sp(k,  2 ,  A n )  

such t h a t  

(PI  s ( x i )  = f i y  i = 0 1  . n and s i s  convex on [ a , b ]  . 
The e x i s t e n c e  of  a  s o l u t i o n  t o  (P )  depends on t h e  v a l u e s  of  

- ui  - ( f i r l  - f i ) / h i ,  i = O , l , .  . . , n - 1 .  

To c o n s t r u c t  s we s e t  

(1 1 s ( x )  = s i ( x ) ,  xi  - < x - < x i+l9 i = O , l , . .  . , n - 1  

where 

(2 I s i ( x )  = f i e o ( t )  + f i+ ,s1( t )  + hi [p iyo( t )  - y ( ~ I I ,  

t = (X  - xi)/hiY 

where P O , P 1  - ,Pn a r e  paramete rs  t o  be determined l a t e r  and 

1 
e o ( t )  = ~ ; ( s ) d s ,  

t m  
Q l ( t )  = J Mk ( s l d s ,  

t 0 

where M: denote  t h e  B- sp l ine  of  degree  i - 1 w i t h  kno t s  

- 0 = to  - ... - - - - - 
' t j + l  * * *  

- t i  = 1. C l e a r l y  s E Sp(k ,  2 ,  An) 

wi th  R = minfk-m-1, m )  - < [ ( k  - 1 ) / 2 ] .  

Theorem 1. The s p l i n e  f u n c t i o n  s g iven  by (1) - (2) s o l v e s  

t h e  probiem ( P j  i f  and on ly  i f  

f o r  i = 0 1  . - 1  I f  i n  a d d i t i o n  po  - > 0, t h e n  s i s  a l s o  

nondecreasing on [ a , b ] .  



3. The parameters pi which appear in (3) can be constructed 

as follows. We initially define 

koi - (m + 1 ) 0 ~ + ~  - - 
Y i = 0,. . . ,n-2, - - 

'i 'n- 1 - Rn - -00 

k-m-1 

and then for each i = O,l, ..., n set ci = max{ui, Lil, 

di = min{vi, oil. 

Theorem 2. Let ol 2 oo and let on = +m. If 

(m + 1) bicl - oi) - > (k-m-1) (ai - oi- i = l,. . . , n-2, 
then ci - < di, i = 0 ,... , n  and any choice of pi E [ci, di], 

i = 0,. . . ,n makes (1) - (2) a solution of (P). 

4. The error which results when the.above procedure is 

used to construct a polynomial spline approximation to a continuous 

function f may be bounded as follows: 

Theorem 3. Let f E C[a,b] be nondecreasing and convex on 

[a,b], and let s be the spline interpolant produced by using 

(1) - (3) with f = f (xi), i = 0,. . . ,n and with po > 0.  The2 i - 

IIf - < Y ~ , ~ ~ ( ~  ;h) 

where (f ; - )  is the modulus of continuity of f and 
1 

= 1 + A-k/m and 7 k- 1 
Yk,m - ( ) z - ~  < A  - < 1. 

Moreover, for k = 2q - 1 and m = q - 1 (q > 1) 




